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Hello and welcome to lecture 48 of the course Theory of Computation. In the previous lecture, 

we saw the verifier characterization of NP. In this lecture, we will see  polynomial time 

reductions. And this will later be helpful towards establishing the notion of NP completeness. 

So, let us let us get into the definition of polynomial time reductions.  

So, we have already seen reductions earlier which was in chapter 5 mapping reductions or 

many one reductions. So, this is similar, but with a different constraint on the machine computes 

a reduction. So, what is a reduction? So, first, I am going to define polynomial time computable 

function.  

So, we say that a function f is polynomial time computable if there is a deterministic Turing 

machine M that that takes the input and provides output. Meaning that function f is polynomial 

time computable if there is a polynomial time deterministic tuning machine M that takes the 

input let say w and outputs f(w) on the tape and then stops.  

So, there should be a machine that takes w as input and outputs f(w), and this should be done 

in polynomial time by a deterministic Turing machine. So, this is the definition of polynomial 

time computable function and we say that a language A is polynomial time reducible to 

language B and denoted by this notation  𝐴 ≤  𝐵 

If there is a polynomial time computable function f that that constitutes a reduction. What do 

you mean by reduction? The reduction is that for all w in A, 𝑓(𝑤) should be in B and for all w 

not in A, 𝑓(𝑤) should not be in B. 

     𝑤 ∈ 𝐴  ⟺ 𝑓(𝑤) ∈ 𝐵 

 So, in short w is in A if and only if  𝑓(𝑤) is in B. So, this is very similar to the notion of 

mapping reductions or many one reductions that we saw in chapter 5.  

The only difference is that so, even there we had this w is in A then 𝑓(𝑤) is in B. The difference 

is the only difference that here we are insisting that the function that constitutes the reduction 

the function f should be polynomial time computable. So, this is what I am highlighting this 

function should be polynomial time computable in the case of a polynomial time reduction, 

whereas, in the case of mapping reduction, we just want it to be computable by some Turing 

machine. 



But here we are saying that it should be computable by polynomial time Turing machine and 

the rest is standard like suppose there is the function this from Σ∗ to Σ∗ and any w that is in A 

gets mapped to some w that is in B. And any w that is not in A gets mapped to some w that is 

not in B. So, A map to B and Aഥ maps to Bഥ. So, the goal is given a situation, given a string that 

we do not know whether it is from A or whether it is an A or not, we want to transform it into 

the domain of B.  
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And suppose we know how to test the membership in B. So, we do not know how to test 

whether some string is in A or not, it could be in A or it could be in Aഥ, but we know how to test 

the membership in B then we can transform the instance, basically given w we can compute 

𝑓(𝑤) and then check whether 𝑓(𝑤) is in B or not.  



So, if 𝑓(𝑤) is in B, the only way that 𝑓(𝑤) could have been in B is if w was in A and if f(w) is 

in Bഥ, the only way that we could come to Bഥ is if w is in Aഥ. So, testing whether f(w) is in B or 

not is as good as testing whether w is in A or not. So that is the main goal of this reduction. But 

the main difference here from mapping reductions is that.  

Now we are putting time constraints, or we are putting resource constraint on the how to 

compute the f, which is kind of not that surprising if you think about it, because we are in the 

chapter that pertains to time complexity. And we are dealing with complexity classes that do 

calculation as per time complexity, so we need some handle on how much time it takes, 

otherwise, this could become meaningless.  
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So, I will explain that in a bit. So, the goal as I mentioned is, suppose we are given some w. 

And we want to determine whether it is in A. So, the way to do it is we transform it to B we 

compute the function. And then check whether the function is in B or not. So, transform A to 

B means compute f(w) given w and then use the decider of B to decide B.  
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So, so later in a bit, we will see that we will see the following that suppose A is reducible to B 

in polynomial time, and suppose B is in P, this will imply that A is in P. So, this is going to be 

one of our main results that we will use suppose A is reducible to B and B is in P, then A is also 

in P. This is so, if you recall, we had this statement in chapter 5 that suppose A mapping 

reducible to B, and then B is decidable, this implies A is decidable.  

This is something analogous to that. And the point that I want to say is that this restriction is 

important. So, suppose we did not have this restriction of polynomial time computable. Then 

let us say we could take exponential time to compute this function. Then the problem is that let 

us say we are given a three colouring instance or a satisfiable instance.  



