
Theory of Computation
Professor Subrahmanyam Kalyanasundaram

Department of Computer Science and Engineering
Indian Institute of Technology, Hyderabad

Non-Deterministic Polynomial Time _ Part 1

(Refer Slide Time: 0:16)

Hello and welcome to lecture 46 of the course Theory of Computation. In the previous lecture,

we saw time complexity and we saw the complexity class P which corresponds to the class of

problems or languages that can be decided in deterministic polynomial time. So, now in this

lecture we will start seeing non deterministic polynomial time. So, before getting into non

deterministic polynomial time, we first have to understand what is the time complexity or

running time of a non-deterministic Turing machine.

(Refer Slide Time: 0:54)

In the case of a deterministic Turing machine the time is fairly clear because it is a deterministic

Turing machine, it takes a specific number of steps, the running time or the time complexity

was given as a function f based on the length of the input. So, the 𝑓(𝑛) the running time is

defined as the maximum time it takes or the maximum number of steps it takes on any input of

the same length n.

In the case of non-deterministic Turing machines this is the same, the running time is the

maximum number of steps, 𝑓(𝑛) is the maximum number of steps it takes on any input of

length n. However, there is one additional thing in the case of a deterministic Turing machine

an input takes a fixed number of steps.

Here there are several possible computation branches, there are several possible computation

branches and all of which may be of different length there could be different branches of

different length. So, for instance, you could have branches that end very quickly, there could

have branches that go a significant take a significant number of steps. So, but we define the

running time to be the running time of a specific input.

So, this is all for a specific input, to be the maximum number of steps taken by the longest path.

So, if this is a specific input and this is the configuration tree this particular, the one that is at

the bottom this particular accepting configuration, the accepting path that comes some way like

this, this seems to be the one that takes the longest time.

So, 𝑓(𝑛) is should be for this particular input should be this the length of this path, but then we

take maximum over the, for every input the 𝑓(𝑛) is the length of the longest path and then we

further take the maximum amongst all the inputs of a certain length. So, 𝑓(𝑛) is a maximum

number of steps that the non-deterministic Turing Machine capital N uses on any branch of its

computation on any input of the of the length n.

So, you have to maximize on all the inputs of a certain length and for each input all the branches

of computation you want to see the maximum number of steps that is how we measure the or

we assess the time complexity of a non-deterministic Turing machine.

(Refer Slide Time: 3:48)

So, given this the rest of the definitions are fairly straightforward once we understand what it

takes for, what is how is it time measured for a non-deterministic Turing machine? So, similar

to 𝐷𝑇𝐼𝑀𝐸(𝑡(𝑛)), we have 𝑁𝑇𝐼𝑀𝐸(𝑡(𝑛)), so 𝐷𝑇𝐼𝑀𝐸(𝑡(𝑛)) was the set of all languages that

can be decided in 𝑡(𝑛) time by a deterministic Turing machine.

So, 𝑁𝑇𝐼𝑀𝐸൫𝑡(𝑛)൯ is a set of all languages that can be decided in order 𝑡(𝑛) time by a non-

deterministic Turing machine. So, this is exactly the same the only differences is this N in the

definition 𝑁𝑇𝐼𝑀𝐸(𝑡(𝑛)) and the fact that here we have an NTM instead of a DTM. So, just

like we have 𝐷𝑇𝐼𝑀𝐸(𝑡(𝑛)), which is a class of all languages that can be decided in order 𝑡(𝑛)

time by a deterministic Turing machine we have 𝑁𝑇𝐼𝑀𝐸(𝑡(𝑛)), which is a class of all

languages that can be decided by an NTM, a non-deterministic Turing machine in 𝑂(𝑡(𝑛))

time.

And just like we had P, the class of all languages that can be decided by a deterministic Turing

machine in polynomial time. We have NP, which is a class of all languages that can be decided

in polynomial time by a non-deterministic Turing machine. So, it is exactly the same, but

instead of P we have NP and instead of 𝐷𝑇𝐼𝑀𝐸(𝑡(𝑛)) we have 𝑁𝑇𝐼𝑀𝐸(𝑡(𝑛)).

