
Theory of Computation 
Professor Subrahmanyam Kalyanasundaram 

Department of Computer Science and Engineering 
Indian Institute of Technology, Hyderabad 

Checking Ambiguity in CFG is Undecidable 

(Refer Slide Time: 00:16) 

 

 

Hello and welcome to lecture 44 of the course theory of computation. In the previous lecture, we 

saw that PCP is undecidable. In other words, given a PCP instance, it is undecidable to determine 

whether the given instance has a match. If you recall, when we learned context-free grammar in 

the second chapter, we talked about ambiguity. So, we say that a grammar is ambiguous if some 



string, if there is some string that can be derived ambiguously; meaning if there are multiple 

leftmost derivations for the same string, or there are multiple parse trees for the same string. 

This was the definition of ambiguity. And we also mentioned that there are some languages, some 

grammars that are ambiguous; sometimes you can remove the ambiguity from the grammar. 

Anyway, in this lecture, we are going to see an application of the fact that PCP is undecidable. So, 

we are using the fact that PCP is undecidable, to show the undecidability of determining whether 

a given grammar a context-free grammar is ambiguous.  

So, this is not there in the textbook as a text material; but it is there as a problem, problem 5.21. 

So, given a CFG, it is undecidable to determine whether the given CFG is ambiguous. So, we can 

also write it as a language; we can write it as a language 𝐴𝑀𝐵𝐼𝐺஼ிீ , as a language of all the 

ambiguous CFGs. And this is an undecidable language; meaning given a grammar it is undecidable 

to determine whether the grammar belongs to this class.  

And the proof is by using a reduction from PCP. So, given a PCP instance will build a context-

free grammar, such that the context-free grammar is ambiguous if and only if the PCP instance is 

a match. So, I am talking about PCP. So, let us see the reduction. The reduction itself is not that 

difficult to see and even the correctness is also not that difficult to see; so let P be this. 

So, where setup dominos t1 b1, t2 b2, up to tk bk, where t1 b1 all come from some alphabet. 

    𝑃 = {ቂ
௧భ

௕భ
ቃ , ቂ

௧మ

௕మ
ቃ , … , ቂ

௧ೖ

௕ೖ
ቃ}  

They  are strings from some alphabet. The context-free grammar is constructed as follows. The 

first rule is that S yields T or B. So, S can give rise to T or S can give rise to T; so, basically these 

are two branches. So, S derives T, then you can only use rules for T; because T never gives rise to 

B. So, what are the rules?  

So, T gives 𝑡ଵ 𝑇௔భ
 , where this 𝑡ଵ is the same as this 𝑡ଵ in the PCP instance; so, 𝑡ଵ is a string. And 

similarly, 𝑡ଶ 𝑇௔మ
 and so on up to 𝑡௞  𝑇௔ೖ

;  so, 𝑡ଵ  𝑇௔భ
,  𝑡ଶ   𝑇௔మ

  up to 𝑡௞  𝑇௔ೖ
. And finally, and also 

𝑡ଵ𝑎ଵ, 𝑡ଶ 𝑎ଶ up to 𝑡௞ 𝑎௞ this part, where there is no variable involved; this is one branch of 
computation.  



The other branch involves the variable B; so, it is similar. So, where B gives rise to 𝑏ଵ |  𝐵௔భ
, where 

b1 is corresponding to the b1 from the PCP instance.So, 𝑏ଵ 𝐵௔భ
, 𝑏ଶ 𝐵௔మ

 so on up to 𝑏௞ 𝐵௔ೖ
; so bk 

corresponds to the bk in the PCP instance. So, b1 corresponds to b1 here, b2 corresponds to the b2 

here and so on; everything corresponds to.  

So, T1, T2 et-cetera are the strings in the PCP instance; dominos in P. And a1, a2 up to ak are all 

new symbols; they are not strings, they are just symbols. And they are all distinct new symbols. 

Maybe I should write that even a1, ak are all new and distinct symbols; meaning a1 is different 

from, a2 is different to ak. So, we have k new symbols a1, a2 up to ak; and these are the rules S 

gives T or B. And once we get T, then 𝑡ଵ 𝑇௔భ
 up to  𝑡௞ 𝑇௔ೖ

; then  𝑡ଵ 𝑎ଵ, 𝑡ଶ 𝑎ଶ up to 𝑡௞ 𝑎௞.  

Then, B gives 𝑏ଵ 𝐵௔భ
 up to 𝑏௞ 𝐵௔ೖ

, so, these are the rules of the grammar. So, the grammar is very 

easy to construct once we have the PCP instance; we do not need to check whether they are 

matching or anything. Now, all that remains to be shown is the correctness of this reduction. So, 

we are told this given a PCP instance, how to construct the grammar; so grammar is very easy to 

construct. What remains to be shown is PCP instance has a match if and only if the grammar is 

ambiguous. So, now let us see that. 

