
Theory of Computation
Professor Subrahmanyam Kalyanasundaram

Department of Computer Science and Engineering
Indian Institute of Technology, Hyderabad

The Post Correspondence Problem

(Refer Slide Time: 00:16)

Hello and welcome to lecture 43 of the course theory of computation. This is also the

beginning of week 9. So, far we have been seeing decidable and undecidable languages. We

saw reductions; we saw how we can prove some languages are undecidable using reductions.

And at the end of week 8, I showed you this problem called the post correspondence

problem; and I said that this is an undecidable problem.

And the specialty is that so far the undecidable problems that we have seen have been very

technical in nature, and have been somewhat abstract. Does this Turing machine halt on the

string? Does this Turing machine accept at least a language of this type and so on? So, it is

not something that you could describe to a common man or like a school going child.

However, the post correspondence problem is a very simple problem.

The problem statement can be easily described to anybody. So, the problem statement is the

following, given a bunch of dominos, so this is an instance. Is there a way to arrange these

dominos such that the top string and the bottom strings match? And the red part this one is a

solution for that; this is a match of the instance that is given over here; the instance has only 5

dominos. Now, if you see the solution, the top string ababaabbabbbabb.



So, the bottom string is ababaabbabbbabb , it is the same thing; the top and the bottom are the

same. But, of course, the top progresses differently from the bottom; the bottom progresses

quickly at first, and then later the top catches on. Some rules I have to mention. First is that, it

is not compulsory to use all the dominos; so, not all the dominos need to be used.

And two is that we could use some dominos more than once if we need; there is no restriction

on how many times we can use. And then obviously, like we can say the top and bottom

strings match if you choose nothing like an empty match. So, the empty match is not usually

allowed because that is a that will make every instance have a match.

So, the only two rules are; so we do not need to use all the dominos. And we can use each

domino how many of our times that we want; so this has a match that is listed here. And if

you see all the dominos is, is a domino that is given in this instance a divided by a bab, ba

abb, b and ab over here, abb by b, abb b, then b ab, then ab bb. All the dominos are dominos

given here.

(Refer Slide Time: 03:18)



So, another example is does this instance have a match the instance that is given over here? If

you think about it a bit, you will see that the answer is no; because in all the dominos, the

bottom string is longer. So, how many ever tiles that we arranged? How many ever dominos

that you arrange? The bottom string will always be longer and it will continue to keep getting

longer. There is no domino that allows the top string to catch on later.

So, if you see the first instance, in fact, the second instance is the same as the first instance;

but the last two dominos are not there. It is only the first three dominos of the first incident

that are there here. So, here the bottom string is longer; here it gets even longer, here it gets

even longer till the fourth domino. And the fifth domino onwards, the first domino starts

catching up. But, then there has to be some domino where the first domino is longer than the

bottom.

The top domino is longer than the bottom, so that the top can catch up. So here, we have

dominos like this where the top domino is longer than the bottom; and the bottom, the top can

catch up. However, here in all these dominos, the bottom Domino is the longer one. So, how

many of the dominos you put together, the bottom string will always be longer.

So, this instance does not have a match; so, these are two instances. And the language the

PCP question is given an instance like this, or like this; we have to determine whether there is

a match or not. In this case, the first instance had a match and the second instance did not

have a match; in this case, we could find that. But, is there an algorithmic procedure or is

there a standard procedure that can follow and determine whether the given instance has a

match?



Turns out, there is no such procedure and this problem is undecidable. So, that is why this

problem is interesting; it is a very simple problem. There is no Turing machine; there is

whether the EQ CFG or ALLCFG, or any such things are not there. It is very simple, it is some

dominos; and we have to determine whether there is a match or not. And it is surprising that

such a simply describable problem is undecidable.

So, let us move towards the proof of the fact that PCP is undecidable. And in order to prove

that PCP is undecidable, we are going to define a slightly modified version of the PCP

problem. This will act as an intermediate step. Let us simply call it modified PCP, for lack of

our imagination or whatever. Let us call it modified PCP, short MPCP. So, it is like a PCP

instance, but with an additional constraint, where we say that it is an instance.

So, the instance is exactly like this, we have to construct a match where the top and the

bottom strings match. But, now whenever, so now, I will give you an additional constraint.

The conditional constraint is that the match has to necessarily begin with the first domino.