So, the definition for P was a union of all 𝑘 = 1 𝑡𝑜 ∞, 𝐷𝑇𝐼𝑀𝐸(𝑛௞), here we 𝑁𝑇𝐼𝑀𝐸(𝑛௞) the

class of all languages, that can be decided by a non-deterministic Turing machine in polynomial

time. So, later, we will see that NP has a characterization in the Guess and verify model also.

So, but for now, I am just mentioning this so, guess and verify model is when we make the

non-deterministic choices, right at the beginning of the computation. Anyway, we will first see

some examples.

(Refer Slide Time: 5:56)

So, the first example is something that I described briefly in the previous lecture. It is a

language called subset sum. So, we are given 2 things, a set S of integers and target sum t. The

question is, so, S is a set consisting of x1, x2 up to xk, the question is, is there a subset t. So,

here the set subset is written as a subset of the indices such that, the elements of the subset sum

up to the target sum t .

So, here the subset is written indicated by the indices. So, if the subset is 1, 3, 5 then the

corresponding subset is x1, x3 and x5, but the question is the same is there a subset of S that

sums up to t, is there a subset that sums to the given sum. So, let me describe so, let us first

describe a very direct brute force approach to this problem. So, if we have to do it with a

deterministic Turing machine, one possibility is we try out, so this is a naive approach you try

out all possible subsets.

So, given that there are k elements of the set, the number of possible subsets is 2௞ we try out

all possible subsets and for each subset you check whether the sum is equal to t and if you find

a subset whose sum is equal to t you say yes, this is a yes instance. Otherwise, you go through

all possible subsets and you do not find any subset which sum to t at which point you say no

there is no subset that sum to t.

But then that requires you to check 2௞ subsets so, or 2௞ − 1 subset or whatever. The S has k

elements there are 2௞ possible subsets. So, this is a deterministic algorithm that I just described

but you have to check 2௞ subsets and for each 2௞ subset you have to verify so, that requires

some addition et cetera.

So, that may take some polynomial time et cetera, which I am not really measuring, but it takes

an exponential time in the number of elements of S. However, now, let me describe a non-

deterministic Turing Machine, non-deterministic approach for this. So, one approach is the

non-deterministically select or reject each element of the set S. So, we come to x1, you either

select x1 or reject x1.

(Refer Slide Time: 8:38)

So, I have described it in a tree here. So, first we decide to include x1 or exclude x1, left means

including, right means excluding. And then, whichever way we go we decide to include x2 or

to exclude x2 and even if we exclude x1 we have the same 2 options and then whichever way

we go we decide to include x3 or exclude x3 and so on. So, this now we keep building the

string.

And now, at the end we will be asking the question should we include xk or exclude xk and we

will have altogether we will have 2௞ such paths. Starting from the left most such path which

where everything is included and the right most path which is basically an empty set no, no

element is included and everything in between where some things are included and some things

are not. And for each of these.

So, now we have these non-deterministic choices so, we walk through x1, x2 et cetera. And at

each point we not deterministically decide to accept or include xi or not include xi. So, this

results in 2௞ possible branches of computation. And then at the end, you just add up. So, let us

say over here, you just add up, check if sum is equal to t, and then accept or reject accordingly.

So, which is what I have written here, we non-deterministically decide to select or reject, sorry,

select or reject each of x1, x2 up to xk, and then add the selected xi and verify if they add up

to t. If they add up to t we accept otherwise we reject so. that is that is pretty much it. That is a

very simple algorithm. And it is not very difficult to see that this is correct.

If there is a subset, so, we are going through all possible so there are 2௞ possible subsets

checked here. So, 2௞ possible branches and if there is a subset that sums to t that will correspond

to some computation in branch here and that will get accepted which means a non-deterministic

Turing machine accepts this instance.

If this instance was a no instance meaning there is no subset that sum to t then all possible

computation branches, all possible branches will reject because none of them will. So, by

assumption, no subset should sum to t, so everything will reject. If is a yes instance there is

some subset and the branch corresponding to that subset will accept. So, clearly this is a correct

non deterministic approach.

