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Hello and welcome to lecture 47 of the course, theory of computation. This is also the beginning 

of week 10. In this week, we will see more about the class NP and we will also see NP 

completeness. So, we will first begin with a different characterization of the class NP.  

So, in the previous week, in week 9, we saw that NP stands for all the computational problems 

or all the languages that can be decided by a non-deterministic Turing machine in polynomial 



time. So, that has a non-deterministic polynomial time decider. So, in this lecture, we will see 

a different characterization for it, one that is based on verifiers.  

So, to understand this characterization, let us take some examples. So, in the previous lecture, 

we saw a couple of languages that are in NP. So, one was SAT, one was three colorability and 

one was subset sum. So, if you recall the proof that these three languages were in NP, so in the 

case of SAT, what we did was to guess an assignment of the variables involved.  

And then check that this assignment is a satisfying assignment. In case of subset sum, we 

guessed a subset of the given set and checked what is the sum of the given subset. And in three 

colorability, we guessed a three coloring or we non-deterministically came up with a three 

coloring and checked whether this is a proper three coloring.  

So, just to give you a bit more detail on one of these, let us say three colorability, suppose there 

was a valid three coloring, then the valid three coloring will be one of the possible guesses that 

we will make and hence we will accept the non-deterministic machine will accept. If the graph 

is not three colorable, whatever be the guesses, none of them will accept.  

So, what I am saying is that the algorithms that I have described is a proper correct non-

deterministic algorithm and the running time is all polynomial time, it is easy to see. So, the 

point that I am coming to is that in all these three cases, there is a common framework. We 

guess something which is completely non-deterministic and then we do some verification 

which is completely deterministic.  

So, we have some non-deterministic choices made at the beginning followed by an entirely 

deterministic process. So, this is called guess and verify, where the guess stands for the non-

deterministic part and the verify stands for the deterministic part.  

So, now the very very natural question to ask at this point is, is it the case that any non-

deterministic Turing machine or any NP machine can be converted into something that does 

this, like guess and verify. So, in these three cases it was a guess and verify situation, but 

perhaps we could have non-deterministic Turing machine that makes some non-deterministic 

choices, then does something deterministic or make and then again make some non-

deterministic choices or maybe it makes non-deterministic choices throughout.  



So, now can any non-deterministic Turing machine be converted into something where all the 

non-deterministic choices are made at the beginning followed by an entirely deterministic 

process. So, that is the question that we are trying to answer through this verifier model. So, 

the answer is that yes, any non-deterministic Turing machine can be converted into a guess and 

verify non-deterministic Turing machine and in particular we will see this guess and verify 

model specific to the class NP.  

So, we will first formalize this notion of guessing and verifying and then see the 

characterization. So, first we will define what is a verifier. A verifier for a language is an 

algorithm V or a deterministic Turing machine V such that the language is a set of all X whose 

membership can be verified by the deterministic Turing machine.  

So, what do I mean by whose membership can be verified? So, the language X, the L consists 

of all X whose membership in L can be verified by V along with a string Y, meaning, so this 

Y helps in the verification that X is in the language. So, right now it may seem a bit abstract 

but it is easy to see once we have the example. Suppose X is a Boolean formula and L is 

satisfiability, the class of or the set of all satisfiable Boolean formulas.  

So now, let us say Y is a satisfying assignment, so now given a satisfying assignment I can just 

check, I substitute this satisfying assignment into the formula. So, satisfying assignment means 

X1 is true, X2 is false some assignment which satisfies the formula. So, now given a satisfying 

assignment it is easy for us to check that this formula is satisfiable.  

If we were not given a satisfying assignment we may have to do some other thing. So, V in this 

case could be an algorithm or a decider that just substitutes the given assignment which is given 

by Y sorry, given assignment which is given by Y into the formula X and then accepts if it is 

a satisfying assignment, if X evaluates true on Y. 

In case of 3 colorability, X is a graph that is 3 colorable and Y is an actual valid 3 coloring. So, 

now and the verifier is a decider that actually assigns the proposed 3 coloring and then verifies 

whether it is a proper 3 coloring. So, we will accept if the coloring given by Y is an actual 3 

coloring of X, otherwise it will reject. So, this is the role of Y.  