(Refer Slide Time: 06:58)

So that is the modified PCP, but with the additional condition that the match should always

begin with the first domino. So the first domino should be the starting point. So, in PCP, there

is no such constraint; I could put whichever domino first. So now, the way we will show that

PCP is undecidable is that we will show two things; we will show that first will show that

MPCP reduces to PCP, and then ATM reduces to MPCP.



So, ATM reduces to MPCP implies that MPCP is undecidable; and since MPCP is

undecidable, MPCP reduces to PCP implies that PCP is also undecidable. So, together these

two together imply that PCP is undecided; so this one implies that MPCP is undecidable. And

once we have that MPCP is undecidable, this implies that PCP is undecidable. So, let us see

the first and let us see the first part MPCP reduces to PCP; this is simpler.

(Refer Slide Time: 08:03)

So, given an MPCP instance, we have to reduce it to PCP instance; so, MPCP the match has

to. So, MPCP we are asking if there is a match starting with t1 by b1; so I will call them t1by

b1, because so the divide. It is not a division, so it is not like it does not mean divided by; but

for want of a better word to describe this, I just call them t1 by b1. So, an MPCP instance

means that the match has to begin with t1 by b1. Now, we will create an equivalent PCP

instance.

Now, if I replace, if I look at this whole instance as a PCP instance, it need not be equivalent;

because in the PCP, there is no constraint that the match starts with t1 by b1. So, it could start

with the tk/bk for instance, which will not be acceptable in the MPCP instance. So, we will do

something in order to force; so we will construct using this instance itself.

But, we will force to begin with the construction to ensure that a match will begin from t1 by

b1, or the corresponding domino from t1 by b1. So, we need to first define some

transformations. So notice, so recall that all this t1 t2 up to tk, and b1 b2 up to bk; these are



all strings consisting of lots of symbols. So, let u be a string. Now, where u and u1 u2

et-cetera are the individual symbols; let us say that there are n symbols.

Now, I am going to define three notations. One is *u, u*, and * u *; and where *is a symbol

that is not there in any of the t1, b1 etcetera, t1t2, b1b2 et-cetera. *is a symbol that is not there

in any of these alphabets. So, what is *u? *u means that we start with a star; and before every

symbol of u, I am putting a *. So, it is *u1 *, u2 *, u3. So, just to give an example if maybe

will use a different color, let say u is 0110.

Then, *u is *0 *1 *1; maybe I will just let us say it is 011. *u is *0 *1 *1; and u *is simply

*after each symbol; so it is zero *1 *1 *. There is no *to begin with. In *u, there was no *to

end; in u *, there is no *to begin. And finally, *u *has stars at the beginning as well as the

end. So, I have this *0, *1 *1 *and stars. So, the last one does not quite look like one; so let

me just modify it.

So, this is what I mean by *u, u *, and *u *. So, all of them have stars between each symbol.

But *u has one at the beginning, but not at the end. U *has one at the end but not at the

beginning; *u *has one at the beginning as well as the end now. Now, using this notation, we

will transform the MPCP instance to a PCP instance.



(Refer Slide Time: 11:46)

So, this is the MPCP instance, t1 by b1, t2 by b2 et-cetera, tk by bk; the PCP instances are the

following. So, notice that the MPCP instance of the first domino has a special position,

because the match has to start with this. So, this gets transformed to first *t1 on the top and

*b1 *in the bottom; and then we transform all the dominos.

So, the first domino alone gets a special transformation *t1 divided by *b1 *; then we

transformed, then every domino gets a transformation. So, let us see what the transformation

is. So, t1 by b1 becomes *t1 by b1 *, t2 by b2 becomes *t2 by b2 *. So, there is a *at the

beginning, *at the end. tk bk, t *tk bk star; so, this gets this. This transformation is made for

everybody t1 b1, t2 b2 and tk bk.

And finally, we add one more new symbol that is a diamond. It is a diamond to get a new

domino which is *diamond by diamond. So, the PCP instance has k plus 2 dominos, where

the original MPCP instance had k dominos; because the first domino gets a special

transformation *t1 by *b1 *. Then, everything else like t1 b1 gets *t1 b1 *, *t2 b2 *, and *tk

bk *.