(Refer Slide Time: 06:02) 

 

Suppose the PCP instances has a match; let us see what is the ambiguity. Let the match be given 

by repeating the dominos or placing the 𝑖ଵ, 𝑖ଶ up to 𝑖௠. So, 𝑖ଵ could be anything from 1 to k, 𝑖ଶ 



could be anything from 1 to k and so on up to 𝑖௠; so, this is such as new subscripts. So, when you 

line up this i1
th, i2

th domino and so on; the top string will be ti1 , ti2 up to tim; and the bottom string 

will be bi1 , bi2 up to bim .  

So, since they are a match, it means that the top string must equal to the bottom string t i1 , ti2 up to 

tim should be equal to bi1 , bi2 up to bim. Now, we will demonstrate two derivations of the same 

string. So, what are the derivations? First is that S gives T . So, we know, so we use T to give 

𝑡௜ଵ𝑇௔೔భ
. So, let us say if i1 is 2, we will first give t2Ta2. So, if i1 is 1, it is t1Ta1; and then we will use 

that to give 𝑡𝑖2𝑇𝑎𝑖2
 and so on till we get.  

So, maybe I will just write one more step; ti1 is already derived, then maybe 𝑡௜ଶ𝑇௔೔మ
  and so on till 

we get ti1 , ti2 up to tim , followed by aim, aim - 1 up to ai2, ai1. So, we can get this string over here. 

Very similarly, we can use S gives B; B gives  𝑏௜ଵ 𝐵௔೔భ
. And then I can use similarly bi1( 𝑏௜ଶ 𝐵௔೔మ

)ai1 

and so on. Finally, I have bi1 bi2 bim aim ai2 ai1 . 

And I claim that these two strings the underlying strings are the same. Why is that? Because the 

first part ti1 up to tim and bi1 up to bim are the same; because of the assumption that P has a match, 

the PCP instance has a match. So, this part is the same. And the latter part is also the same; because 

it is aim up to ai1 and aim up to ai1 , this is literally the same; so, this is basically the same. Whereas 

this, for this part, we are using the fact that the PCP has a match.  

So, we have one string with two derivations; and these are clearly two derivations because the first 

step itself is different, S gives T and S gives B. So, this means that the same string has two 

derivations; so that is the definition of the grammar being ambiguous. So, that completes the proof 

that PCP has a match implies that the grammar is ambiguous; now the reverse direction. 



(Refer Slide Time: 09:37) 

 

 

If the grammar is ambiguous, we have to show that the PCP has a match. So, let there be some 

string which has two derivations; let the string be w, let it have two derivations. Now, notice the 

structure of the grammar here. Whenever we apply a rule, let say we apply a rule, then some a1 or 

a2 or something gets appended towards the end of the string; whichever rule, this rule or this rule 

or this rule, or this rule or any any rule, where we accept the first step of the derivation, where S 

gives T | B.  



Everything else involves the creation of a1, a2, a3, ak something; one of these ai’s should be 

produced at the end. So, because of the structure of the grammar, we may assume that the string 

ends with a string of a's. So these are the all the a's; the a’s do not come in between, they only 

come at the end. So let the string of a's be ajm
ajm-1

 up to aj1
; so I am highlighting that.  

So, let this the string, let the string derived ambiguously end with ajm
ajm-1

 up to aj1
. So, let us 

write this formally. So, let w be written as 𝑤ᇱ followed by this; let 𝑤ᇱ is free of any aj’s . It only 

consists of the original alphabet which was used to build these dominos. So, 𝑤ᇱ only has the 

original alphabet; none of these a1, a2 up to ak. And followed by this string is ajm
ajm-1

 up to aj1
. 

Now, if any derivation ends with this; so, now, w is derived ambiguously means the ending set of 

derivations. The only way that we could produce this string w, because again, because of the 

structure of the grammar is the following. 

(Refer Slide Time: 11:55) 

 



 

 



 

 



 

So, there are two possibilities; one is that S gives T. And T gives 𝑡௝ଵ 𝑇௔ೕభ
, because aj1 has to be at 

the end; so this first division has to be this. And then it has to be 𝑡௝ଵ (𝑡௝ଶ 𝑇௔ೕమ
) 𝑎j1 , where this has to 

be the next derivation and so on. Finally, we get this string tj1 up to tjm , followed by ajm up to aj1 . 

