
Theory of Computation
Professor Subrahmanyam Kalyanasundaram

Department of Computer Science and Engineering
Indian Institute of Technology Hyderabad

Polynomial Time Reductions - Part 1

(Refer Slide Time: 00:15)

Hello and welcome to lecture 48 of the course Theory of Computation. In the previous lecture,

we saw the verifier characterization of NP. In this lecture, we will see polynomial time

reductions. And this will later be helpful towards establishing the notion of NP completeness.

So, let us let us get into the definition of polynomial time reductions.

So, we have already seen reductions earlier which was in chapter 5 mapping reductions or

many one reductions. So, this is similar, but with a different constraint on the machine computes

a reduction. So, what is a reduction? So, first, I am going to define polynomial time computable

function.

So, we say that a function f is polynomial time computable if there is a deterministic Turing

machine M that that takes the input and provides output. Meaning that function f is polynomial

time computable if there is a polynomial time deterministic tuning machine M that takes the

input let say w and outputs f(w) on the tape and then stops.

So, there should be a machine that takes w as input and outputs f(w), and this should be done

in polynomial time by a deterministic Turing machine. So, this is the definition of polynomial

time computable function and we say that a language A is polynomial time reducible to

language B and denoted by this notation 𝐴 ≤ ௣ 𝐵

If there is a polynomial time computable function f that that constitutes a reduction. What do

you mean by reduction? The reduction is that for all w in A, 𝑓(𝑤) should be in B and for all w

not in A, 𝑓(𝑤) should not be in B.

 𝑤 ∈ 𝐴 ⟺ 𝑓(𝑤) ∈ 𝐵

 So, in short w is in A if and only if 𝑓(𝑤) is in B. So, this is very similar to the notion of

mapping reductions or many one reductions that we saw in chapter 5.

The only difference is that so, even there we had this w is in A then 𝑓(𝑤) is in B. The difference

is the only difference that here we are insisting that the function that constitutes the reduction

the function f should be polynomial time computable. So, this is what I am highlighting this

function should be polynomial time computable in the case of a polynomial time reduction,

whereas, in the case of mapping reduction, we just want it to be computable by some Turing

machine.

But here we are saying that it should be computable by polynomial time Turing machine and

the rest is standard like suppose there is the function this from Σ∗ to Σ∗ and any w that is in A

gets mapped to some w that is in B. And any w that is not in A gets mapped to some w that is

not in B. So, A map to B and Aഥ maps to Bഥ. So, the goal is given a situation, given a string that

we do not know whether it is from A or whether it is an A or not, we want to transform it into

the domain of B.

(Refer Slide Time: 04:09)

And suppose we know how to test the membership in B. So, we do not know how to test

whether some string is in A or not, it could be in A or it could be in Aഥ, but we know how to test

the membership in B then we can transform the instance, basically given w we can compute

𝑓(𝑤) and then check whether 𝑓(𝑤) is in B or not.

So, if 𝑓(𝑤) is in B, the only way that 𝑓(𝑤) could have been in B is if w was in A and if f(w) is

in Bഥ, the only way that we could come to Bഥ is if w is in Aഥ. So, testing whether f(w) is in B or

not is as good as testing whether w is in A or not. So that is the main goal of this reduction. But

the main difference here from mapping reductions is that.

Now we are putting time constraints, or we are putting resource constraint on the how to

compute the f, which is kind of not that surprising if you think about it, because we are in the

chapter that pertains to time complexity. And we are dealing with complexity classes that do

calculation as per time complexity, so we need some handle on how much time it takes,

otherwise, this could become meaningless.

(Refer Slide Time: 05:46)

So, I will explain that in a bit. So, the goal as I mentioned is, suppose we are given some w.

And we want to determine whether it is in A. So, the way to do it is we transform it to B we

compute the function. And then check whether the function is in B or not. So, transform A to

B means compute f(w) given w and then use the decider of B to decide B.

(Refer Slide Time: 06:16)

So, so later in a bit, we will see that we will see the following that suppose A is reducible to B

in polynomial time, and suppose B is in P, this will imply that A is in P. So, this is going to be

one of our main results that we will use suppose A is reducible to B and B is in P, then A is also

in P. This is so, if you recall, we had this statement in chapter 5 that suppose A mapping

reducible to B, and then B is decidable, this implies A is decidable.

This is something analogous to that. And the point that I want to say is that this restriction is

important. So, suppose we did not have this restriction of polynomial time computable. Then

let us say we could take exponential time to compute this function. Then the problem is that let

us say we are given a three colouring instance or a satisfiable instance.