And then finally a special domino to anything *diamond divided by diamond. So, now, let us

see what is the specialty here; so, now the point is that. Now, look at this PCP instance, the

only domino that we can use to start the match is the first domino here. Because, we cannot

start with the second domino; because the second domino top starts with a *, bottom does not.



Same the third domino, same with the tk *, tk by bk *; and same with the *diamond divided

by diamond. So, the only domino that we can use to start is this one, and then and then that is

okay. So, it starts with *t1 by *b1 *; and then we can append this or this or any other domino,

whichever one suits us.

So, any *ti by bi *may follow it. But, notice that with any of these dominos, the issue is that

the top ends with the symbol original symbol and the bottom ends with the *. So, it is never a

match is never going to end over there. So, because the bottom will end with the *, the top

will not. So, the ending thing the only domino that can end the match is this one.

So, we need this diamond to end a match; because that is the only domino where the ending

is the same on both top and bottom. So, we end with this at some point whenever the rest top

and bottom have matched up, and that constitutes the match. Now, if you remove all the stars

and diamonds, what is left is a match of the MPCP with starting with t1 by b1 or t1 by b1.

So, the construction that we have created with the stars and diamonds, basically ensures that

we get an MPCP instance but with a PCP match, but starting from t1 by b1. So, that is why

this corresponds to a match in the MPCP where we start with the first domino. So, the details

I have already told the details, but you can try to work out the details for yourself.

The point is that because of the construction, the PCP instance will have to start with this

domino; and when you remove the stars, it corresponds to a match in the MPCP starting with

this, which is what is considered a match in the MPCP. So, whenever the PCP instance has a

match, each has to necessarily start with this; and hence the MPCP also has a match.

And whenever the MPCP has a match, it is straightforward to see that it corresponds to a PCP

match; so that direction is easier. The reverse direction is a bit involved; so, or only slightly

more involved and that I have explained. So, this completes the proof that MPCP reduces to

PCP and it is very easy to make this modified instance. So, the construction of the modified

instance is easy; and the correspondence of the match is also somewhat straightforward. So,

now we have to show that ATM reduces to PCP, MPCP sorry.

(Refer Slide Time: 16:46)



So, now this reduction uses computation histories. So, now we will show that ATM reduces to

MPCP. Given an ATM instance, our goal is to construct an MPCP instance. So, given M

comma w, we want to construct an MPCP instance, in such a way that M comma w is an ATM

if and only if the MPCP instance has a match. This is an ATM if and only if the MPCP

instances a match. In other words, M accepts w if and only if MPCP instances a match.

(Refer Slide Time: 17:25)



So, let M be defined as Q, sigma, delta, gamma and so on the standard Turing machine. And

let the string w be written as w1, w2 up to wn the individual symbols. So, now I am going to

describe the MPCP instance; so, the first domino at the top is just a #. And the bottom is #,

two #es with this thing in between; and what is this thing?

qs, w1 w2 up to wn. So, in fact, if you observe this closely, you will see that this is the qs to

wn is the starting configuration of M on w. So, basically we have the, this is and this is the

starting domino in as this is an MPCP instance, this must be the starting domino.

So, now you can see that the starting domino has a # on the top and it starts with a #, has a

starting configuration of M on w; and then ends with the # on the bottom. So, the bottom is

leading and the top is trailing, and we have a starting configuration. So, it is something like



this. So, if I scroll down a bit, it is something like this is what is happening; so, I am referring

to this place.

So, when we just have the starting configuration or starting domino, we have something like

this. If q0 is a starting state and 011 0100 is the starting input content, then the starting

domino gives us this. Now, the goal is to construct dominos such that the, what we will do is I

am telling you the high level goal. The goal is to, so now we will have to pick out dominos

such that here we get q0 on the top; whatever domino we have to enter will give will should

give us q0 here; otherwise, it will not be a match.

But, then the matching thing here may be something else. So, will ensure that by the time the

top is filled out completely with the #, this bottom will also get filled out. But, what is filled

out here will be the next configuration of the Turing machine; so the idea is the following. So,

the idea is so this is starting configuration starting domino; by the time the top catches up, the

bottom would have moved one step.

So, when I say one step of the Turing machine, one step of the Turing Machine computation;

that is the idea here. So, now when you move one step, and then when you match the top

again, the bottom again moves by one step; and finally so the bottom is always ahead. And at

the end, we need to somehow make sure that the top is allowed to catch up.

