
Theory of Computation
Professor Subrahmanyam Kalyanasundaram

Department of Computer Science and Engineering
Indian Institute of Technology, Hyderabad

Computation Histories

(Refer Slide Time: 0:17)

Hello and welcome to lecture 42 of the course theory of computation, in the previous lecture

we saw Rice's theorem and we have also seen other undecidable languages so Rice's theorem

was a technique or a theorem to show a decidability of a certain type of languages, we had

also seen other undecidable languages by using reductions. So, in this lecture we will see

computation histories, computation history is an approach to show undecidability of some

languages.

In particular we will use this approach to show reduction from ATM to this language so since

ATM if you can show that ATM reduces to a certain language then the language that we reduce

ATM to is also undecidable, so computation history is a certain technique or approach to

perform the reduction from ATM to the language that we want because in some cases we are

able to use this approach.

For instance one of the, one of the interesting cases is the Hilbert's tenth problem that we

discussed at the end of chapter 3, this that that was asked by David Hilbert in the ICM this

was shown to be undecidable using this approach, so what is computation history, so

computation history is just like a history of computing a certain string by a certain TM, so as

we already know configuration consists of the tape content, head position and the state of the

Turing machine at a certain point of time.

So, computation history is given let us say computation history of a Turing machine M on a

string W is nothing but the sequence of configurations that M goes through while computing

on W, so it is written as a series of configurations like this like C1 hash C2 hash etc etc hash

CL where C1 to CL are the configurations and these hashes are simply delimiters like to

separate one configuration from the other.

𝐶1#𝐶2#𝐶3#...... 𝐶𝑙

So, there are two definitions one is accepting computation history and one is rejecting

computation history, accepting computation history is nothing but sorry, is nothing but

computation history that leads to an acceptance of a string, so accepting computational

history is a sequence of configuration C1 up to CL where the sequence of configurations lead

to the string getting accepted, meaning as per the rules of what when does this thing get

accepted C1 must be the starting configuration of M on W meaning C1 should be the starting

state followed by the input string W W1, W the individual symbols of W and Cl must be an

accepting configuration only then it gets accepted.

So, the last configuration must be an accepting configuration and everything else must be a

valid successor of the previous configuration so C2 should be a valid successor of C1, C3

should be a varied successor of C2, C4 should be a valid successor of C3 and so on and so on

till Cl should be a valid successor of Cl minus 1, so all the moves should be valid moves such

a sequence of configurations is called an accepting computation history, so I want each

configuration to be a valid successor of the previous one the starting configuration should be

the to be the correct starting configuration and the accepting configuration should be an

accepting configuration.

Similarly, we can define rejecting configuration computational history sorry, where

everything is the same, rejecting computational history is defined exactly the same way just

that instead of Cl being an accepting configuration we want Cl to be a rejecting configuration

so these are the two definitions, what we will just now for our purposes of this lecture we

only be using accepting computation history.

(Refer Slide Time: 4:34)

So, what we will show in this lecture or at least show the outline of in this lecture is a

language that we have referred to couple of times in the past, the language is ALLCFG, ALLCFG

is asking given a context free grammar does this grammar generate all possible strings, does

it generate all the strings over the terminal set sigma, so this problem happens to be

undecidable, so you may recall we showed that, we assumed ALLCFG is undecidable and we

showed that EQ CFG is also undecidable because you could reduce ALLCFG to EQ CFG but we

had never, we had just stated that ALLCFG is undecidable and now we will see the kind of

sketch of the proof that ALLCFG is undecidable.

So, it is an undecidable problem given a grammar, given a context free grammar to determine

whether this generates the set of all strings, all strings possible over the terminal set, let us see

why, so we will reduce ATM to all ALLCFG complement, we will reduce, so if I reduce ATM to

ALLCFG complement and if I reduce ATM to ALLCFG complement this implies that ALLCFG

complement is undecidable but that also implies that ALLCFG is undecidable because if a

language endless undecidable its complement is also undecidable, if L complement is

undecidable then it is also undecidable because if you can decide, if you can decide the

language L complement you can just flip the output yes to no and no to yes to get a decider

for L so if ALLCFG is undecidable ALLCFG complement is undecidable there is no way for

ALLCFG to be decidable because you can flip the decider's output to get a decider for ALLCFG

complement.

