Theory of Computation
Professor Subrahmanyam Kalyanasundaram
Department of Computer Science and Engineering
Indian Institute of Technology, Hyderabad
Checking Ambiguity in CFG is Undecidable

(Refer Slide Time: 00:16)

9

LR AARE T T TR R (

st CFR 0 b .
I l‘”l;« Y; (3] ‘] hon OFh, wd o w.-id{\cw.\[[

Gl MGG gy o wdiaidalls
T PP G MMBIGes.

Ot P00 tftinace. | ot O towhind o UGy

i W adboagund 1§ e oy if o 10D Loy
o watily .

W utiud o U4 6o tes

LIEATY

ff) . PLP Cu MMBLGgy.

b PR tnftoauee | ot Wl el o UFG, (9

NPTEL

i awdbipad & ad oy of 0D Loy
w walil .

D tbud o UTR 6oy tlles

L d=T8
G) ¥ Ta \ “‘.‘,"*.\1'9\\ Hw‘h‘

2 — htal T T P

"{N. TR 1 Mmu\l M5 i
0 a0 i by (wh i tt,02)

{fﬁ\ “th‘ Play o wakih (e %y wokil be

Hello and welcome to lecture 44 of the course theory of computation. In the previous lecture, we
saw that PCP is undecidable. In other words, given a PCP instance, it is undecidable to determine
whether the given instance has a match. If you recall, when we learned context-free grammar in

the second chapter, we talked about ambiguity. So, we say that a grammar is ambiguous if some

string, if there is some string that can be derived ambiguously; meaning if there are multiple

leftmost derivations for the same string, or there are multiple parse trees for the same string.

This was the definition of ambiguity. And we also mentioned that there are some languages, some
grammars that are ambiguous; sometimes you can remove the ambiguity from the grammar.
Anyway, in this lecture, we are going to see an application of the fact that PCP is undecidable. So,
we are using the fact that PCP is undecidable, to show the undecidability of determining whether

a given grammar a context-free grammar is ambiguous.

So, this is not there in the textbook as a text material; but it is there as a problem, problem 5.21.
So, given a CFG, it is undecidable to determine whether the given CFG is ambiguous. So, we can
also write it as a language; we can write it as a language AMBIG ¢, as a language of all the
ambiguous CFGs. And this is an undecidable language; meaning given a grammar it is undecidable

to determine whether the grammar belongs to this class.

And the proof is by using a reduction from PCP. So, given a PCP instance will build a context-
free grammar, such that the context-free grammar is ambiguous if and only if the PCP instance is
a match. So, I am talking about PCP. So, let us see the reduction. The reduction itself is not that

difficult to see and even the correctness is also not that difficult to see; so let P be this.

So, where setup dominos tl bl, t2 b2, up to tk bk, where t1 bl all come from some alphabet.

P=(] [[ip

They are strings from some alphabet. The context-free grammar is constructed as follows. The
first rule is that S yields T or B. So, S can give rise to T or S can give rise to T; so, basically these
are two branches. So, S derives T, then you can only use rules for T; because T never gives rise to

B. So, what are the rules?

So, T gives t; T,, , where this t; is the same as this t; in the PCP instance; so, t; is a string. And
similarly, t, T,, and so onup to t T,,; S0, t; Ty, t; Tg, upto ty T,,. And finally, and also
tiaq, t, a, up to t, ai this part, where there is no variable involved; this is one branch of
computation.

The other branch involves the variable B; so, it is similar. So, where B givesrise to by | B, , Where
bl is corresponding to the bl from the PCP instance.So, by B, b, B, so on up to by By, ; so bk

corresponds to the bk in the PCP instance. So, bl corresponds to b1 here, b2 corresponds to the b2

here and so on; everything corresponds to.

So, T1, T2 et-cetera are the strings in the PCP instance; dominos in P. And al, a2 up to ak are all
new symbols; they are not strings, they are just symbols. And they are all distinct new symbols.
Maybe I should write that even al, ak are all new and distinct symbols; meaning al is different
from, a2 is different to ak. So, we have k new symbols al, a2 up to ak; and these are the rules S

gives T or B. And once we get T, then t; T, up to t; T,, ; then t; aq, t; a; up to ty ay.