And this happens only when we reach an accept state. And that is why the acceptance of the

Turing machine corresponds to the match; so let us see how it happens. Now, the next so the

first domino is this that we have explained, # followed by the starting configuration; # on the

top, starting configuration in the bottom.

Then, the second set of domino is this, for all a, b in the step alphabet, and q, r in the states,

where Q is not the reject state. If there is such a rule that delta q, a gives r, b, R, it is a rule of

the Turing machine; then we should add this domino. This domino is the added Domino. So,

q, a on the top and b, r in the bottom, so why does it make sense?

So, let us see the tape itself. Let us see how the Turing Machine tape is. Suppose the tape

contains this 0 0 1 q a 2, or suppose the configuration is 0 0 1 q a 2; this means that 0 0 1 a 2

and the head points at a, and the state being q. Now, what we are saying is that delta q, a is r,

b, R. Meaning we will write b and we will go to state r and move one step to the right.



So, this is what delta q, a is equal to r, b, R; means which means now the configuration is 0 0

1 b r 2 which is what I have written over here. So, now everything is the same but I am

looking at this part, sorry; I am looking at this part which is the part where it is distinct. q, a

in the top and b, r in the bottom; and that I want to capture by the domino which is what I

have here.

So, this corresponds to all the moves where the head moves one step to the right. Next thing

is for all a, b, c in the tape alphabet and q, r in the state; so same thing, but delta q, a is equal

to r, b, L. So, everything is the same, but just that there is a left movement. Then, we have

this domino that there c, q, a in the top and r, c, b in the bottom.

Why is that? So, suppose we had 0 0 1 c q a 2. What does it mean? This corresponds to c a 2

with the head pointing at a, and the state being q. So, now delta q, a is equal to r, b, L;

meaning you move to, you write b here. You move one step to the left and you go to state r.

So, this corresponds to 0 0 1 r c b 2; so, which is what I have here. So, I have this is a

configuration that we started with 001 c q a 2; and we ended with 0 0 1 r c b 2.

So, here the difference is in these 3 symbols in the top and the bottom; c q a on the top and r c

b on the bottom. So, that is why we have this domino. So, whenever we have rule delta q, a

gives r, b, L; we should have this domino like for all the possible c’s. And whenever we have

this rule delta q, a gives r, b, R we should have this domino. And we should have all like for

all such rules, we should have all the possible such dominos. And in this case for all such

rules and all possible c's, we should have all possible dominos. Now, the rest of the dominos

are fairly simple.



(Refer Slide Time: 26:09)

For any symbol a, we add this domino that a is on the top and the bottom. This is for the

symbol is the same at the top and the bottom like this one, 001 on the top and 001 on the

bottom over here; that is why we have this. And then the next set of dominos has # on the top

and bottom; and this is actually for # on the top and blank # on the bottom. This is actually

for situations where the head moves to the right.

Then finally, then not finally, for the accepting state, we allow this. You have a q accept on

the top and q accept in the bottom; or, you have q accept a in the top and q accept in the

bottom. So, a q accept in the top and q accept in the bottom or q accept in the top, and q

accept a in the top and q accept in the bottom. So, these are the dominos where we allow the



top to catch up with the bottom; and this happens only when we have an accepting state in the

top.

So, when basically what is happening is that the accepting state is kind of absorbing the

nearby symbols; so, this we write for all possible symbols a. And finally, we have one more

domino which is this q accept # # divided by q accept. And this we will see when we work

out the example, we will see that this kind of acts as the final step. And the idea of all this is

that if M accepts w or if M, w is an ATM, there is an accepting computation history.

And an accepting computation history gives us a match for the MPCP instance. If it is not

accepting then there is no match; because we need the accepting state for this absorption to

happen. So, perhaps maybe I think the simplest thing is to work out an example and see how

these rules work. Right now it may seem like some arbitrary rules defined based on some

Turing machine, some set of symbols and transitions; let us see how it works out.

(Refer Slide Time: 28:42)









Now, let us see, so now here this means that q0 is seeing 0; so, let us define some rules. Let

us say the rule was delta q0, 0; so it is in states q0, reading zero. Let say q3, let say 2, right.

So, q3, 2, right means that we should have this rule acting up. So, we should have the

domino, we should have the domino qs, sorry; q0, 0 on the top and 2, q3 on the bottom that

domino will be there by the second rule.

