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Hello and welcome to lecture 51 of the course theory of computation. In lecture 50, we started 

the proof of Cook-Levin theorem. So, the Cook-Levin theorem states that SAT is NP-complete. 

So, which involves showing that SAT is in NP, and all the languages in NP can be reduced to 

SAT. So, the first part is easy, the second part is where the challenge of the proof lies, and the 

reduction goes.  

So, we have to take an arbitrary NP language A, and we have to show that A reduces to SAT. 

So, the way we went about it is using this computational table. So, we showed that the idea 

was to construct a Boolean formula, which has a satisfying assignment if and only if the given 

string w is in a.  



So, in other words, instead of checking, directly checking w is a, we want to check whether the 

decider for a, the non-deterministic decider N for a, does there exists a valid computation for 

N on w, that will lead to w getting accepted on N. So, this is what we want the formula to 

check. So, let me repeat, we want the Boolean formula ɸ to encode whether there exists an 

accepting computation for N on the string w.  

So, n is a non-deterministic decider for the language A. So, w is in A if and only if the non-

deterministic decider can accept w, and that can happen only if there is a sequence of 

configurations that leads into acceptance, and this is what we want to encode in the Boolean 

formula ɸ. And the details we discussed in the previous lecture. So, we had to check four things.  

One is whether the formula, whether the configurations is the starting with a valid starting 

configuration, and does it end with an exit, and whether the variables encode the table properly. 

So, these three things, these three parts we saw in the last lecture, the part that was remaining 

was to check whether each configuration listed here is that a valid successor of the previous 

configuration. So, this is the part that is remaining to explain. So, this part of the formula is 

called ɸ𝑚𝑜𝑣𝑒, and this is what we have to discuss.  
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So, the point is that we have to check for each the second configuration is valid successor of 

the first, the third is valid successor of the second, and so on. And the main idea here is that the 

Turing machine computation is a very local phenomenon, and instead of actually checking the 

entire configurations, we will do a sort of a local check.  

So, what we do is we will divide the entire, think of there being like windows like this. So, 

when I say window, I am talking about a part of the table which has two rows and three 

columns. So, what we will you do is think about this window moving, so one step. So, now, 

we check this window, and the next time we check the window, similar window but move one 

step to the right.  

And then we check another window that moves one more step to the right, and after which you 

check some window like this. And like one step below and so on. So, basically the tile the 

entire table using these windows. So, of course, there will be overlaps and we want the overlap 

to be there. So, for all possible such 2 by 3 windows, we want to check some things.  

So, what do we want to check? I will explain that. So, basically we define or we divide the 

entire table , actually divide is not the right word,  cover is the right word, we cover the entire 

table using these 2 by 3 windows, and there will be overlap. So, if there is a window like, there 

will be maybe I will use another colour, the next window will be something like this.  

So, when everything move one step forward, and the next window will be again this, and yet 

another window will look something like this. So one step below, so, we cover the entire table 

using these 2 by 3 windows and then we check these 2 by 3 windows are valid, this is going to 



be the strategy. Think about the entire table covered with this 2 by 3 windows, and we are 

going to check all these windows if they are valid.  

So now, what constitute valid windows is what we have to explain, and why covering and 

checking these 2 by 3 windows is enough? So, we come to the formula. So we want to check 

each configuration whether it is a valid successor of the previous one, and the idea is that it is 

enough to check all the 2 by 3 windows. What is a valid window? A window is a valid window 

if it is a part of a valid transition.  

So if there are two configurations, and for instance, let us say we saw here, the window that is 

marked over here. The a, 𝑞8, 𝑤2, a, b, 𝑞3. So, the 𝑞8 was in the centre here, and after some 

valid move 𝑤2 was overwritten by b. So, this is a valid window because it appears.  

And so, will this be, this will also be a valid window after whatever appears here, so here maybe 

𝑤3, 𝑤3, 𝑞8, 𝑤2, 𝑤3 and below b, 𝑞3, 𝑤3, that is also a valid window. Anything that can appear  

as part of a valid computation is a valid window. So, now let us just to get a feel for this let us 

try to understand. So, suppose as part of a computation, you have b, q, a. Meaning, the way to 

look at it is if you look at the Turing machine, so you have b here and you have a here, and the 

head is pointing at a, and with state q.  