Then, B gives by B,, up to by By, so, these are the rules of the grammar. So, the grammar is very
easy to construct once we have the PCP instance; we do not need to check whether they are
matching or anything. Now, all that remains to be shown is the correctness of this reduction. So,
we are told this given a PCP instance, how to construct the grammar; so grammar is very easy to
construct. What remains to be shown is PCP instance has a match if and only if the grammar is

ambiguous. So, now let us see that.

(Refer Slide Time: 06:02)

= hila\ VBB ioa)

_lq,\(bib o (1 d-"*"'\\“‘“m MS = ',) (;)
;M i 1,.‘;..“':\%59!_,\ CT.E" A NPTEL

>) -;kkp‘l ¥ Loy o wakils |4 al ‘U)*r{‘ e

|) ' W }
I b oy Bpidin | sang diimg

Suppose the PCP instances has a match; let us see what is the ambiguity. Let the match be given

by repeating the dominos or placing the i;, i, up to i,,. So, i; could be anything from 1 to k, i,

could be anything from 1 to k and so on up to i,,; so, this is such as new subscripts. So, when you
line up this 1™, 1™ domino and so on; the top string will be ti1 , ti up to tim; and the bottom string

will be bi1 , bi2 up to bim .

So, since they are a match, it means that the top string must equal to the bottom string ti1 , ti2 up to
tim should be equal to bii , bi2 up to bim. Now, we will demonstrate two derivations of the same
string. So, what are the derivations? First is that S gives T . So, we know, so we use T to give
ti1Tq,,- SO, let us say if 11 is 2, we will first give t2Ta. So, if i1 is 1, it is t1 Tar; and then we will use

that to give t;,T,,, and so on till we get.

So, maybe I will just write one more step; ti1 is already derived, then maybe t;,T,,, and so on till
we get ti1 , tio up to tim , followed by aim, aim - 1 Up to ai2, ai1. So, we can get this string over here.
Very similarly, we can use S gives B; B gives b;; By, . And then I can use similarly bii(b;; Bg,,)aii

and so on. Finally, I have bii bi2 bim aim ai2 ai1 .

And I claim that these two strings the underlying strings are the same. Why is that? Because the
first part ti1 up to tim and bi1 up to bim are the same; because of the assumption that P has a match,
the PCP instance has a match. So, this part is the same. And the latter part is also the same; because
it 1S aim up to ai1 and aim up to air, this is literally the same; so, this is basically the same. Whereas

this, for this part, we are using the fact that the PCP has a match.

So, we have one string with two derivations; and these are clearly two derivations because the first
step itself is different, S gives T and S gives B. So, this means that the same string has two
derivations; so that is the definition of the grammar being ambiguous. So, that completes the proof

that PCP has a match implies that the grammar is ambiguous; now the reverse direction.

(Refer Slide Time: 09:37)

2 bt Ui B A2, A1,

E8= by Bag, o by, B o)ur = @)

NPTEL
= Wi Bie s Wi M- A

Eu C‘ ") Mg,ucm

(@:\ Cm“wu o wkw ek Y ‘Alw‘%
o bans Gop Bouwalion
Roansone. &, e dhadtion) 6, o o wlpn thod
W = GRRAR, Yo & das wit
ok I\ sy a3a.
iy wassn bl o i doinadiony w0
nussandy B linoag -

&"T = {'"Tg'!'

oL L

Chagews AHBVB g, wdusidall
fufl . PLP G AMBlAy. @

butn PR usbonee, | ot W) ewliund o LF
iy aedipund b ud oy § B 10D boy

e cubiud e UTh 6w tlan’

b = l@ E
T l"f..\ \(ﬂx.\ &-m,\ Hu'-'.
— "‘r%u.\, \‘hngr«‘\\v‘,m\ bty

=

Mo b b o B sy wthe dowiaut o P
0 o i Aoy (it in t,02)

A

If the grammar is ambiguous, we have to show that the PCP has a match. So, let there be some
string which has two derivations; let the string be w, let it have two derivations. Now, notice the
structure of the grammar here. Whenever we apply a rule, let say we apply a rule, then some al or
a2 or something gets appended towards the end of the string; whichever rule, this rule or this rule

or this rule, or this rule or any any rule, where we accept the first step of the derivation, where S

gives T | B.