So, this implies that ALLCFG is undecidable as well and the reduction from ATM to ALLCFG

will use computation histories, so while let us see how it uses, so given M and w the ATM

instances does M accept w that is what we have to decide, what we will do is given the ATM

instance M and w we will construct a context free grammar or equivalently a PDA,

context-free grammars and PDA, they are equivalent, they both recognize the class of

context-free languages this grammar or PDA will generate all the strings which are not an

accepting computation history of M on w which are not that is also important which are not

an accepting computation history of M on w.

So, it will generate everything which is not an accepting computation history, so which means

so it is a very it is slightly twisted suppose M accepts w then it will not generate the accepting

computation history of M on w, it will generate all the other strings, the grammar will

generate all the other strings, suppose M does not accept w, so if M does not accept w there is

no way for it to accept w which means there is no accepting computation history at all

because only if M accepts w can we have an accepting computation history because

otherwise it cannot be valid.

So, if M does not accept w the context free grammar will generate all possible strings, it will

generate everything because there is no accepting computation history so the by design it is

supposed to generate all strings that are not an accepting computational history, so if M does

not accept w it will generate all the strings if M accepts w it will generate all the strings with

the exception of the accepting computation history. So, when M accepts w the grammar will

not be able to generate all the strings but when M does not accept w the grammar is going to

be able to generate all the strings.

(Refer Slide Time: 9:15)

So, let me define formally ACHM,w, ACHM,w is the set of all accepting computation histories

of M on w, so with the set of all strings Z where Z is in delta star so delta means delta

includes the input string gamma, it also includes the state tape string it also includes States it

also includes hash symbols every everything that that comes in the tapes or in the

computation history so any string that is formed out of delta which is an accepting

computation history so ACH contains all the strings that are an accepting computer in history

of M on w.

So, this same is what I just said M w is in ATM if and only if M accepts w now if M accepts w

the accepting computation history is not empty if it accepts then there is an accepting

computational history, if it does not accept there is no such thing so accepting computation

history is not empty means the complement is not everything so the complement of accepting

computation history is not the set of all strings possible which means the grammar that

generates this ACHM,w so maybe to be more precise the grammar that generates this maybe I

will just, the grammar that generates this ACHM,w should not be in ALLCFG.

The grammar that generates ACH complement which means the grammar again here also the

same thing the grammar that generates this should not be in ALLCFG means that it should be

in the complement of ALLCFG so that is the reduction so maybe I will edit this that is the

reduction if M w is in ATM, M accepts w which means there is an accepting computation

history which means the complement of ACHM,w does not contain everything and hence it is

not part of ALLCFG.

So, and if M does not accept W the there is no accepting computation history and the

complement of ACHM,w is all the setups all strings and hence the grammar that generates it is

part of ALLCFG, so this gives a reduction from ATM, M from given M w we are constructing

the grammar, so it is a reduction from ATM to ALLCFG complement given an instance of ATM

we are giving a instance of ALLCFG complement or given a yes instance of ATM we are giving

a yes instance of ALLCFG complement which is a no instance of ALLCFG but yeah.

So, now what we need to show is to construct a grammar that generates ACHM,w complement,

this grammar the grammar that we refer to here we need to build to complete the reduction

we need to build this, so just to summarise we want to reduce ATM to ALLCFG complement the

we use computation histories if M accepts w so we build a grammar that generates all the

strings that are not accepting computation history of M on w we build a grammar that

generates all the strings that are not accepting computation histories.

So, if M accepts w then the grammar cannot generate all the strings because there is an

accepting computation history if M does not accept w then there is no accepting computation

history which means the complement of ACH will, can generate potentially everything so it

is a member of ALLCFG that is the reduction.

(Refer Slide Time: 14:02)

And now what remains is to show the grammar, show the grammar that generates the

complement of accepting computation histories of M on w, so this part is where we are not

going to get into full details because the details may be quite technical so just I just want to

go to the high level points and the details is not that hard it can be worked out but it may be

too boring or too detailed to kind of go through all of the details.

So, we want a grammar to generate strings in the complement of ACHM,w, so how can a string

not be an accepting computation history all such things we need to generate so there are four

possibilities first the string is not even of this, so we want the computation history to be

denoted like this, this is our desired form for the computation history configuration starting

from the starting configurations to the accepting configurations separated through valid

transition and separated by delimiters hash symbols.

So, perhaps the input itself is not given in this format it is not a properly formed input the

string is not a well-formed computation history, it cannot be read or interpreted as one in that

case it is not an accepting computation history, so this maybe it does not have a hash symbol

or maybe it does not end with the hash symbols or maybe between two hash symbol there is

no state it is not a valid configuration or maybe there are two states so all of this is an

example of not being well formed.