So what we doing is that suppose this tells us to move right one step. And a is overwritten by 

some symbol let us say d. And then maybe something else is red, and q becomes r, the next 

state is r. So, that is captured by this thing here, when we are reading 𝑞𝑎 one of the possible 

moves is to write d onto the tape, and then go to state r, and then move one step right. So, that 

is what this indicates delta q a contains r, d, r.  

So, notice it is a non-deterministic Turing machine. So, we do not say δ (q, a) equal to, this is 

one of the many possible moves, or one of the some possible moves that we do not know how 

many, and where b could be any symbol. So, when this happens, the first row had b, d, b, q, a 

and the next after one step, the b remains as it is the d, the a becomes d, but then it moves one 

step to the left, because the tape had moves one step to the right, and you have r.  

And whatever is the tape head pointing it will be here, but then that is not part of the 2 by 3 

window. So, that will get captured in the window when we look at in the next, when we move 

it to the next step. So, this is a valid window, b, q, a, b, d, r. So, in fact, the thing that we saw 



here was similar, we have a, q, a, 𝑤2, and a ,b , 𝑞3. So the roles of a’s and b’s have changed 

around, but you see why this is a valid window.  

Another thing is that same the same b, q, a, but instead of writing b going to state r and moving 

right, we move left. So, the only difference here is that r, d, l is in 𝑞𝑎. So the in that case a gets 

replaced by d. Now, the tape head moves one step left, so q becomes r, and it moves one step 

left and b comes here. So this is a valid window as well. Now, this is the case when b is a 

symbol, and then the tape head can move one step to the left.  

What if this was a hash symbol? That is considered in the next case. So, which means this hash 

symbol is there only in the leftmost end. So now the tape head cannot go left. So in that case, 

it remains in the same place. So again, the same rule r, d, l is in 𝑞𝑎 but if it is, if the adjacent 

left symbol is hash, it cannot move left, because you are already at the left most SAT.  

So these are some of the valid computation, 2 by 3 windows, there could be even more. So for 

instance, so all these three situations had q in the centre. What if q is in the right? What if it is 

reading some symbol a over here? What if it was reading some symbol a over here? And then 

it moves right, writes d and goes to state r. So then in the right here, it would be. So the a, b 

gets replaced by d, and q goes to r here.  

But then this is not part of the window, the window is just the part that is highlighted in blue. 

This is not part of the window. So, b, c, q, b, c , d is also a valid window, if you have this kind 

of a rule, for any A, because A is not part of this window, we do not, it does not matter for 

which a, and whichever b, whichever c and so. In fact, we can also be hashed here.  

And so another case when, there will be a similar case when if this the tape head moves left, it 

will be different. But again, I am not enumerating all the possible windows, I am only telling, 

giving some ideas so that you get a flavour of what are the windows possible, there are many 

types of windows possible, maybe another 7, 8 types are there, but if I just keep going through 

the list of windows, it will become very, very, the lecture could just become quite monotonous.  

So what if the q was in the top right, sorry, top left, now, if the there is a tape, so now the tape 

it is reading a and it has to replace it with d and move one step right, the one in the bottom is 

d, r, b. So, again is the same rule r, d, r is in q, a. Now, another pause. So another possibility is 

so here we all have here. So these three considered q in the centre, top centre, here q was in the 

top left, or top right, here q was in the top left.  



Again, I did not considering the case when q moves left from here, or the tape head moves left 

from here, I am only considering the case when tape head moves right. Once again, the goal is 

to not enumerate all the possible list of windows, but just give do some so that you get an idea 

of what all is possible.  

Finally, another thing that is possible is some a, b, c at the top and the same a, b, c in the bottom, 

maybe the state is somewhere far away. So these things do not change. So there is also a valid 

window. Here also, we had said such valid windows here? So let us say 𝑤2, 𝑤3, 𝑤4 it is the 

same thing in the bottom also, any window that is over here will not change because the ones 

that will change is where the tape head is.  

So, which is indicated by the state in the configuration. So, the same thing in the top and bottom 

also is a valid window. So, these are some example of valid windows. The point is, the valid 

window is a function of only the Turing machine. So given, once the machine is fixed, the set 

of all valid windows is also fixed. It depends on only the Turing machine, the number of states, 

the number of variables, sorry, the number of tape alphabet, the transition rules, etc.  