Everything else involves the creation of aj, a2, a3, ax something; one of these ai’s should be
produced at the end. So, because of the structure of the grammar, we may assume that the string

ends with a string of a's. So these are the all the a's; the a’s do not come in between, they only

come at the end. So let the string of a's be a; »a Up to a; 3 SO I am highlighting that.

So, let this the string, let the string derived ambiguously end with aj s a

up to a. . So, let us
1 51
write this formally. So, let w be written as w' followed by this; let w’ is free of any ajs . It only

consists of the original alphabet which was used to build these dominos. So, w’ only has the

original alphabet; none of these ai, a> up to ax. And followed by this string is aj ya; Up to aj -
m m-1 1

Now, if any derivation ends with this; so, now, w is derived ambiguously means the ending set of

derivations. The only way that we could produce this string w, because again, because of the

structure of the grammar is the following.

(Refer Slide Time: 11:55)

=4 ".l\ {lwnm Ky {;)

i b R = by b A NPTEL

L\u\ ‘-wm»ﬁ ;m‘ {[\ {_w‘ L \"Q""

Thig 0 0 waldd o P

Uy, Y rldndion ‘?Jm.(!lt1l
PEPLP & (& ANRIG oy,

Mo, PP & AHBUG 15

}.I.u.l\.\ hH AL o M WA &“ u:bb(.l

S

8- 8 = by, B = MmN

= Bl g An Ay @
Tty ks it bﬁmrb&\ NPTEL
Thia 0 o walih ta V.

flan W rddbion & tonutllt -
PEDLP & b€ hHMBIb g4
Muwt, PP S AMBIG (5

o ARG ey undiuidolle

flis Wy okl il , .
M.

ffl . PLP G MMBlAy.

(PRI LE R TTRTORY. | QP % SN0 1 @
i i audbipnd &l ol o e 20D Loy NPTEL
w kil

PR IR

D b o UTR 6o tlles

R Ve “G
= hﬂ.\ \tafh\hm\ b
2, - ‘7.&&.\. \bkgky_\h,a‘\‘- ‘\\’Kﬁl.

How b b o B doasy wlla dowinsth i P
0 o e Aofdupubely Ot in b 1)

[T—-).) g‘«“ﬂ"'&\km Wt % wolih e "t

hapunr. BV ey ' il
?ﬂ_ PP L l“s”huh. @

Ot PR e, | ot) cowbind o U5, '
i awbopnd i oy 0 0P by

@

e WMUHWM‘
[3—-‘\2

= h'“-\ \tﬂ‘h\"m\ Abm
2 = bRl BBadbya) - e

Mo b b e W diansy inthe dowinats o P
o o w bfuduqubely (wh i b2, 1)

S ST

Mo b b o0 W diansg nthe dowinsts o P
o g Db igubely (ki 1) @

NPTEL
[“:)\ St P b wonatih et % ok b
'kfnhg-'h.ﬁb‘.'ﬂ'r;-""l“
We M%%wﬁw&hsm&%

(7> b:,Ta;, - t?,(f,‘_‘h\;z])
R 1% 1T A LIRS T TN

L8 by Bay, - bilhig B i)t =

= Wbl M N A A7

tts kg ' i
(=) Slhoi bty amchiuna ot g

AN i M \q

Y
T AN

l‘f"\\ “-Uu\'l A W L ku,am“}. ;' ty \ﬁ,‘w;
¥ A
W [va,u‘l Wty ‘nh,u:x,mﬂ

f, ot wher, tod

W = o SRR, ol & des w

)] f
"Lu,u.'l ‘Iﬂ-x "hu([m‘l h

Cronok l\J g A

Ty waaamh R TR doinedimy 0t
hiu,l.:zu».L) fha, bellnowy
\

R 1R T 7 1\ TP

= B A R,

o R = b Ra
S > =2 D2 Apy

> Ble D Apwe o Ay

So, there are two possibilities; one is that S gives T. And T gives t;; T, , because aji has to be at
the end; so this first division has to be this. And then it has to be t;; (t;, Tay,) it where this has to

be the next derivation and so on. Finally, we get this string tj; up to tjm , followed by ajm up to aj1 .
Similarly, the other derivation possible, because of again because of the structure of the grammar

is that the ending part is aj1 ; the ending symbol is aji .