Then if I do not have any time bound, then I could try out all the possible 2௡ assignments, let

us say this is satisfiability. So, I will tell you how to compute a reduction to a language and the

testing of the second language will be polynomial time, but the original language is something

that we do not know whether it is in polynomial time or not.

So, suppose we have a SAT instance, what I can do is to compute exhaustively, all the possible

assignments, and then basically decide SAT and then I output the function value.

(Refer Slide Time: 08:16)

So the function value is going to be 1 if the formula is satisfiable, and 0 otherwise. So, I just

take it 2௡ time and try out all possible assignments and then basically have decided whether it

is in satisfiable or not, but since my goal is to compute the reduction, I will output 1 if it is

satisfiable, and 0 otherwise.

So now, this gives us a reduction, this gives us a reduction, although a very silly reduction. So,

any, any, any formula that is satisfiable will map to 1 and any formula that is not satisfiable

will map to some other string, will map to 0. So, basically, this is a reduction from satisfiability

to the set one and everything that is not 1.

And then this is easy to decide, it is easy to decide whether suppose the transformed instance

is quite easy to decide. So, now, you see that see our goal was to efficiently decide the language

a. So now, so which means all the steps should be efficient, I should be able to efficiently

compute the transformation and efficiently decide B.

(Refer Slide Time: 09:37)

So basically, both the steps here the transformation from A to B, this should be efficient, and

the decision of B should be efficient. Now, if this transformation is not efficient, if I am allowed

in finite time, then the whole point is not really meaningful.

(Refer Slide Time: 10:04)

So, like we have here, if I am not restricted in the time, I could easily compute the reduction

from SAT to some trivial language like 1 and 0. And it is easy to decide this, easy to decide

between 1 and 0. So, now, we have reduced SAT to a language that is easy to decide, but then

the reduction takes exponential time.

So, we cannot basically hide the complexity of the problem in the reduction that is why, to

make this whole thing meaningful, we have to impose a time restriction on the time that is

taken for the reduction. So otherwise, it leads to such meaningless results. So, now, if you

impose its time restrictions, then we cannot do this reduction from SAT to like the 0, 1 language.

So, that is a point here.

(Refer Slide Time: 10:56)

So, we for instance, we cannot replace this by a mapping reduction because then we cannot

infer that A is in P, because the reduction itself may take exponential time. So, then how can

we infer that the whole process is in polynomial time?

 (Refer Slide Time: 11:28)

So now, let us come to the proof of the statement that that I mentioned over here that A reducible

to B in polynomial time and B is in polynomial time implies A is in polynomial time. So, the

idea is whatever we have already discussed. So, suppose M is the decider for B, M is the decider

for B in polynomial time, we can construct a decider for A as follows, we first compute the

function, the reduction from A to B.

So, f is the reduction, assume f is the reduction, maybe I will just write that assume f is the poly

time reduction. So, we first compute the reduction f and then we check for the membership in

B. So, we use the decider for B, we basically run M on the reduce instance, which is f(w).

And that is it and then if M accepts f(w) we accept w, if M rejects f(w) we reject. So, the

correctness is straightforward, because only strings in A will come B and these strings will be

accepted and those strings with Aഥ will come to Bഥ and those will be rejected. So, the correctness

is straightforward. So, time complexity, let us just check the time complexity.

(Refer Slide Time: 12:56)

Suppose to compute f(w) takes let us say 𝑛௞ଵ time which means this step takes the computing

f(w) takes 𝑛௞ଵ time, where let us say n is the length of the input. Now, let us say suppose M

takes or M runs in, whatever is the input length to the power k2.

So, the input to M is f(w). Suppose the exponent of M is k2. We know M is a polynomial time

Turing machine. So, it will run in the length power k2 for some constant k2. But what is the

length of f(w)? So, we know only the length of w. What is the length of f(w)? So thing is that,

the only thing that we know about f(w) is that it is produced by a Turing machine that runs in

time 𝑛௞ଵ.

So, which means in that time, it even has to write the output. So, the length of f(w) cannot be

more than in 𝑛௞ଵ. If it is more, then writing the output will take more time. So, we can say that

since time taken for the reduction is 𝑛௞ଵ. We have the length of f(w) also should be at most

𝑛௞ଵ which means M takes (𝑛௞ଵ)௞ଶ time which is 𝑛௞ଵ∗௞ଶ.