It has no connection with the input, what is input? So, the number of valid windows is a 

constant. Constant, meaning it is independent of the input string, but it is dependent on the 

Turing machine. So that is what I have written here. The number of valid windows is dependent 

only on the Turing machine N, and is independent of the input string.  

In particular, this is independent of the length of the input string. So now, the point is that it is 

enough to check all these 2 by 3 windows? So we will try, or we will cover the entire table 

using these 2 by 3 windows. So all these cells will get covered by multiple windows, because 

there is overlap, we want all the overlap. Only then can we ensure that things are checked 

thoroughly. And if you.  

So, the point that if we verify that all the 2 by 3 windows are valid, then it means that each 

configuration is a valid successor of the previous configuration. Or in other words, each 

configuration is legally followed by the next configuration. It is enough to check, this claim 

says that it is enough to check all the 2 by 3 windows. So why is that? So suppose a symbol is 

not adjacent to the state. Suppose the symbol is not adjacent to the state.  

So maybe I will just write down here. Suppose a symbol let us say it is a here is somewhere 

and the state is somewhere far. So, now, the point is that there is a 2 by 3 window, which does 



not contain the state at all, if a is not adjacent to the state, which means it is either side is not 

the state, so, we can consider the 2 by 3 window with a in the top centre, and because it is not 

adjacent to the state, so the worst case is that the state could be here, but it could be anywhere, 

but it will not be adjacent to the a.  

So, now, the thing is that the state could be here to the left of c, or to the, sorry to the right of 

c, or to the left of b, but whatever it is now, the symbol a will be unchanged in the next row. 

Because, the q may enter here in the bottom left, it may also enter in the bottom right, q or the 

next state may enter, but it will not change a. So, all the.  

So, if you go through the list of all windows, all the valid windows, so, you do not have to go 

through you can just think about it for yourself, the top middle symbol, so, this is a window 

where the top row does not have the state, this is a window where the top row does not have 

the state, and in such windows the middle symbol in the top row is unchanged is the same in 

the bottom row. So, this is what I want to say.  

So, this a does not change so, the if the symbol is not adjacent to the state it is unchanged, this 

is what we want. So, there is one I just write it here this is true because the middle symbol is 

unchanged in the windows that do not have the state maybe in the top row of the window, or 

not of course, it stayed in the top row somewhere but not in the window.  

So, if the symbol is not adjacent to the state, then it is, then the that symbol is unchanged which 

is true in the configuration as well, and this is reflected by the window in which that symbol is 

in the top middle. Second, suppose the symbol is adjacent to the state, we want to say that it 

will change in the in a proper way as per the rules of the Turing machine, that is the second 

thing.  

So, if a symbol is adjacent to the state, we want to say it gets modified only according to the 

rules of the Turing machine. Why is that? Suppose a is adjacent to the state. So, maybe it is so 

a here and q here and let us say b here. Now, the thing is that then there is a 2 by 3 window, 

which features the state in the top middle. So a is adjacent to the state, then there is a window 

where the state is in the centre.  

So maybe a, q, c, and now the claim is that this window captures completely what happens to 

the because of the transition, because q is in the top middle. Now that q may move right or left, 

or q will become let us say it moves left, then c becomes d or something and a comes here. So 



now the movement is only according to the, so this particular 2 by 3 window in which the state 

is in the top centre, completely captures what happens to the to this part of the tape, the changes 

are entirely confined to this 2 by 3 window.  

So, if a symbol is adjusted to the state, that symbol will feature in the window where the stage 

is in the top middle. And that window captures completely what happens, what changes happen. 

So, that window will capture everything and so, that is also fine. So, if the symbol is not 

adjacent to the state, then it is unchanged.  

And if a symbol is adjacent to the state, it features in this kind of window, where the state is in 

the top mid, and that captures all the changes. Hence, whatever changes happen are only near 

the state and that is captured, and whatever is not near the state, it is unchanged because of the 

first part. So that completes the proof of the claim.  

So, anything that is away from the state is left untouched, and anything that is near the state is 

captured by the window in which the move is captured correctly. Hence, this ensures that any 

configuration is a valid successor of the previous configuration, and also there is overlap, there 

is sufficient overlap which ensures things are reflected properly. So, this is why we need to tile 

the thing with overlap, because we want every symbol that is adjacent to state, we want it to 

look at the windows where the state is in the top middle.  