So the first, the other possibilities S gives B and B gives bji Baj1; and again bji, bj2, Baj2, aj1. And
finally we get this string bji up to bjm, ajm up to aji. So, these are the two strings. So, and by
assumption, this is the same stream derived in two different ways. And we assume that ajm up to

aj1 is a common suffix; and that is why we got these two derivations.

And this necessarily means that, so since ajm up to aj; is common; the w' part has to be this part,
the first part tj1 up to tjm and bj1 up to bjm. This means that this part is the same. The highlighted
parts has to be the same, which is what [have written here, tj; up to tjm is bji up to bjm . Now, once

we have that, that is a match for the PCP instance.

So, we first have the j;™ domino, then j»™ domino up to jm™ domino. So that is it, because the
grammar was ambiguous we; or from the ambiguity of the grammar, we got a match for the PCP
instance. So, that completes the second direction of the reduction or the correctness. So, this

implies that the original PCP instance P is a yes instance of PCP, if and only if the grammar is

ambiguous. And that gives us the reduction from the PCP to the ambiguous CFG, which means

that ambiguous CFG is undecidable.

In other words, given a grammar, given a context-free grammar, it is undecidable to determine
whether it is ambiguous. So that is what I wanted to share in lecture 44. Given a context-free
grammar, it is undecidable to determine whether it is ambiguous; and it is by a straightforward

reduction from the from PCP.

So, given a PCP instance, we create a grammar; the grammar is very easy to construct. So, we
have new symbols involved; but apart from that everything is very straightforward. S gives T | B;
so three variables alone, starting variable S and T and B; and then we make these rules. And where
t1 up to tx, b1 up to bk are as in the PCP instance; and a; up to ax are new symbols. They are all
distinct symbols. And we then showed that if the PCP instance has a match which say this, then

we demonstrated two derivations of the same string, showing ambiguity of G.

Now, if G was ambiguous for the other direction, we may assume by the structure of the grammar,
that the suffix of the string so derived could be something like a; , a; . up to a . Once you
m m- 1

assume that this is the suffix, the rest of the derivation is fairly is kind of constrained by the
structure of the grammar. So, the only two derivations possible that gives us this suffix is this as

well as this.

And that gives us the tj; up to tjm is equal to bji up to bjm, which gives us a match for the PCP
instance. So, ambiguity implies a match and match implies an ambiguity; hence, the reduction is
proper. And that gives us that that gives us the reduction from PCP to ambiguous CFG; so
ambiguous CFG is undecidable. And that completes lecture 44. This also completes the part on
computability theory. This also completes, this also marks the end of computability theory which

is chapter 5, so we started.

Computability theory was spread over three chapters 3, 4 and 5. We started with defining Turing
machines, types of Turing machines, Church-Turing thesis; then we saw decidable languages, then
we saw undecidable languages. Then, we saw the HALTING problem is undecidable; then we saw

reductions, which was a new way to show decidability and undecidability.

Then, we saw many more languages that were undecidable. Then, we saw Rice's theorem, which
was a way to show many other languages are undecidable. And then we saw PCP which is a simple
problem, the statement of the problem does not involve any Turing machines or DFAs, or any such

technical things. And but then surprisingly, that simply stated problem was undecidable.

There is no algorithmic approach to determine whether there is a match. And using the fact that
PCP is undecidable, we now saw that the undecidability of checking whether a given context-free
grammar is ambiguous. So, these other things that we saw in computability; we saw what is
decidability, what is computability. So, computability means what is computable. So, and we saw

that there are things that are not computable.

We saw that there are languages that are not even Turing recognizable; and we saw many decidable
as well as undecidable languages. So, that completes computability theory; but however, our topics
will continue. So in the next lecture, we will start complexity theory. So, now we will change our
change gears a bit; meaning we will no longer be interested in the nitty-gritty, or we will no longer

be interested in whether it is computable et-cetera.

Now, from now on, we will only deal with computable things. Or only deal with decidable things;
but we will be more careful about how much resources it takes. So, complexity theory is more
about how much resources, how efficiently can we some compute something? How much time
does something take? How much space does something take? Basically, it is going to classify

problems based on resources that we need.

So, for all that and more, you can check out the next lecture, lecture number 45. And as far as

lecture number 44 is concerned, that is all that I have. Thank you.