Then if I do not have any time bound, then I could try out all the possible 2 assignments, let 

us say this is satisfiability. So, I will tell you how to compute a reduction to a language and the  

testing of the second language will be polynomial time, but the original language is something 

that we do not know whether it is in polynomial time or not.  

So, suppose we have a SAT instance, what I can do is to compute exhaustively, all the possible 

assignments, and then basically decide SAT and then I output the function value.  
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So the function value is going to be 1 if the formula is satisfiable, and 0 otherwise. So, I just 

take it 2 time and try out all possible assignments and then basically have decided whether it 

is in satisfiable or not, but since my goal is to compute the reduction, I will output 1 if it is 

satisfiable, and 0 otherwise.  

So now, this gives us a reduction, this gives us a reduction, although a very silly reduction. So, 

any, any, any formula that is satisfiable will map to 1 and any formula that is not satisfiable 

will map to some other string, will map to 0. So, basically, this is a reduction from satisfiability 

to the set one and everything that is not 1.  

And then this is easy to decide, it is easy to decide whether suppose the transformed instance 

is quite easy to decide. So, now, you see that see our goal was to efficiently decide the language 

a. So now, so which means all the steps should be efficient, I should be able to efficiently 

compute the transformation and efficiently decide B.  
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So basically, both the steps here the transformation from A to B, this should be efficient, and 

the decision of B should be efficient. Now, if this transformation is not efficient, if I am allowed 

in finite time, then the whole point is not really meaningful.  
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So, like we have here, if I am not restricted in the time, I could easily compute the reduction 

from SAT to some trivial language like 1 and 0. And it is easy to decide this, easy to decide 

between 1 and 0. So, now, we have reduced SAT to a language that is easy to decide, but then 

the reduction takes exponential time.  

So, we cannot basically hide the complexity of the problem in the reduction that is why, to 

make this whole thing meaningful, we have to impose a time restriction on the time that is 



taken for the reduction. So otherwise, it leads to such meaningless results. So, now, if you 

impose its time restrictions, then we cannot do this reduction from SAT to like the 0, 1 language. 

So, that is a point here.  
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So, we for instance, we cannot replace this by a mapping reduction because then we cannot 

infer that A is in P, because the reduction itself may take exponential time. So, then how can 

we infer that the whole process is in polynomial time?  
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So now, let us come to the proof of the statement that that I mentioned over here that A reducible 

to B in polynomial time and B is in polynomial time implies A is in polynomial time. So, the 

idea is whatever we have already discussed. So, suppose M is the decider for B, M is the decider 

for B in polynomial time, we can construct a decider for A as follows, we first compute the 

function, the reduction from A to B.  

So, f is the reduction, assume f is the reduction, maybe I will just write that assume f is the poly 

time reduction. So, we first compute the reduction f and then we check for the membership in 

B. So, we use the decider for B, we basically run M on the reduce instance, which is f(w).  



And that is it and then if M accepts f(w) we accept w, if M rejects f(w) we reject. So, the 

correctness is straightforward, because only strings in A will come B and these strings will be 

accepted and those strings with Aഥ will come to Bഥ and those will be rejected. So, the correctness 

is straightforward. So, time complexity, let us just check the time complexity. 
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Suppose to compute f(w) takes let us say 𝑛ଵ time which means this step takes the computing 

f(w) takes 𝑛ଵ time, where let us say n is the length of the input. Now, let us say suppose M 

takes or M runs in, whatever is the input length to the power k2.  

So, the input to M is f(w). Suppose the exponent of M is k2. We know M is a polynomial time 

Turing machine. So, it will run in the length power k2 for some constant k2. But what is the 

length of f(w)? So, we know only the length of w. What is the length of f(w)? So thing is that, 

the only thing that we know about f(w) is that it is produced by a Turing machine that runs in 

time 𝑛ଵ.  

So, which means in that time, it even has to write the output. So, the length of f(w) cannot be 

more than in 𝑛ଵ. If it is more, then writing the output will take more time. So, we can say that 

since time taken for the reduction is 𝑛ଵ. We have the length of f(w) also should be at most 

𝑛ଵ which means M takes (𝑛ଵ)ଶ time which is 𝑛ଵ∗ଶ.  

