
Theory of Computation

Professor Subrahmanyam Kalyanasundaram

Department of Computer Science and Engineering

Indian Institute of Technology, Hyderabad

Lecture 4

Significance of Regular Languages and Regular Operations

(Refer Slide Time: 00:15)

Hello and welcome to the lecture 4 of the course Theory of Computation. So, this is going to

be a short lecture. It is mostly going to be about the Significance of Regular Languages. In

lecture 3, we saw what deterministic finite automata were, DFA’s. And then we defined regular

languages as those languages that can be recognized by DFA’s.

So, in this lecture, we are just going to explain why they are important. As we saw, DFA’s are

fairly simple, rudimentary computing devices. So, you have a state control, a machine which

reads the input and then it has some states, some of which are designated as accepting. After

you read the input, if you are in an accepting state, you accept the input. If you are in a non-

accepting state, you do not accept the input. Set of all strings that are accepted by a DFA,

constitutes the language of the DFA.

Further, for a specific language if there is a DFA that recognizes that language we say that that

language is regular. So, regular languages are a way to characterize the power of DFA’s. We

want to understand what DFA’s can do.

So, one possibility is that when you see DFA’s and when you see the different ways you can

put them together, one may think that perhaps, for any kind of language we can construct a

DFA. So, we want to know what kind of languages can be recognized by DFA’s and what kind

of languages cannot be recognized by DFA’s. So, towards understanding that we will define

the regular languages and then we will see some properties.

(Refer Slide Time: 02:20)

So, for instance, we saw that regular languages are closed under complement. Meaning, if a

language is regular, the complement language. If A is regular, then AC is also regular. What

are the specialties of regular languages? How are the DFA’s actually computing, how are the

deterministic finite automata computing?

So, for example, let us take this one DFA that we saw in the previous lecture. This accepts all

the strings for which the number of 1s is a multiple of 5. So, if your string has let us say 5 1s,

it accepts. For instance, this string is accepted because it has 5 1s. If it has 10 1s too, it will

accept.

Now, it has 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10 1s. Even this is accepted. As long as the number of

1s contained by the string is a multiple of 5, it is accepted. Let us see what this machine is

actually doing. q0 is an accepting state. Meaning, after reading any string for which the number

of 1s is a multiple of 5, you will end at q0.

Let me erase the previous string and let us consider just this string (110001). Where does this

string end up? The first one will take you to q1, second one will take you to q2, third one will

take you to q3 and it will remain there. So, q3 is the state where all the strings, which have three

1s end up.

But q3 is also the state where all the strings that have eight 1s end up. So, q3 is the state where

as long as you have three 1s, eight 1s, thirteen 1s. As long as the number of 1 leaves a remainder

of three when you divide by 5, you end up at q3. In other words, if the number of 1s is 3 modulo

5, you end up at q3.

And similarly, if the number of 1s is 2 modulo 5, you end up at q2 and so on. Similarly, for q1

and q4. So, what is happening here is these states q0, q1, q2, q3 and q4 are being used to keep

track of the count of the number of 1s with the modulo 5 condition. If you want to actually

count the number of 1s, you need a lot of states, you need an infinite number of states.

But as long as you need to count only the remainder when you divide by 5, this machine would

do. Here, what is happening is that the states are being used as the counter. So, in other words,

the states are being used to the memory here. So, if you look at any DFA that you built,

similarly, each state would be trying to have some role.

So, each state would be trying to identify a certain number of or certain subset of the strings

that are processed by the DFA. This is how in the case of this particular DFA the states play a

role. And similarly, if you take any DFA, you should be able to analyze and see which are the

strings that end up at each state. This will give you a lot of insight about how the DFA’S

operate.

(Refer Slide Time: 06:24)

And just as I mentioned earlier, not all the languages are regular. So, it is only a special subclass

of languages that are regular. For instance, this language that is written over here. It is a fairly

simple language. It is easy to describe. It first contains the empty string ɛ then the string 01.

So, I am talking about this language. It first contains the empty string ɛ then the string 01, then

the string 0011, then the string 000111, then the string 00001111 and so on. It is an infinite

language but the pattern is very clear. It is easy to describe. I just told you what it is.

And basically, there are some number of zeros followed by the same number of 1s. This

happens to be not a regular language. So, you can think, why it is not a regular language. Maybe

it is even better, if you just try to construct a DFA for it and then you see why you are not able

to do it. So, you will fail because I am telling you so, because it is not regular so you should

not be able to construct a DFA.