Similarly, the other derivation possible, because of again because of the structure of the grammar 

is that the ending part is aj1 ; the ending symbol is aj1 .  

So the first, the other possibilities S gives B and B gives bj1 Baj1; and again bj1, bj2, Baj2, aj1. And 

finally we get this string bj1 up to bjm, ajm up to aj1. So, these are the two strings. So, and by 

assumption, this is the same stream derived in two different ways. And we assume that ajm up to 

aj1 is a common suffix; and that is why we got these two derivations.  

And this necessarily means that, so since ajm up to aj1 is common; the 𝑤ᇱ part has to be this part, 

the first part tj1 up to tjm and bj1 up to bjm. This means that this part is the same. The highlighted 

parts has to be the same, which is what I have written here, tj1 up to tjm is bj1 up to bjm . Now, once 

we have that, that is a match for the PCP instance.  

So, we first have the j1
th domino, then j2

th domino up to jm
th domino. So that is it, because the 

grammar was ambiguous we; or from the ambiguity of the grammar, we got a match for the PCP 

instance. So, that completes the second direction of the reduction or the correctness. So, this 

implies that the original PCP instance P is a yes instance of PCP, if and only if the grammar is 



ambiguous. And that gives us the reduction from the PCP to the ambiguous CFG, which means 

that ambiguous CFG is undecidable.  

In other words, given a grammar, given a context-free grammar, it is undecidable to determine 

whether it is ambiguous. So that is what I wanted to share in lecture 44. Given a context-free 

grammar, it is undecidable to determine whether it is ambiguous; and it is by a straightforward 

reduction from the from PCP. 

So, given a PCP instance, we create a grammar; the grammar is very easy to construct. So, we 

have new symbols involved; but apart from that everything is very straightforward. S gives T | B; 

so three variables alone, starting variable S and T and B; and then we make these rules. And where 

t1 up to tk, b1 up to bk are as in the PCP instance; and a1 up to ak are new symbols. They are all 

distinct symbols. And we then showed that if the PCP instance has a match which say this, then 

we demonstrated two derivations of the same string, showing ambiguity of G. 

Now, if G was ambiguous for the other direction, we may assume by the structure of the grammar, 

that the suffix of the string so derived could be something like  ajm
ajm-1

 up to aj1
. Once you 

assume that this is the suffix, the rest of the derivation is fairly is kind of constrained by the 

structure of the grammar. So, the only two derivations possible that gives us this suffix is this as 

well as this.  

And that gives us the tj1 up to tjm is equal to bj1 up to bjm, which gives us a match for the PCP 

instance. So, ambiguity implies a match and match implies an ambiguity; hence, the reduction is 

proper. And that gives us that that gives us the reduction from PCP to ambiguous CFG; so 

ambiguous CFG is undecidable. And that completes lecture 44. This also completes the part on 

computability theory. This also completes, this also marks the end of computability theory which 

is chapter 5, so we started.  

Computability theory was spread over three chapters 3, 4 and 5. We started with defining Turing 

machines, types of Turing machines, Church-Turing thesis; then we saw decidable languages, then 

we saw undecidable languages. Then, we saw the HALTING problem is undecidable; then we saw 

reductions, which was a new way to show decidability and undecidability. 



Then, we saw many more languages that were undecidable. Then, we saw Rice's theorem, which 

was a way to show many other languages are undecidable. And then we saw PCP which is a simple 

problem, the statement of the problem does not involve any Turing machines or DFAs, or any such 

technical things. And but then surprisingly, that simply stated problem was undecidable.  

There is no algorithmic approach to determine whether there is a match. And using the fact that 

PCP is undecidable, we now saw that the undecidability of checking whether a given context-free 

grammar is ambiguous. So, these other things that we saw in computability; we saw what is 

decidability, what is computability. So, computability means what is computable. So, and we saw 

that there are things that are not computable.  

We saw that there are languages that are not even Turing recognizable; and we saw many decidable 

as well as undecidable languages. So, that completes computability theory; but however, our topics 

will continue. So in the next lecture, we will start complexity theory. So, now we will change our 

change gears a bit; meaning we will no longer be interested in the nitty-gritty, or we will no longer 

be interested in whether it is computable et-cetera. 

Now, from now on, we will only deal with computable things. Or only deal with decidable things; 

but we will be more careful about how much resources it takes. So, complexity theory is more 

about how much resources, how efficiently can we some compute something? How much time 

does something take? How much space does something take? Basically, it is going to classify 

problems based on resources that we need.  

So, for all that and more, you can check out the next lecture, lecture number 45. And as far as 

lecture number 44 is concerned, that is all that I have. Thank you. 