So, now, that this is done, so, now, we have shown that the number of we have told what are 

the possible windows, we have given some examples, this is not an exhaustive list, but the list 

of valid windows is a finite number which only depends on the Turing machine, and not on the 

input. And second, it is enough this claim says that it is enough to check all the 2 by 3 windows.  
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So, now we can write down the ɸ𝑚𝑜𝑣𝑒. So, what is ɸ𝑚𝑜𝑣𝑒? We go through all possible windows 

i, j is the. So, the i, jth window what I mean is by the i, jth window what I mean is this. So, this 

is i and this is j so, this will be 𝑖, 𝑗 + 1, this will be 𝑖 + 1, 𝑗, this will 𝑖 + 1, 𝑗 + 1 and so on. So, 

here will be 𝑖, 𝑗 − 1.  

So, maybe I just make it a bit bigger. This is 𝑖, 𝑗 there is 𝑖 + 1, 𝑗 , 𝑖, 𝑗 + 1, 𝑖 + 1, 𝑗 + 1, 𝑖 + 1, 𝑗 −

1 and 𝑖, 𝑗 − 1. So, when you say i, jth window, I mean the window where i, j is in the top 

middle. So, we want to check all the i, jth, all the windows there they are legal. So what I mean 

is, so, we look at all the windows and check whether this window is a legal window by 

exhaustively going through the list of valid windows.  



So, this part the part that is so we check whether it is legal, how do we check it is legal. So we 

know the variables here? What we do is for each term like this is expanded like here. So where 

we take in OR of the all the valid windows, and we check whether this window corresponds to 

that valid window. So if 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6 is a valid window, we are checking whether the 

𝑖, 𝑗 −  1 entry is a 1,  𝑖, 𝑗 entry a 2, 𝑖, 𝑗 +  1 that is a 3 and so on till 𝑖 +  1, 𝑗 +  1 entry is a 6.  

So it is an AND over all the windows, and all over all the valid windows and inside there is 

and AND, whether this window is this valid window. So whether the selected window 𝑖, 𝑗 

corresponds to the specific valid window, 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, so like that, we check through 

all the valid windows, so maybe it is not this valid window, but maybe it is some other valid 

window.  

So, we maybe there are 1000 valid window. So we need to have this all that runs over all the 

1000 valid windows. Maybe there are 10,000. Maybe there is 1 million valid windows, but it 

is a constant that is independent of the length of the input, it will not change if the input is 

longer or smaller. So, this is ɸ𝑚𝑜𝑣𝑒, you go through all the windows 𝑖, 𝑗 and check whether.  

So, when I say Windows 𝑖, 𝑗 I mean the entries 𝑖, 𝑗 in the table and check whether this entry is 

equal to a valid window by just going through all the list of valid windows, and checking, is 

this where is this basically we are doing this maybe this small pictorial explanation might help. 

So, we have a 2 by 3 window that is moving across the table. And once we fix a moving, once 

we fix a 2 by 3 window, we check whether, there is a list of valid windows given. So, valid 

window 1 to 1000.  

So, is this the first valid window, no, is the second window, no, is it third valid window, and 

so on. And at some point it is, if it is a valid window that part will say yes. And that will make 

this class yes. So that is what we are doing here. So, we are going through lists of all valid 

windows and checking whether this particular window chosen is this does this equal any 

specific valid window. So that completes the reduction. That completes the construction.  

So first let us see the correctness. So, correctness has been established by what we said in the 

previous lecture and this lecture. That if we are checking whether this so this formula is 

satisfiable if and only if we can set these variables in a certain way, and we can set these 

variables in a certain way only when there is a sequence of computations that lead N to 

accepting w.  



So, this formula is satisfiable if and only if N accepts w, if and only if that happens if and only 

if w is in A, because N is a decider for A, even though a non-deterministic decide. Now, so, 

this is the correctness, what remains is show the running time of the construction. So, the 

running time of the construction is also not that difficult, because if you see all the all the part, 

all the formula even though it was the for instance this is like 𝑛𝑘 times 𝑛𝑘 etcetera, and here 

we are running a loop on delta, here again double loop on delta.  

However, the fact that I can write the formula in a concise manner like this indicates that you 

could I can write a loop, or some or loop or multiple loops, nested loops or something for 

creating this formula. So, for instance, ɸ𝑐𝑒𝑙𝑙 I can have two loops outside that run that where i 

and j run from 1 to 𝑛𝑘, and one loop that runs through all symbols in delta here, and then one 

double loop that runs through like l runs through all symbols of delta, and l prime runs through 

all symbols of delta, and output this formula.  