So, a verifier is a device or a decider or a deterministic Turing machine that accepts X and with 

the support of Y. So, Y is something that helps us verify that X is a member of the language 

and a verifier is something just that conducts the verification. So, verifier is entirely 



deterministic, it just has to check something that, in the case of satisfiability, does this 

assignment satisfies this formula.  

In case of 3 coloring it checks that this coloring is an actual 3 coloring of this graph. So, Y is 

called, Y is sometimes called a proof or a witness or a certificate. So, the thing is why is it 

called proof or witness or certificate because Y is in some sense an evidence or a proof that X 

is in the language.  

So, you want to know whether this graph is 3 colorable, so an actual 3 coloring is something 

that you can use to certify that this graph X is in the class of all 3 colorable graphs or we can 

say the 3 coloring is a witness that this graph is a member of all the 3 colorable graphs or a 

certificate of the same thing.  

So, this is called a verifier. A verifier is a Turing machine that is able to verify the membership 

of a string X in the language with the help of a proof or a witness string or a certificate string 

Y. So, the language is just consisting of X, the language is just the set of all satisfiable Boolean 

formula or the set of all 3 colorable graphs. Y is a proof or a witness or a certificate that helps 

us verify that the graph is 3 colorable or the formula is satisfiable.  

So, why is this whole thing interesting? This is because to actually determine whether a given 

formula is satisfiable is hard because right now it is not clear how you will go about doing it. 

Maybe the only thing that you can do is brute force by checking all the possible assignments. 

This is one possibility. There may be slightly better algorithm but not significantly better. There 

is no efficient algorithm. So, we do not know of any polynomial time algorithm.  

But suppose I give a satisfying assignment and then I ask you to verify that this formula is 

satisfiable. You can just substitute this assignment and see for yourself that it is indeed a 

satisfying assignment. So, now in the second case you are just asked to verify that this formula 

or this assignment satisfies this formula.  

This is something much simpler to do than to search the whole space of assignments and see if 

there is some assignment that satisfies this. So, given an assignment to verify that this is a 

satisfying assignment is much much simpler than deciding whether it is satisfiable. Similarly 

for 3 colorability. Given a graph to decide whether it is 3 colorable one has to check all possible 

3 coloring assignments.  



But given a 3 coloring it is easy to verify that this is a valid 3 coloring. Given if it is a valid 3 

coloring it is easy to verify. So what the point I am making is that it is much easier to verify 

something. So, the existence of a y which is existence of a proof and the requirement to verify 

that x is in the language with y is much simpler than without being given anything to test if x 

is in the language.  

Verification of x being in the language with the help of y is much simpler. So, that is the 

situation. So, y is a proof or witness or certificate that helps us determine that x is in the 

language.  
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And what is NP? NP is the class of languages that have polynomial time verifiers. This is the 

characterization of NP using the guess and verify model. So, we earlier saw that NP is a class 

of languages that have a polynomial time non-deterministic decider. Now I am saying it is a 

class of languages that have polynomial time verifiers.  

In other words, what do I mean by polynomial time verifier? It is what we just discussed. So a 

language is an NP. So L is an NP if there is a polynomial time verifier algorithm for the 

language L. So again just to elaborate it a bit more. So what do we want to have? What property 

do we want the verifier to satisfy? If x is in the language, there should be a y such that the 

verifier can verify the membership of x with the help of y.  

And in addition, so this is what we discussed as verifiers earlier. And in addition now, I want 

everything to be polynomial time. So earlier in the definition of verifier, I did not say anything 



about polynomial time. But now that I am talking about NP, I want it to be polynomial time. 

So now, which means the verifier should be running in polynomial time.  

And also the length of y should be also in polynomial in the length of x because if y is much 

longer, then the whole thing does not make sense because the verifier runs polynomial in 

polynomial time in the length of x and y. So if y is much longer than x, then the verifier could 

take a long time which again defeats the purpose. So L is in NP if there is a polynomial time 

verifier for L and what should the verifier, what properties do we want the verifier to satisfy?  