So, you can try to construct a DFA that may give you some insights as to why this language is

not regular. It is a fairly simple language. The point is we want to understand what is a regular,

what is not regular and what are the structure of the languages. If a language is regular, what

properties does it have? For instance, we already saw that regular languages are closed under

complement.

(Refer Slide Time: 08:09)

In the next part, the next lecture, we will see regular operations and we will see closure under

that. So, what are regular operations? Regular operations are fairly simple straightforward

operations. So, three operations are defined. One is union which is just the set wise union. If A

and B are two languages, the union of these two languages is a set wise union. So, the set of all

strings that are either in A or in B.

(Refer Slide Time: 08:40)

Two, concatenation. Maybe it is easy to go with the example. Suppose A is the language

{good, bad}. So, A is the language {good, bad} and B is the language {boy, girl}. The alphabet

Σ, is all the English alphabet. Then 𝐴 ∪ 𝐵 is simply {good, bad, boy, girl}. These are the four

strings that constitute the union language.

Basically, it is the set wise union. So, what is concatenation? Concatenation is the set of all

strings that are formed by concatenating a string of A with a string of B in that order.

Concatenation respects the order. A⋅B means you take a string from A and append a string of

B to that. So, string of A followed by a string of B. So, A⋅B need not be the same as B⋅A

because the orders are changed.

So, let us see what A⋅B is in this case. A is {good, bad}, B is {boy, girl}. So, A⋅B is

{goodboy, goodgirl, badboy, badgirl}. These are the four strings in the concatenation

language. So, good appended by boy, where good is from A, boy is from B. Similarly, good

followed by girl where good is from A, girl is from B. Similarly, badboy and badgirl.

(Refer Slide Time: 10:45)

And finally, the star operation is similar to the Kleene star that we defined earlier where we

defined it for alphabets. Here, we are defining it for languages. A* where A is a language is

basically x1 x2 … xk concatenated together. It is k strings concatenated where each x1, x2, x3,

x4, xk, all of them belong to A. Each of them belongs to A. x1 belongs to A, x2 belongs to A,

everything belongs to A. And k could be anything. k could be 0, k could be 1, k could be 2, k

could be 3, it is okay. k could be any finite number. So, let us see.

(Refer Slide Time: 11:48)

For instance, when A is the language {good, bad}. A* contains the following. First of all k can

be 0 also. So, k can be 0 meaning no string is there. Which means, it results in the empty string

ɛ. Then k could be 1 where you just have one string, x1 which belongs to A. So, the strings that

belong to A are good and bad. And set of x1 x2 where k is equal to 2.

So, two strings where it belongs to A. It could be goodgood, it could be goodbad, it could be

badgood, it could be badbad. These are the four possibilities of writing x1 x2 where x1 comes

from A followed by x2 also coming from A. x1 and x2 need not be the same, they need not be

different. They could be the same, they could be different. That is why there are four

possibilities. Then let us go to the case when k is 3. So, when we have x1, x2, x3 where each

one of them comes from A. Let us start with goodgoodgood then followed by goodgoodbad

and goodbadbad and so on. So, then at the end you will have badbadbad and so on.

So, again this is an infinite set because k could be 1, 2, 3, 4, 5, 6, it could be any number 100,

1000 and so on. And A* is an infinite set just that a finite number of strings from A are

connected together to form a string in A*. This is just an example. So, we took two languages

A and B. We saw the union, what the union is, what the concatenation is and what the star of

A is. As an exercise, you can work out.

(Refer Slide Time: 14:25)

So, as an exercise, work out B*. You can write try to write down what B* is. Notice that ɛ, the

empty string is also part of A*. Like I said, we already saw that regular languages are closed

under complement. And then in the next coming lectures, we will see that regular languages

are closed under regular operations as well. Meaning, if A is regular and B is regular, 𝐴 ∪ 𝐵 is

regular. If A is regular and B is regular, A⋅B is regular. And if A is regular, A* is regular. e will

see all of that in the next lecture. And not all of that, some of that. So, that is it.

(Refer Slide Time: 15:23)

So, we briefly explained the significance of regular languages, how computation happens

through states and we said why all languages are not regular and hence it is interesting to see

which ones are regular and which ones are not and what properties do regular languages have.

And so, these closure properties become interesting for the same reason and hence we

explained the regular operations. So, regular operations are three operations on languages and

we saw them. We said that regular languages are closed under regular operations without proof.

And we will see the proof in the coming lectures.