Similarly, if I start is basically, I have 𝑋1, let us say j and a specific symbol. So, this formula 

also, this also can be encoded in a loop. So, very easily very, very clear structure kind of 

formula. So, which can easily be written down in the program. And ɸ𝑎𝑐𝑐𝑒𝑝𝑡, you just have X 

i, j, q accept where i and j very, all vary from 1 to 𝑛𝑘. So, this is also straightforward. ɸ𝑚𝑜𝑣𝑒 is 

also straightforward.  

So, we have an outside AND that runs through all i and j, and within that there is an OR that 

runs through all the valid windows, and then inside that there is a 6, it is AND of 6 letters. So, 

if you look at the length of each of these formula, the number of variables which I had, I think 

mentioned in the previous lecture also there is 𝑋𝑖,𝑗,1 where it ranges from 1 to 𝑛𝑘, j ranges from 

1 to 𝑛𝑘, and l ranges from has size delta.  

So, the number of variables is 𝑛𝑘 times 𝑛𝑘 times delta, but delta is independent of the length of 

w. So, it is, it gets absorbed in O. So, it is O (𝑛2𝑘), because delta gets absorbed in the O notation.  
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Now, ɸ𝑐𝑒𝑙𝑙 if you see this is 𝑛2𝑘, but inside it is just dependent on the delta. So, here there is 

delta, here there is a square, so, it is still O( 𝑛2𝑘), because this part is constant once i and j are 

fixed. ɸ𝑠𝑡𝑎𝑟𝑡  basically there is only one row. So, it has only 𝑛𝑘 not even O, this is just 𝑛𝑘 

variables. And ɸ𝑎𝑐𝑐𝑒𝑝𝑡 has actually 𝑛2𝑘 variables, again not even asymptotic exactly 𝑛𝑘 

variables.  

That is what I have written here ɸ𝑐𝑒𝑙𝑙 has O (𝑛2𝑘 )length. ɸ𝑠𝑡𝑎𝑟𝑡  has 𝑛𝑘 length, ɸ𝑎𝑐𝑐𝑒𝑝𝑡 has 

𝑛2𝑘 length. So, there is not even O here. ɸ𝑚𝑜𝑣𝑒 for instance has O 𝑛2𝑘 length because of this. 

So, this has 𝑛2𝑘, and checking with the i, jth windows legal is this runs through the list of all 

valid windows and this is constant.  



So, number of valid windows in constant, number of valid windows is also a constant that is 

independent of the length. So, number of valid windows into 𝑛2𝑘 into 6, this also 𝑛2𝑘. So the 

size of the formula is polynomial in n, everything is 𝑛2𝑘, 𝑛𝑘, 𝑛2𝑘 etcetera.  

And as we noted they are all very, very concise descriptions, which means that there is a way 

to we can easily write with some for loops an algorithm to generate this formula, because it has 

a very, very repetitive structure. So, that completes the proof that SAT is NP-complete.  
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So, the reduction part. So, we took an arbitrary language A that is in NP. So, we assumed that 

there is a non-deterministic Turing machine N that decides A. So, non-deterministic Turing 



machine that runs in 𝑛𝑘 time, that decides A. And we encoded the formula that we have created 

in such a way that the formula accepts, or formula has a satisfying instance.  

Sorry, formula has a satisfying assignment if and only if there is a sequence of computations 

that lead N to accept a distinct w. So, N accepts w if and only if the formula is satisfying 

instance, and that gives the reduction. And the running time is also polynomial. So, that 

completes is a proof of the Cook-Levin theorem.  

And one key thing in the in the proof is that, we noticed instead of checking whether each 

configuration is a valid successor of the previous one, we see the solid is enough to check the 

validity of all the 2 by 3 windows, we can basically cover the entire table with a 2 by 3 windows 

and check the validity of them.  

And that helped bring down the size of the formula. So that completes the proof of Cook-Levin 

theorem. It is a very interesting theorem, but we need to start somewhere. So now that we have 

the Cook-Levin theorem, now, it should be easy to prove the proof some other languages are 

NP-complete.  