For any x that is in L, there should be a y which can be verified polynomially by the verifier, 

meaning the y should have a length polynomial. So length of y should be polynomial in the 

length of x and V should also be polynomial time verifier, meaning a polynomial time 

deterministic Turing machine that outputs 1 when x is in the language. So 1 is like accept and 

as again 0. So think of this 1 as a Boolean output.  

So just to understand what is the negation of this? If x is in the language this is the case, if x is 

not in the language, if x is not in the language, so if a graph is 3 colorable there should exist a 

proper 3 coloring. If the graph is not 3 colorable, no matter what 3 coloring you try, none of 

them will be a proper 3 coloring.  

So for all the possible certificate strings or for all the possible 3 colorings which are of 

polynomial length, 𝑉(𝑥, 𝑦) should be 0, meaning whatever 3 coloring you assign should not be 

a proper 3 coloring, if the graph is not 3 colorable. So is the negation. If x is in L, there should 

exist a proper 3 coloring, if L being the language of all 3 colorable graphs. If the graph is not 

3 colorable, then no matter what 3 coloring you assign, it is not going to work.  
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So just one exercise, one easy thing to do is to just compare with what is the definition of P. P 

is the class of all languages that have polynomial time deterministic algorithms. So if L is in P, 

then there is a polynomial time decider algorithm A such that whenever x is in the language, 

𝐴(𝑥) should be equal to 1. So if x is not in the language, 𝐴(𝑥) will be equal to 0.  

𝑋 𝜖 𝐿 ⟺ 𝐴(𝑥) = 1 

     𝑋 ∉ L ⟺ A(x) = 0 

So notice this, this is much simpler because P is a much simpler class to understand. So if x is 

in the language, the decider will accept and if x is not in the language, the decider will reject. 

Whereas in the case of NP, if x is in the language, there is a certificate string that can be used 

by the verifier to verify that x is in the language.  

If x is not in the language, no matter what certificate string you try, it should not work. So 

otherwise it does not make sense. Because let us say if the graph is not 3 colorable, then 

whatever 3 coloring you try should not lead to a proper 3 coloring. So we saw two definitions. 

One was that NP is a class of all languages that can be decided by non-deterministic polynomial 

time Turing machines.  

And now this verifier model, NP is a class of languages that have polynomial time verifiers. 

So let us see the proof of this.  
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So suppose L is in NP, meaning L has a non-deterministic polynomial time decider. Now we 

will show that it has polynomial time verifiers. So both directions of the proof are not that hard, 

both of them are fairly straightforward. So suppose L is in NP, which means there is a non-

deterministic Turing machine N for L and the non-deterministic Turing machine runs in 

𝑛௞  time and that decides that.  

So suppose x is in the language, then that means that when x is input to the non-deterministic 

Turing machine, there is a computation tree. If x is in the language, there is at least one 

accepting path. So let us say this is the accepting computation. So I am trying to highlight it 

here and finally till here. So by the new color, the green or whatever.  

And so here we take the first option, here we take the third option, here we take the second 

option, here we take the second option and finally we take the second option. So the point is if 

x is in the language, there is an accepting computation path. There could be multiple accepting 

computation paths, but there is at least one accepting computation path. Now we want a 

polynomial time verifier for the language. So the verifier can do something.  

So if I give you a non-deterministic Turing machine and tell you that there is a specific path, 

this is the path, you first take the first choice, basically I tell you this path, the path that we just 

marked here, I just tell you this path and then ask you to verify, instead of asking you to explore 

all possible paths, I ask you to verify, just traverse this particular path and see if it leads to 

acceptance.  

And that is one way to convince you that the string x is accepted by the Turing machine N. So 

again the setting is that you have a deterministic Turing machine and I want you to verify that 

this non-deterministic Turing machine accepts x, but you do not have the bandwidth or the time 

to test all the possible computation paths and simulate the entire NTM N using your 

deterministic Turing machine.  