So, this this step takes  𝑛ଵ∗ଶ. So, the total time taken here is 𝑛ଵ +  𝑛ଵ∗ଶ . So, the second 

part is that this is the dominating thing  𝑛ଵ∗ଶ which is okay but the exponent is still a constant. 

So, 𝑛ଵ∗ଶ is still polynomial in the input length where the input is the string w. So, the decider 

takes  𝑛ଵ∗ଶ time.  

So, this is polynomial time, polynomial in the length of the input. So, that is the proof. So, the 

proof is very simple we convert the A instance to B and then we run the B decider on the 

reduced instance and the correctness is quite clear and the running time for the whole process 

is the running time for the conversion which is 𝑛ଵ and the running time for running the decider 

on the reduced instance which is the length of the reduced instance power k2 which turns out 

to be  𝑛ଵ∗ଶ .  

So, the whole running time is 𝑛ଵ +  𝑛ଵ∗ଶ which is dominated by 𝑛ଵ∗ଶ which is a 

polynomial time in the length of the input. So, hence A is in P. So, we have given a decider for 

A which runs in polynomial time and what I said before. So, this proof is complete.  
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What I said before is that if we did not have this restriction that the reduction from A to B is in 

polynomial time, we cannot infer this because the first step itself would have taken more time 

than polynomial.  
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Now, briefly some other results that I just mentioned some other results that I will mention. 

One is that the same thing, if A reduces to B in polynomial time and B is in NP, then A is in NP 

this is true because. So, we need so, if A reduces to B and B is in NP, then A is an NP. So, 

basically, we these two should together imply an NP decider for a which is straightforward by 

the same process.  

So, we compute the reduction and then run the non-deterministic decider for B on the reduced 

instance. So, that together they get a non-deterministic decider for A. So, the claim is that A is 

in NP. So, if B is in NP, then that gives an non deterministic decider for A.  
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The next thing is that if A reduces to B and A is not in P then B is not in P. So, the analogous 

result here is what we saw in chapter 5 if A was mapping reducible to B and A was undecidable, 

then B is undecidable. Why is this true?  
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So, suppose this is not true if A reducible to B and A are not in P suppose B was in P. Suppose 

B was in P then by this theorem, it would imply that A is in P which is a contradiction. So, if A 

is not in P, then B should certainly be not in P. Because if B was in P, then that gives a way for 

us to decide A in polynomial time.  
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So, if A is reducible to B in polynomial time and A not in P that implies that B not in P.  
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Again, just two analogous results were if A was mapping reducible to B and B was decidable, 

A was decidable. And the analogous result for this is that if A is mapping reducible to B and A 

is undecidable, then B is undecidable.  
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The next thing is transitivity. So, suppose A reduces to B and B reduces to C then A reduces to 

C. Why is this true?  
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Because, we could just take the composition of the two reductions. So, suppose this is A, B and 

C and the function 𝑓 takes you from A to B and the function 𝑔 takes you from B to C and we 

can compose these two function, we can take 𝑔 ∘ 𝑓  to compute a reduction from A to C. So, 

𝑔 ∘ 𝑓  gives a reduction from A to C. Because, so, given 𝑤 we compute 𝑓 and then 𝑔(𝑓(𝑤)).  

And the correctness is easy because anything that is in A goes to B in that goes to C and 

anything that is not in A goes to Bഥ then goes to Cത . And the time complexity is also not that 

difficult to see basically we want to say that the time complexity of computing the composition 

is also polynomial in the length of the input. And that the reasoning for that is similar to the 

way we argued the time complexity of this theory, this 𝑛ଵ∗ଶ.  

So, this you try out as an exercise, the correctness is evident, and the time complexity is similar 

to the proof of this theorem. And finally, one more thing that I want to say is if A reduces to B 

in polynomial time, Aഥ reduces to Bഥ. Basically, the same reduction function does what we want, 

because anything from Aഥ maps to Bഥ, anything from A map to B, same function serves as this 

reduction as well.  

So, these are kind of standard facts, but, try it out and try to prove these things and try to write 

down this and prove it formally. I have given you the proof, at least orally I told you the proof, 

but to get some practice you may try to write down the proofs yourself. So, that completes, the 

definition of polynomial time reduction and some properties. 