This is actually something that can be checked by a DFA or a regular language. It is a regular

language because you are just checking whether every hash follows between every two

hashes there is a state and all that whether it starts and ends with the hash it is actually a

regular language.

So, again I am not getting into the detail of how you can check it but it should be

straightforward to see that it is a regular language, so in that case it is not an accepting

computation history, the second case is maybe it is well formed meaning it starts with hash

ends with hash and it has C1 C2 etc. but maybe I just missed a small thing and it starts with

hash I think we need this, it has to be this form I think, maybe it does look like a proper

computation history but let us say it does not start correctly meaning the first configuration is

not the starting configuration of M on w it is a configuration but it is something else.

So, the starting configuration of M on w should be looking like this where Qs is the starting

config starting state and w1 w2 etcetera is the string w, so is the first configuration equal to

this, if not that is another way why z is not an accepting computation history, this is also easy

to check all we are asking is the first configuration equal to something, this also can be

checked using a DFA.

(Refer Slide Time: 17:28)

Third possibility is that it is a properly formed computation history but it does not end

correctly meaning the last configuration is not an accepting configuration meaning the state

between the last two hash symbols is not the accepting state so it is not the accepting state

this also can be checked easily using a DFA because we just have to go to the last two hashes

and check whether you we remember the last states seen and check whether the last state seen

is a accepting state this also can be checked using a DFA.

So, this is also easy not that difficult to see then, so we have covered the string being well

formed in sense of a conflict computation history, it is starting correctly meaning C1 is a

starting configuration, ending correctly meaning it the last configuration is an accepting

configuration then the third, the final way in which the computation history may not be a

valid computation history is if at some point, so we have C1 C2 C3 this is a sequence of

configurations at some point there is some i such that Ci plus 1 is not a valid successor of Ci

there is an i such that Ci is not a valid successor of Ci plus 1 is not a valid successor of Ci

meaning there is some part where this sub part Ci ,Ci plus 1, Ci hash Ci plus 1 is not a valid

successor.

So, if there is such a thing then it is again not a valid accepting computation history because

somewhere we started correctly ended correctly but somewhere the it is not a valid successor

so how do we do this, we non deterministically guess an i so we have a PDA so far we just

said that everything else can be done by a regular or DFA so this part requires a PDA or a

context free grammar we can non deterministically guess an i for which Ci plus 1 is not a

valid successor of Ci and then we check whether this does not happen right.

And then we use a PDA like once we guess an i we use a PDA to check whether this is not a

valid pair of configurations meaning what do I mean by not valid, Ci plus 1 is not a varied

successor of Ci this can be checked using a PDA, so again details I am not getting into the

details that is why I called it a proof sketch to begin with.

But the idea is this so one good exercise is there is a problem 2.22 in the book so I am

reproducing the problem here so set of all strings like it is a set it is a language called C

which is of the form x hash y, strings of the form x hash y where x and y are from 0 1 such

that x is not equal to y.

So, I will tell you the idea for C, so one way to do it is you let us you guess that if x and y are

not equal you can guess that they may differ in the kth symbol, there are three possibilities so

one is that x is or two possibilities one is that x and y are of two different lengths then they

are immediately not equal so maybe there are three possibilities, one is that x is longer than y,

two is that y is longer than x, three is that x and y are of the same length but at some point

some symbol differs meaning maybe some kth symbol of x is not the kth symbol of y.

So, what you can do is you can guess some K, I am just addressing the third part so you can

non deterministically decide which path to pursue, so you guess K, so to guess K you just

keep pushing symbols into the stack, so at some point let us say after pushing let us say K

symbols maybe K is 10, 10 symbols you look at the 11 symbol of x you remember it and you

go to the hash and then you start popping out the stack when you are reading the symbols of

y.

So, that you pushed 10 things into the stack, so the first 10 symbols of y are going to be

passed by just pushing it, we are not going to compare or anything, this is just used as a

counter and then when we come to the 11th symbol of y we will see that the stack is at empty

you can put a dollar or something to identify that and then you try to remember what you saw

earlier and see whether the 11th symbol of x is the same as 11 symbol of y.

So, you guess which position to so you non-deterministically decide which position to

compare till that point you push things and push things into the stack and use that as a counter

to get to the same point at y, so this is how and then you accept if the strings are different if

the 11th symbol is different or the K plus 1 symbol is different. The same ideas kind of so

maybe this is something that you can try working out, this problem C.