But let us see the time taken. So, first this step non-deterministically selecting or rejecting each

step, each one of them this takes order k time. So, this takes, this takes order k time or, in fact

that actually not even 𝑂(𝑘), it is just directly k time and then you add up the selected xi and

verify if they add up to t. So, this also may be something like order k time, because there are k

numbers maximum. So, it takes order k time.

So, this whole thing runs in order k time. But I am talking about non deterministic running

time, not the deterministic running time. In non-deterministic running time, if there is a correct

approach, so, we do not have to add up the lengths of all the branches. If there is a correct

approach, we somehow the machine will find it if this is the correct accepting path, the machine

will find it.

So, the running time is order k for the non-deterministic Turing machine, it is a fairly

straightforward algorithm. So, the approach is clear, we non-deterministically select or reject

each xi and then so, we are left with some subset we added the elements of the subset and verify

they add up to the desired sum. If it is adding up to the desired sum we accept, if it does not

add up to the desired sum we reject.

So, if there is a subset which adds up to the desired sum, there is some computation branch

which will lead to an acceptance. If there is no subset that adds up to the desired sum then all

the parts will reject which is exactly what we want in a non-deterministic Turing machine and

also this running time is order k which is polynomial in the description of the input and subset

is in NP. Hence, subset sum is in NP, takes polynomial time by a non-deterministic Turing

machine.

However, I cannot say that subset sum is in P because the deterministic algorithm that I

described 2௞ time which is not polynomial in the description of the input. So, there was not a

deterministic algorithm, but it took more than polynomial time.

(Refer Slide Time: 14:09)

So, the next language is 3 colorable. So, what is 3 colorable? 3 colorable is given a graph we

are asking whether it can be colored using 3 colors. So, maybe one example is this. So, this is

a yes instance, this graph can indeed be colored using 3 colors, it is a red, green, red, green,

blue, this can be colored using 3 colors. So, if you look at any edge, the endpoints do not share

the same colors that is the requirement.

So, given a graph how do we check this? Again, I explained the brute force approach which is

deterministic. So, for each vertex how many assignments are possible? Let us say red, green

and blue are the 3 colors. So, if the graph has n vertices, so suppose the graph has n vertices

maybe I will just move this down a bit so as to make some space. If G has n vertices brute force

takes 3௡ time.

Because each vertex has 3 possible choices of colors red, green, and blue. And then it takes 3௡

time and there are 3௡ possible assignments. And then, once the assignment is completely

assigned, we need to check, we need to go through all the edges. So, that takes let us say the m

edges 3௡ × m time.

So, maybe I will just say that 3௡ × m time, which is not polynomial, brute force by that I mean

deterministic approach takes 3௡ × m time. However, let me just describe so maybe I should

write it slightly above. Brute force takes 3௡ × m time, this is deterministic, but the non-

deterministic approach is the following. So, there are similarities to the approach that we

followed here.

So, what we do is we walked let us say the vertices are 1, 2, 3 up to n. So, we go to the first

vertex, we non-deterministically assign a color red, green or blue. Then we go to second vertex

we non-deterministically assign a color red, green or blue. So, there are 3 options for each

vertex and we non-deterministically assigned one of these options, and at the end of that

computation path, we have made some assignment and then this assignment we

deterministically check whether this assignment constitutes a proper coloring.

So, meaning we go through all the edges of the graph and see whether there is any clash

between the colors of the endpoints. So, this takes actually, the first step takes order n time,

this takes order n time, because we have to walk through n vertices. And this step takes order

m time, where m is the number of edges.

And if the graph is indeed 3 colorable, meaning if there is a correct 3 coloring, one of these

multiple computation paths will lead to accept. If the graph is not 3 colorable, whatever you

try, there will be some edge with a clash. So, all paths will lead to reject. So, what I am saying

is that the running time of this non deterministic algorithm is 𝑂(𝑛) + 𝑂(𝑚) which is 𝑂(𝑚),

let us say, assuming the number of edges are more than the number of vertices.

So, the running time is polynomial hence, 3 colorable is also in NP, maybe I will just use a

different color, because we can do it in this much time. Whereas, the brute force takes

exponential time, which is yet another instance of a problem where the non-deterministically

is really seem to help. So, we sought two examples one is subset sum and another one is 3 color

ability.