But I am telling you do not simulate the entire thing, instead just walk through this path and 

check that it accepts. And if once you do that, then you can convince yourself, you can be sure 

of yourself that this string is accepted. So the only thing that I need to do is tell you the way to 

which path leads to acceptance. And this is the idea that we can use to prove this direction. So 

whatever I just said is what is the verifier algorithm.  
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So what is the verifier algorithm? The verifier algorithm simulates the non-deterministic Turing 

machine on the input x. But then the verifier is deterministic, it cannot simulate the entire non-

deterministic Turing machine because then it will not be polynomial. So instead it does not 

guess all the paths, nor does it try to exhaustively enumerate all the paths.  

It just walks through one path. This path or the path that it walks through is specified by the 

Turing machine y, sorry the string y. So y could be the string that says something like y could 

be the string that says 1 followed by 3 followed by 2 etc, etc. So by this we are trying to encode 

that you first take the first option, then you take this third option, then you take the second and 

so on.  

So the verifier Turing machine which is deterministic just simulates N but does not entirely 

simulate N, it only simulates one computation path of N which is given by the string y. So y 

dictates which or y is telling which path to simulate and then if it leads to an acceptance, the 

verifier accepts. So given the non-deterministic Turing machine, there are many possible 

computation paths and x is accepted if at least one of them accepts.  

So the correct witness string is the identity of that path which leads to acceptance. If x is not 

accepted by the non-deterministic Turing machine, whatever y you give it cannot be verified. 

So the verifier machine is simply simulator of n on the input and whenever there is a non-

deterministic choice, it looks up y to decide which path to take. That shows that if L is in NP, 

it has a polynomial time verifier.  



So clearly the verifier runs in polynomial time because L is also polynomial time. Verifier just 

walks through one path of n and verifier is deterministic. So that is one direction. The other 

direction is also not that difficult. It says that if a language is a polynomial time verifier, then 

the language is in NP.  
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So suppose there is a polynomial time verifier for the language L. Let us say the polynomial 

time verifier is V and let us say V runs in time 𝑛௞  . Now we need a non-deterministic Turing 

machine for, so now to show this characterization that polynomial time verifier implies that the 

language is in NP. NP now is that, it is a class of languages that have deciders that run in non-

deterministic polynomial time.  

So we have to come up with a non-deterministic polynomial time decider. So what is a decider? 

The decider is a non-deterministic Turing machine that runs the verifier, but with what witness 

string? Because there is no witness string that we are telling. So what it does is, it guesses the 

witness string.  

So the non-deterministic Turing machine just guesses a random or guesses a non-

deterministically a witness string y of the appropriate length and then initially it guesses the 

witness string and then runs or simulates the verifier on the input x and the witness string as 

the witness string y. And then if V accepts the pair x, y then the non-deterministic Turing 

machine accepts.  



So suppose x is a string in the language then that means that there is some witness string that 

would lead to the acceptance of x. Suppose if x is a three colorable graph there is at least one 

proper three coloring which can be used to verify that the graph is three colorable. So if x is in 

the language there is a y that will help us verify that x is in the language.  

Now the non-deterministic Turing machine one of its many guesses would be the correct y and 

so it will lead to acceptance. If the graph is not three colorable no y is going to make the verifier 

accept and hence all the non-deterministic Turing machine paths will lead to reject. So again 

the non-deterministic Turing machine is very simple, it guesses the witness string and then runs 

V the verifier Turing machine on the input string x and the guessed witness string y and accepts 

if and only if V accepts. S 

So basically here the Turing machine is basically guessing y, so many possible guesses of y 

and then followed by running of so here y equal to something 0000 and till y equal to 1111 and 

then followed by running of the verifier. So then now V, V and so on and then based on that 

you accept or reject.  

So this shows that if the language has a polynomial time verifier then the language is in NP. 

So that completes the proof that so we have shown both directions if L is in NP then it has a 

polynomial time verifier and that if L has a polynomial time verifier then it is in NP. So now 

this gives us a now after the completion of this proof it gives a another characterization for NP. 

NP is a class of all languages that have polynomial time verifiers.  