So, you can verify that this domino will be, this will give us q0, 0 divided by 2, q3. So, now

let me, so since to avoid confusion, I will try to alternate the colours. So, the second domino

will have q0, 0 and 2, q3; so, this is in red. Now, the next domino I could just use one on the

top and one on the bottom, and 0 on the top and 0 on the bottom, and 0 on the top and 0 on

the bottom. And then, let me use # on the top and # on the bottom.

Now, let us say if there is, let us say another rule delta q3, 1 is that q3, 1 is let say q7; I do not

know q7, 5, R. So, this corresponds to domino q3, 1 on the top and 5, q7 in the bottom. So,

maybe I will do one small thing; I will try to delineate these things. So, the first, sorry; let's

say darker colour. So, the first one was this; this was the first domino, this was a; it is too

narrow to delineate. So, that is why I have the colour coding here and this is how it is.

Now, I will use something where I have 2 on the top and 2 on the bottom. So, the symbols in

the same colour are the ones that match up or that part of the same domino. And then I have

q3 on the top; q3, 1 on the top from this domino and 5, q7 on the bottom. And now let me

have 0 on the top and 0 on the bottom, 0 on the top and 0 on the bottom; and finally, let me

again have # and #. So, now again the situation is that the top is kind of like lagging behind.



Now, suppose it is in state q7 and it is reading a 0. Suppose, delta q7, 0 is it accepts from

here; so, qa let say 1 and right. And if that is the case, then we would be q7 0, and the bottom

will have 1, q accept. So now, 2 will be 2 here and 5 will be 5. Now, q7, 0 will be on the top

and correspondingly here we will have 1, qa; and finally we have 0 here and 0 here.

And finally, we have to match up the #es; so that is the situation. Now, maybe I will just do

one thing. We need to move to another line to continue this; push this down so as to make up

space. So, now the situation is that I have, let we just carry forward this; carry forward this,

this part the highlighted part because that is a place where the bottom is ahead.

So, I will just write that here; sorry, 2 5 1 qa 0 #; and that is where we are. So now, we could

use some like we could use 2 here on the top and 2 at the bottom; 5 on the top and 5 on the

bottom, 1 on the top and 1 on the bottom. This is which is all like single dominos where you

have 2, 2, 5, 5, 1, 1. And then I will use this domino a, q accept by q accept; so, or I will use

this one.

So, for instance, I can use this domino q accept 0 by q accept. So, I will just say q accept 0 on

the top and the bottom will be q accept. And so let us see what happens now and then let say I

use # and #. So, notice that so far, the entire configuration in the bottom was leading; but now

the, now again the bottom configuration is leading. But, now the bottom configuration has

slightly shrunk; basically, this particular domino allows the top to catch up.

Now, we may use this again; we may use the domino, 1 qa by qa, so let us see. So, first we

have 2, 5, 1, maybe I will use another colour; before that, let me just use another colour for

this as well. I will use 2, 5, 1 here and 2, 5, 1 here. Sorry, note 2, 5, 1, I will use 2, 5 here and

2, 5 here; sorry, 2, 5, 1 here, 2, 5 here. Then, I will use 1 qa in the top and qa in the bottom;

and then again close do the #.

And now I can use 2 on the top and 2 on the bottom, and then I will use 5, qa in the top and

qa in the bottom; which is also allowed because anything can go in the top and bottom is just

qa. So, now maybe I should carry forward. So, this is a carry forward thing to carry

forwarded to qa; let me do it in the next line. I will not need that much space; so I will have 2

qa #.

So, now I can use a single domino where 2 qa is in the top and qa is in the bottom; as I said

such a domino is also available as per this rule, two qa is in the top and qa is in the bottom.



And now again I can close it off. So, now this is a situation, the bottom is just leading by #

qa. Now, let us see if I can use this one # qa is leading, so we cannot use this right now.

So, first we need to put a # symbol I think. So, we will put a # here and # here; and now the

bottom is leading by just qa and #. So, now we can close off things by using this qa # #, and

bottom just #. So, I can close off things, maybe I will use a different colour. qa # # in the top

and bottom just #; so, basically this is this domino.

So, now you see how we have managed to use; so now that the match is complete as you can

see, now the match is complete. So, now it should be clear. So what is happening here? We

started off with the starting configuration leading to the bottom and the top was empty. And

whenever the top made us caught up in the top, the bottom made one step ahead. So bottom,

it corresponds to the configuration of the Turing machine one next step.