Both we followed a similar approach we non-deterministically made some choices and then

we verified it. In this case we non-deterministically assigned the coloring and then we check

whether this coloring is proper. In the earlier case we non-deterministically chose a subset and

then check whether the subset added up to the required sum. So, there was a similarity in both

of these things. Anyway, we will come to that a bit later.

(Refer Slide Time: 20:33)

One point that I want to mention is, a comparison between the classes P and NP. So, first of all

any deterministic Turing machine can also be considered as a non-deterministic Turing

machine. Because non-deterministic Turing machine has the capability to make multiple

choices for a given configuration. So, each configuration there could be multiple next moves

possible. So, delta can be a function that maps to a set. So, it can map to more than one possible

option.

So, a configuration can have multiple possible successors, valid successors, but multiple

possible one it could also be one successor it could also be zero successor. So, a deterministic

Turing machine can also be seen as a non-deterministic Turing machine just that I am not using

multiple successes at any instance. So, anything that can be done by a deterministic Turing

machine we can do it with a non-deterministic Turing machine also, because, I can just have

the same machine and view it as non-deterministic Turing machine.

So, anything that can be done in deterministic time 𝑡(𝑛) can be done by non-deterministic time

𝑡(𝑛) as well because, the same machine works. So, anything that can be done by deterministic

time 𝑛௞ and we consider in non-deterministic time 𝑛௞. So, deterministic time 𝑡(𝑛) is a subset

of non-deterministic time 𝑡(𝑛) for any function 𝑡(𝑛). Specifically for the function 𝑛௞

determination time 𝑛௞ is a subset of non-deterministic time 𝑛௞.

Now, if I take union of k equal to 1 to infinity for both these terms we get P in the left hand

side at NP in the right hand side. So, union over all k deterministic time 𝑛௞ is P. Union over all

k non deterministic time 𝑛௞ is NP.

So, this gives us that P is a subset of NP, it is fairly simple anything that can be done by a

deterministic Turing machine in polynomial time can also be done with non-deterministic

Turing machine polynomial time. So, P is a subset of NP. It is a fairly simple thing to say and

an easy thing to see.

(Refer Slide Time: 22:59)

Now, let me come to the question which is very, very famous, called the P versus NP question.

So, it is one of the most famous questions in computer science, certainly in theoretical computer

science, and if you have at least heard about computer science in popular science or literature

or something, you might have seen come across this question P versus NP. So, now we have

formally defined what is P and what is NP?

Both of them are complexity classes, P is the class of all languages that can be decided in

polynomial time by a deterministic Turing machine. NP is a class of all languages that can be

decided in polynomial time by a non-deterministic Turing machine. So, that is P and NP. P is

languages that can be decided in polynomial time by a deterministic Turing machine, NP is

languages that can be decided by a non-deterministic Turing machine in polynomial time.

So, sometimes some people who are not really students of computer science end up saying that

sometimes they think that NP stands for not polynomial. No, NP stands for non-deterministic

polynomial time not for non-polynomial. So, as somebody who has listened to me delivering

lectures in this course and somebody who have taken this course, at least I expect the students

of this course to know what is P?

P stands for polynomial time or deterministic polynomial time and NP stands for non-

deterministic polynomial time, not non polynomial time. So, let me come back to the P versus

NP question. So, as I said, P is contained in NP, P is a subset of NP. Now, the question is, is

this subset, is this containment proper or is this containment strict?

So, one possibility is that P and NP are the same. Anything that can be decided by non-

deterministic Turing machine in polynomial time can also be decided by a deterministic Turing

machine in polynomial time. So, P and NP are the same. So, this is what I have depicted here,

P and NP are the same set. All the other possibility is that P is a subset, a strict subset of NP, a

proper subset of NP.

By that I mean there are languages in NP, which are not in P. So, these are the 2 possibilities

is P equal to NP, which is one possibility, or P contained in NP, but not equal to NP. These are

the 2 possibilities. So, the question is which of these cases is it? So, we know that it is a subset?