So now if you want to show something is in NP instead of showing that it has a non-

deterministic polynomial time decider I can also show that it has a deterministic verifier. You 

can verify the membership of a particular string in the language.  
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So now we have another characterization for NP. Now just to kind of recap or just to kind of 

revise so what is the proof or certificate or witness? So y is the string, the string y is the proof 

or the certificate or the witness and in different problems what was it? In the case of subset 

sum, the subset that adds up to t was the that adds up to the target sum itself was the proof.  

In the case of three colouring the proper three colouring was the proof. In the case of SAT or 

CNF SAT this assignment that satisfies the formula was the proof. So these are all proofs that 

the given string so in the case of subset sum in the given subset or given instance is a yes 

instance; in the case of satisfiability it is a proof that the given formula is satisfiable; in the case 

of three colourability it is a proof that the given graph is three colourable.   

So the proof here is something that is quite straight forward. In the case of subset sum the 

correct subset sum that adds to the target sum. In the case of CNF SAT it is a satisfying 

assignment, in case of three colouring it is a proper three colouring. So that completes the 

characterization that characterization of NP that NP is a class of languages that have polynomial 

time verifiers. So now this is another way to think of NP.  



(Refer Slide Time: 27:31) 

 

Now I want to just quickly state and explain the proof of the fact that so you may recall that in 

chapter 3 we said that every non-deterministic Turing machine has an equivalent deterministic 

Turing machine. So now one question that we can ask now that we are bothered about time that 

it takes how much time does it take for a deterministic Turing machine to run in  non-

deterministic Turing machine or simulate a non-deterministic Turing machine?  

So it turns out that the answer is if the non-deterministic Turing machine runs in t time, time 

t(n), the deterministic simulator takes time 2ை൫௧(௡)൯ . So it is exponential time in t(n). So that is 

one of the bounds. There are slightly better bounds in the literature but this is a simple result. 

So how do we get this result? So turns out that the proof is something that we have already 

seen, is the same proof that we saw in chapter 3.  

To be precise we saw it in lecture 31 where we said that every NTM has an equivalent DTM. 

Now all that we are doing is we are just going through the same proof and kind of computing 

the time taken for the simulation. So earlier we told the proof without really bothering about 

the time. So now we are going to measure the time of the simulation described in the same 

proof.  
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So just to describe the proof we wanted to simulate a non-deterministic Turing machine by a 

deterministic Turing machine. So what we do is we kind of consider the computation tree and 

look at all possible computation paths and we accept if we find an accepting computation paths. 

And the thing was that we do this in a breadth first search manner that is what we said in the 

chapter 3. We simulate everything to one level then second level and so on.  

So anyway that particular detail is not very critical here because it is all deciders but let us see 

the time complexity of this process. So before that let B be the maximum number of children 

any configuration can have in this computation tree. So in this particular partial tree that I have 

drawn the maximum children that any configuration has is this the one that I have marked here 

it has there is a configuration with four children.  



So B let us say it is four and if a non-deterministic Turing machine is defined the constant B 

only depends on the Turing machine not on the input. So it does not really depend on the input, 

it just depends on the Turing machine. So this is something that one has to understand. So now 

we know that the non-deterministic Turing machine runs in time 𝑡(𝑛) which means this whole 

computation from start to accept from root to the leaf that is farthest is of height tn.  

And since every configuration can have at most B children there could be at most 

𝐵௧(௡) computation paths. So the maximum that can happen is from the root there are B children 

from the every B children there are further B children. So the second level there are B, the third 

level there is B square, fourth level there is B cube and so on.  

So finally at the level 𝑡(𝑛) we have 𝐵௧(௡) possible leafs. So we have at most  𝐵௧(௡) computation 

paths and each computation path is of length 𝑡(𝑛) or at most 𝑡(𝑛). Each computation path is 

of length at most 𝑡(𝑛). So to go through all these paths and to check all these paths we need to 

spend  𝐵௧(௡) ∗ 𝑡(𝑛) time.  