So, the top is one step behind in the terms of the configuration of the Turing machine, and

this continues; the rules are designed so that this continues till there is a point where the

bottom gets an acceptance. And once we have an acceptance, basically then these rule

number 6; the dominos in rule number 6 will start to become useful.

Basically, the accepting state can absorb the nearby characters; so that slowly allows the top

to catch up. So initially, we had this here 2 5 1 qa 0 in the bottom; so we started off with this

extra in the bottom, in the second line. So, now 2 5 1 2 5 1 and the qa 0; the 0 is eaten by the

qa. So, the next time we have just 2 5 1 qa; and then the 1 gets eaten by the qa. So, next time

we have 2 5 qa; and then 2 gets eaten by the qa.

So, next time we have 2 qa; and finally, sorry, 5 gets eaten; and then we have the 2 also gets

eaten. So, finally we have qa and then # and so the bottom is just leading the qa #; and then

we just put the domino 7 qa # # divided by #. So, this domino this is the last domino, maybe I

will just highlight the last domino, this finishes off things.

This finishes off things. And if you do not get to accept, we will never, we will, the bottom

will never be; sorry, the top will never be able to catch up. Because if you can see, the only

places where the top is allowed to catch up is when we have an accept state. So, two things

should become very clear that whenever there is an accepting computation or the accepting

computation history, it results in a match.



And second, if there is no accepting, if there is no accepting computation history or if there is

no acceptance, then the top can never catch up. So, this completes this or that is the reasoning

for this argument over here. M accepts w if and only if the MPCP instance has a match, and it

is also important that this be viewed as an MPCP instance, and not as a PCP instance.

Because, if we view it as a PCP instance, if we do; or in other words, if we do not insist that

this be the starting Domino, then there are many many matches. I could just have one tile, # #

and # in the bottom; this single tile is a match. Only empty matches are the only thing that are

not allowed, this is allowed. So, that is why it is important to have a view of it as a MPCP

instance.

And that completes the proof that ATM is reducible to MPCP; so, that shows that MPCP is

undecidable. And we have already shown that PCP or MPCP reduces to PCP, so that together

implies that PCP is undecidable. So, there you have it, it is a very simple problem; so, given

some tiles and dominos. Is there a match?

This simple looking question, this innocuous looking question is undecidable. There is no

algorithmic procedure by which we can definitively answer this question. That sounds very

very surprising, but that is a fact. So, we first reduced MPCP to PCP by putting the *; from

the PCP instance, we created a PCP instance. And we ensured that the PCP instance can only

start off the match from the first domino; that is how we did the reduction.

Then, for ATM to MPCP, we use computation histories. We created dominos in such a way

that the first domino, the top is empty and the bottom has the starting configuration. And then

every time we fill out the top to match up with the bottom, the bottom will have advanced

one step of the computation. And this goes on; this lead of one step in the computation is

maintained throughout till there is an acceptance.

And once there is an acceptance, the tile number 6 allows the top to catch up by absorbing the

symbols near the accepting state. And finally we close it with the title number 7; and but then

that is available only on acceptance. So, that is maybe I will just also highlight this side; this

is the starting configuration here starting domino here, and we end with this term.

And that completes the match; and it is now fairly clear that the MPCP instance is a match if

and only if M accepts w; or in other words if and only if M, w is an ATM. That completes the

reduction and hence we can see that PCP is undecidable. That is all I have for this lecture.



(Refer Slide Time: 45:19)

And these are some rules that I have just written down anyway. One is that an empty match is

not allowed; otherwise, it is meaningless. Two is that repetitions are allowed. And three is

that we need not have all the dominos in a match, necessarily like we could skip some

dominos or many dominos also. And all of these I have said earlier, but I just noted it down.

And that completes the proof that PCP is undecided; so it is a problem that is undecidable.

And it is a very very simple problem; so that is the surprise and that is the contrast as well. So

far, all the undecidable, other undecidable problems were somewhat technical and abstract;

this is very very simple and easy to describe. And that completes the proof that PCP is



undesirable; and that is also the end of lecture 43. In lecture 44 we will just see a brief

application of the fact that PCPs are undecidable. So, see you in lecture 44. Thank you.