But is it a proper subset? Are there languages over here? Sorry? Are there languages over here?

Or P and NP are equal?

One of these has to be the case, we do not know. The answer is that we do not know which one

of these cases is the correct one. Even now, we do not know. So, this question was first kind of

asked around 50 years back, even now, the answer is unknown. So, it is one of the biggest open

questions in computer science, and certainly in theoretical computer science.

And it has got a lot of attention by a lot of computer scientists, and also a lot of people who are

not computer scientists. It was one of the so called millennial problems. So, there was an

American institute called Clay Math Institute, who offered a prize of 1 million dollars if you

solve any of, like the there was a list of seven questions, seven open questions.

And if you solve one of them, they promise any one of them, each one of them, they promise

1 million dollars to the person who solved it. One of those questions is the P versus NP question.

So, first of all, we do not even know which one is the case, even if we know there is no proof.

So, many people believe that, this second is the correct situation.

Many people think that P is not equal to NP, but it is still unknown, nobody has an approach.

Nobody has actually been able to show that. So, to show that P is not equal to NP, one has to

figure out a language which is in NP and show that it is not in P. To show that P is equal to NP,

we will see some techniques or we will see some more theories soon, which will help us

develop a theory for this.

So, this is a big open question. And, and it is said that many, many things like the cryptographic

systems as of today will collapse if it is shown that P is equal to NP. So, it has another

significance as well, not just as a curiosity of an open question. This was first asked by Stephen

cook in 1971. And later, almost in parallel by Leonid Lenin by Cook and Lenin, 2 people who

posed this question independently. So, in those days, the thing was that we did not have like

internet, email was not there.

So, it is very possible that somebody in one part of the globe works on some problem. And

somebody who is in some other part of the globe also works on the same problem. They even

publish it in their, let us say, their own journals or whatever. But then by the time person, the

first person reads that the second person has also worked on it by then both of them have built

the theory and published it. It was asked around 50 years back. And it is still kind of unknown.

The answer is unknown. We do not know which one is a correct case.

(Refer Slide Time: 28:54)

In fact, as I said earlier in the previous lecture, that the paper by Jack Edmonds also talked

about difference between polynomial time and exponential time. Many of these ideas, probably

were kind of in the air, so to speak. But people thought about these ideas, but maybe not

formalized. In fact, it was later discovered that in a letter, in 1956, Kurt Godel had asked John

von Neumann the questions which is similar in nature, not so formal. It was just a letter, not a

formal theory or formal academic paper.

But he had asked about P versus NP, or a question which would imply, or which would relate

to P versus NP to John von Neumann. So, there is a Wikipedia page for P versus NP and you

should certainly have a look at it. So, the thing is this, just to give you a slightly more

philosophical overview, if you look at 3 colorability. A non-deterministic Turing machine is

able to guess some coloring and verify it.

Whereas a deterministic Turing machine has to kind of check determine the 3 coloring in a

brute force manner. So, one is about just verifying, non deterministic machine is able to

automatically guessed the correct coloring and it just has to verify. Whereas in deterministic

Turing machine it has to go through and identify the 3 coloring as well.

So, one is about actually finding out the 3 colorability, the deterministic Turing Machine. Non

deterministic Turing machine, it is about verifying the 3 colorability. So, P versus NP can be

thought of as actually computing something versus verifying something. Or another way to

think about it is like, if you are like a music composer or something, being able to compose the

music versus being able to appreciate the music.

So, both of them, you feel that it should be easier to verify than to come up with answers. So,

that is one reason why people feel that P is not equal to NP meaning the latter is the case. This

is the case. So, it is like asking is deciding something the same as verifying something? So, that

is the kind of very, very high-level overview about the P versus NP question.

It is one of the most important problems, please have a look at the Wikipedia page or other

resources. But now, as somebody who has taken this course, I want you to know what is P

versus NP? So, P is polynomial time or deterministic polynomial time, NP is non deterministic

polynomial time and not non polynomial time. And the question is, are they the same? So, P is

contained in NP. The question is, are they the same? Or is P a strict containment in NP? And

the answer is we still do not know.