And what follows is a very standard calculation  𝐵௧(௡) we can write it as 2୪୭୥(௕)∗௧(௡) and 𝑡(𝑛) 

we can write as 2୪୭୥൫௧(௡)൯ and by adding the exponent we get this the third equality 

   =  2௧(௡)∗୪୭୥(௕) ା ୪୭୥൫௧(௡)൯  

 and since 𝑡(𝑛) ∗ log(𝑏) dominates log (𝑡(𝑛)) we can just write it as 2୓൫௧(௡)൯.  

So the proof is very simple, the simulation of the NTM by the DTM is just by traversing the 

computation tree. The tree has height at most 𝑡(𝑛) because that is the running time of the NTM 

and at each level of the tree it has B children. So the maximum number of computation paths 

to consider is 𝐵௧(௡). So the running time is 𝐵௧(௡) ∗ 𝑡(𝑛) which simplifies to  2୓൫௧(௡)൯ or which 

is upper bounded by  2୓൫௧(௡)൯.  

Hence the upper bound on the running time of the simulation is  2୓൫௧(௡)൯. So any non-

deterministic Turing machine that runs in 𝑡(𝑛) time that determines the simulation takes 

exponential time of that. If the non-deterministic Turing machine runs in n time the 

deterministic equivalent runs in  2୓(௡) time which is quite bad. So it is significantly worse. That 

is another reason why we prefer to have deterministic polynomial time algorithms.  
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And finally I just want to say one more thing that this may feature in some of the proof we may 

be assuming this, that is why I am saying it at this point. So we mentioned this branching factor 

B which is the maximum number of children any specific configuration can have. Suppose the 

branching factor is some number like 10. Now the point is that we can without loss of generality 

we can assume that every configuration has at most 2 children.  

At every stage we have at most 2 choices and not B choices. Why is that? That is because we 

can like a node has let us say 10 children, we can replace that one node with 10 children with 

a small tree. So where this node corresponds to this node here and the small tree will have 10 

leaves and these 10 leaves correspond to the 10 children here.  

So basically the point is that if the non-deterministic Turing machine has many like takes up to 

10 choices we can replace it every non-deterministic step with a step that takes at most 2 

choices. So sometimes this is convenient in some proofs. We can assume that B is equal to 2 

and it does not increase the time too much because if B is usually considered to be a constant. 

So now to build a tree with 10 leaves we can be the height is height required is 4.  

So the height required will be 4. So here I think I have marked 1 2 3 4 5 leaves. So maybe one 

more level we need to mark. So something. So height required is 4 which is again a constant. 

So it is just a constant blow up for the running time of the NTM. So initially if it took 𝑡(𝑛) 

time, now maybe it is some 𝑡(𝑛) multiplied by log (𝐵) time, log (𝐵) to the base 2. So 

asymptotically it is the same. So that is all that I have to say in lecture 47.  
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So first we saw the verifier model for NP where we saw that the every non-deterministic Turing 

machine or every language that can be decided by a non-deterministic polynomial time Turing 

machine has a polynomial time verifier and if a language has a polynomial time verifier then it 

can be considered to be NP, meaning it has a non-deterministic polynomial time decider. So 

meaning what does it mean when I say that L has polynomial time verifier?  

There is a machine deterministic Turing machine V which runs in polynomial time which can 

verify the membership of any string x in the language with the help of a proof string or a witness 

string y. So that is the meaning that NP is a class of languages that have polynomial time 

verifier. So for instance if L is a class of 3 colorable graphs and x is a 3 colorable graph then y 

is a 3 coloring that helps us verify that the graph is 3 colorable.  



If L is a class of satisfying Boolean formula then x is a specific satisfiable Boolean formula 

then y is the satisfying assignment that we can use to verify that x is in the group of or x is in 

the class of satisfiable Boolean formulas. And the two directions were both straight forward. 
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And then we saw that a non-deterministic Turing machine that runs in 𝑡(𝑛) time can be verified 

can be simulated by a deterministic Turing machine in 2ை൫௧(௡)൯ time. 
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And then finally we said this small fact about if you have a branching of big number then we 

can replace it with a small tree where the branching is at most 2. And that is all I have in lecture 



47. In lecture 48 we will see NP completeness and we will see reductions and we will start 

moving towards NP completeness. So see you in 48. Thank you.  