So, this this step takes 𝑛௞ଵ∗௞ଶ. So, the total time taken here is 𝑛௞ଵ + 𝑛௞ଵ∗௞ଶ . So, the second

part is that this is the dominating thing 𝑛௞ଵ∗௞ଶ which is okay but the exponent is still a constant.

So, 𝑛௞ଵ∗௞ଶ is still polynomial in the input length where the input is the string w. So, the decider

takes 𝑛௞ଵ∗௞ଶ time.

So, this is polynomial time, polynomial in the length of the input. So, that is the proof. So, the

proof is very simple we convert the A instance to B and then we run the B decider on the

reduced instance and the correctness is quite clear and the running time for the whole process

is the running time for the conversion which is 𝑛௞ଵ and the running time for running the decider

on the reduced instance which is the length of the reduced instance power k2 which turns out

to be 𝑛௞ଵ∗௞ଶ .

So, the whole running time is 𝑛௞ଵ + 𝑛௞ଵ∗௞ଶ which is dominated by 𝑛௞ଵ∗௞ଶ which is a

polynomial time in the length of the input. So, hence A is in P. So, we have given a decider for

A which runs in polynomial time and what I said before. So, this proof is complete.

(Refer Slide Time: 17:47)

What I said before is that if we did not have this restriction that the reduction from A to B is in

polynomial time, we cannot infer this because the first step itself would have taken more time

than polynomial.

(Refer Slide Time: 18:19)

Now, briefly some other results that I just mentioned some other results that I will mention.

One is that the same thing, if A reduces to B in polynomial time and B is in NP, then A is in NP

this is true because. So, we need so, if A reduces to B and B is in NP, then A is an NP. So,

basically, we these two should together imply an NP decider for a which is straightforward by

the same process.

So, we compute the reduction and then run the non-deterministic decider for B on the reduced

instance. So, that together they get a non-deterministic decider for A. So, the claim is that A is

in NP. So, if B is in NP, then that gives an non deterministic decider for A.

(Refer Slide Time: 19:00)

The next thing is that if A reduces to B and A is not in P then B is not in P. So, the analogous

result here is what we saw in chapter 5 if A was mapping reducible to B and A was undecidable,

then B is undecidable. Why is this true?

 (Refer Slide Time: 19:30)

So, suppose this is not true if A reducible to B and A are not in P suppose B was in P. Suppose

B was in P then by this theorem, it would imply that A is in P which is a contradiction. So, if A

is not in P, then B should certainly be not in P. Because if B was in P, then that gives a way for

us to decide A in polynomial time.

(Refer Slide Time: 20:01)

So, if A is reducible to B in polynomial time and A not in P that implies that B not in P.

(Refer Slide Time: 20:13)

Again, just two analogous results were if A was mapping reducible to B and B was decidable,

A was decidable. And the analogous result for this is that if A is mapping reducible to B and A

is undecidable, then B is undecidable.

(Refer Slide Time: 20:31)

The next thing is transitivity. So, suppose A reduces to B and B reduces to C then A reduces to

C. Why is this true?

(Refer Slide Time: 20:39)

Because, we could just take the composition of the two reductions. So, suppose this is A, B and

C and the function 𝑓 takes you from A to B and the function 𝑔 takes you from B to C and we

can compose these two function, we can take 𝑔 ∘ 𝑓 to compute a reduction from A to C. So,

𝑔 ∘ 𝑓 gives a reduction from A to C. Because, so, given 𝑤 we compute 𝑓 and then 𝑔(𝑓(𝑤)).

And the correctness is easy because anything that is in A goes to B in that goes to C and

anything that is not in A goes to Bഥ then goes to Cത . And the time complexity is also not that

difficult to see basically we want to say that the time complexity of computing the composition

is also polynomial in the length of the input. And that the reasoning for that is similar to the

way we argued the time complexity of this theory, this 𝑛௞ଵ∗௞ଶ.

So, this you try out as an exercise, the correctness is evident, and the time complexity is similar

to the proof of this theorem. And finally, one more thing that I want to say is if A reduces to B

in polynomial time, Aഥ reduces to Bഥ. Basically, the same reduction function does what we want,

because anything from Aഥ maps to Bഥ, anything from A map to B, same function serves as this

reduction as well.

So, these are kind of standard facts, but, try it out and try to prove these things and try to write

down this and prove it formally. I have given you the proof, at least orally I told you the proof,

but to get some practice you may try to write down the proofs yourself. So, that completes, the

definition of polynomial time reduction and some properties.