For instance, if we want to show that a language click is NP-complete, we just need to show a 

reduction from SAT to click, and we need to show that click is an NP. If you want to show that 

subset sum is NP-complete, we need to show a reduction from SAT to subset sum and show 

that subset sum is in NP. So we do not need to do everything from scratch where we take an 

arbitrary language in NP like we took here.  
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So I will conclude this lecture with a couple more things. First thing is that 3-SAT is NP-

complete, so what is 3-SAT, 3-SAT is a set of all Boolean formulas that is that are in 3-CNF 

form, and are satisfiable. So 3-CNF means things like this, something like 𝑋1. It is an AND of 

 𝑋1 OR  𝑋2 OR 𝑋3
̅̅ ̅ and 𝑋3 OR 𝑋4

̅̅ ̅ OR  𝑋5 and 𝑋1 OR 𝑋6
̅̅ ̅  OR   𝑋7 something like this.  

So it is an AND of ORs, where every clause contains exactly three literals, and every clause is 

an OR of exactly three literals, so, this is NP-complete. One way is to reduce. So, we have 

already shown that SAT is NP-complete. So, to show the 3-SAT is NP-complete, one way is 

to reduce SAT to 3-SAT in polynomial time.  

So, in all of this, I am assuming that showing 3-SATs is in NP is straightforward. In fact, we 

have already discussed it in one of the previous lectures. So, one way to show is that to reduce 



SAT to 3-SAT, but one way to show is to do this. Another way instead of making a fresh 

reduction, what we can do is. So, whatever we proved we did for the Cook-Levin theorem, we 

can kind of tweak the proof.  

So that the, so we got a formula ɸ at the end of the proof. Now, if this formula ɸ is a 3-SAT 

formula, with an equivalent 3-SAT formula, meaning this formula ɸ satisfies the condition that 

whenever N accepts w, this ɸ is satisfiable and whenever and does not accept w this ɸ is not 

satisfiable, and this formula is 3-SAT, or 3-CNF SAT, then this reduction itself will do.  

So, it turns out that we can convert this the formula that is output from the Cook-Levin proof 

into a 3-SAT, 3-CNF SAT instance. So I just list down the way to do it as to exercises, I will 

not write down and go into detail. So first, so we have the formula is in AND of four things, 

ɸ𝑠𝑡𝑎𝑟𝑡, ɸ𝑚𝑜𝑣𝑒, ɸ𝑎𝑐𝑐𝑒𝑝𝑡, and ɸ𝑐𝑒𝑙𝑙. So CNF means AND of ORs, AND of clauses. So we will 

show that each one of them is a CNF, and this is not that difficult.  

So ɸ𝑐𝑒𝑙𝑙 is basically already an AND of something here. And so again, this can be considered 

as one clause and this can be considered as another clause. So ɸ𝑐𝑒𝑙𝑙 is already in the form of 

AND of ORs, so it is okay. ɸ𝑠𝑡𝑎𝑟𝑡  it is already in the form of AND of individual variables. So 

we can think of these as AND of singleton clauses, clauses with singleton literals. ɸ𝑎𝑐𝑐𝑒𝑝𝑡 is 

basically an OR of many things.  

So we can think of this ɸ𝑎𝑐𝑐𝑒𝑝𝑡 as a single clause, there is no end. Now, ɸ𝑚𝑜𝑣𝑒, it is actually it 

is an AND of OR of ANDs. So, that is AND of OR of ANDs here, what we can do is, so this, 

so anything that. So, OR an AND kind of, we can use, we can distribute over each other. So, 

this OR of ANDs, we can write it as AND of ORs, therefore getting AND of AND of ORs, 

which again, will become a CNF instance. So here, we need to use the distributive property of 

OR of, OR over ANDs.  
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So for instance, maybe just to give a small example. So we want to show that OR over ANDs, 

OR of ANDs can be written as AND of ORs. So OR of ANDs, so suppose a and b, OR c and 

d, this is equivalent, we can write it as a OR c, AND a OR d, AND b, OR c, AND b, OR d. So 

you can verify that the formula in the left, maybe I will use a different colour, the formula in 

the left.  

This is true, if and only if the formula on the right is true. So this is the left formulas true is if 

either a and b, either a and b is true, or c and d is true. And here also the same thing is required. 

So this can be verified. So maybe just so distributing OR over ANDs. So, this way we can 

convert each of the ɸ𝑐𝑒𝑙𝑙, ɸ𝑠𝑡𝑎𝑟𝑡, ɸ𝑎𝑐𝑐𝑒𝑝𝑡, and ɸ𝑚𝑜𝑣𝑒  to a CNF instance. And the second thing 

is at once. So that is the first exercise.  

The second thing is that once we get something in CNF form, we can convert them to 3-CNF 

form. So that is a way so the formula generated, we first ensure that it is in CNF, then we ensure 

that it is in 3-CNF. So any CNF formula can be converted to 3-CNF. It is not that difficult. So 

suppose we have a clause. So basically, we modify the clauses to ensure that it has exactly 

three literals. So suppose we have a clause 𝑋1 ,  𝑋2 ,  𝑋3 ,  𝑋4 . 

We can, convert it into AND of two clauses, where we introduce a new variable y. And now 

you can verify that y has to be either true or false. So if y is true, then  𝑋3  or  𝑋4  has to be true. 

If y is false, then  𝑋1 , or  𝑋2  has to be true. So basically, by two choices of y, we are covering 

the entire possibilities of the OR.  

And similarly, when we have a clause of 5 literals. We can do the similar thing by introducing 

two new variables  𝑌1  and  𝑌2 , which connect all these 5 original variables. And if there is a 

clause that contains only 1 variable or something. So if you have something like this, let us say 

 𝑋1 , you can map it to  𝑋1  OR  𝑋1  OR  𝑋1 . That is also, and next if there is two also you can 

repeat one of them. So that is another exercise.  
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And finally one more thing that I wanted to mention is that 2-SAT is in P. So we said that 3-

SAT is NP-complete, which means it is unlikely that 3-SAT has a polynomial time algorithm, 

however 2-SAT, so what is 2-SAT? It is 2- CNF formula, which is AND of clauses where each 

clause is of 2 literals. So 2-SAT CNF formula  𝐶1  AND  𝐶2   AND  𝐶3   AND so on.  

Where each clause is of the form something, let us say  𝑋𝑖   OR  𝑋𝑗 , or something  𝑋𝑗 , 𝑋𝑎
̅̅̅̅  or 

something like this. It is an OR of two literals So this is surprisingly in polynomial time. So 

this is something interesting because 2-SAT is in polynomial time while 3-SAT is NP-

complete, which we expect to be not polynomial time.  

So what happens when we go from 2 to 3, or what happens when we go from 3 to 2. So the 

reason is, we can view 2-SAT as something like implications. So this, let us say something, we 



have  𝑋𝑖 , maybe just for the sake of simplicity, I will just take  𝑋𝑖  OR  𝑋𝑗 . So it is like, if  𝑋𝑖  

is false, then  𝑋𝑗  has to be true, otherwise, this will not be satisfied. So this can be viewed as 

implications, and that characterisation helps us show that 2-SAT is in P.  

So I will not get into the proof here. But the key idea is that every clause can be viewed as an 

implication, maybe I will write the idea down. Key idea every 2-SAT clause can be viewed as 

an implication. So that is how we will show that 2-SAT is in P. That is all, that is pretty much 

all that I had in lecture number 51, where we completed the proof of Cook-Levin theorem.  

So Cook-Levin theorem, we want to show that SAT is NP-complete, we showed by taking 

arbitrary NP language A, we considered the non-deterministic polynomial time decider for A, 

and constructed a formula, Boolean formula such that the non-deterministic decider has an 

accepting computation for a given string, if and only if the given the constructed Boolean 

formula was satisfiable. And that involves multiple steps in multiple parts, in multiple 

reasonings, and that completes lecture 51.  

This is also the end of week 10, week 10 lectures. In week 10 lecture, we first saw the verifier 

characterisation of NP, then, we saw a verifier characterisation of NP, then we saw that NP has 

is the same as polynomial time verifiers, then we saw reductions, we saw a polynomial time 

reductions, we saw NP-completeness, and then we saw the proof that SAT is NP-complete.  

So SAT is NP-complete and using this now, we can now other languages to show that it is NP-

complete, we do not need to show that an arbitrary NP language reduces to it. Instead, we can 

take SAT and reduce the to the other language. So in week 11, we will see and pick up other 

NP-complete languages where we will not be showing it from scratch, but from some already 

known NP-complete languages, maybe like SAT or something that we have already proven at 

that time. So that completes week 10, and see you in week 11. Thank you. 