(Refer Slide Time: 23:07)

And the ideas for checking Ci hash Ci hash Ci plus 1 is not valid similar just that now that we

are not dealing with x not equal to y we are dealing with two configurations where Ci plus 1

is not a successor of Ci, so earlier here we said x should not be y, here we are saying Ci plus 1

should not be a successor of Ci so earlier there was equality here we are saying not a valid

successor.

So, if you write the let us say this is Ci, this is Ci, this is Ci plus 1 so if you write it like you

have some strings and it will, so if you write two successive configurations, you see that

configurations do not change all that much only the part around the head changes, so the head

is here a q b because q indicates a state and this means the head is pointing to b here that is

replaced by r a c so only these symbols around the head changes.

So, you can check you may have to remember more details because two or three symbols

may change and you do not know where the head is going to be well processing, so you have

to not only determine which position K that you are going to check but you also have to

remember couple more states, couple more symbols not just the, so in the case of C we said

we remember just the K plus 1 symbol here we mean it we may need to remember more

symbols than just K plus 1, so that is the main idea here, we need to remember more symbols

because this transition that I have written here this happens when meaningδ(𝑞, 𝑏) = (𝑟, 𝑐, 𝑙)

here the status queue it is, the head is pointing at b and the move here is that state goes to r, b

is overwritten by the symbol c and then the head moves one step to the left.

So, now this a has moved over here so this you can see, this a has moved over here, the state

has more one step to the left and b is changed to C so that is the result of this move if it was a

move the head moved to the it would be slightly different but the point is that whatever is the

move corresponding to the particular configuration the move, the next step we will have to

we will have to identify that and make amends in the or make changes in the or will have to

construct the context free grammar appropriately in order to track that. So, that is the main

idea of the proof that ALLCFG is undecidable.

(Refer Slide Time: 26:21)

Maybe I will just quickly summarise so an accepting commit computation history is a

sequence of configuration starting with starting configuration ending at an accepting

configuration where each transition is valid, so to show that ALLCFG is undecidable we reduce

ATM to ALLCFG, so given an ATM instance which is a pair Mw we will build a grammar that

generates all these strings that are not an accepting computation history and so if M accepts w

this grammar cannot generate all the strings because there is a valid computation history.

If it does not accept w it can generate everything, so M w is in ATM if and only if the grammar

does not generate all the strings or if and only if the grammar is in the complement of ALLCFG

that is how we get the reduction of ATM from ALLCFG and now how do you build such a

grammar?

There are four possibilities the first one being the we want to generate ill-formed strings

which is not a configuration, second one is it does not start correctly, third one is it does not

end correctly meaning it is not accepting the last configuration is not an accepting

configuration the final thing is what we required some work and that too we just gave the

high level overview and not the entire proof that is there is some i for which Ci plus 1, the i

plus 1 configuration is not a valid successor of Ci.

And that we said that we can do it by using a PDA but I am kind of alternatively

interchangeably using PDA and CFG, so if there is a PDA we can use a CFG as well so we

keep track of some like where to compare using the stack and then you remember the last

couple of symbols read so that you know how to adjust yourself and if you read the book this

part of the proof is written slightly differently, this last part.

They use, the book uses something where alternate configurations are written in the reverse

manner so you have C1 then C2 in reverse then C3 then C4 in reverse or something like that

so that is also correct this is a this is slightly different but this is also a valid approach so that

is how this, proves that we can build a CFG that generates all the strings that are not an

accepting computation history and that completes the reduction from ATM to the complement

of ALLCFG. This means the complement of ALLCFG is undecidable which also means that

ALLCFG is undecidable and that is the main thing that I want to cover in this lecture.

(Refer Slide Time: 29:18)

I will just briefly describe one problem before the next lecture but then this will be the last

lecture for this week this is going to be a rather lighter week but I just want you to want to

give you something to think about so I will just state the main thing that I will the first thing

that I will discuss next week.

So, this problem is called post correspondence problem and the reason for discussing this

problem is that so far the problems that we have seen the undecidable problems that we have

seen are of the type like is there a Turing machine that accepts this, is there a Turing machine

that recognizes like it is a very abstract kind of situation so for the languages that we have

seen that are undecidable are rather abstract.

This is a very simple problem that is very easy to describe you can even tell it to some third

standard, fourth standard school going child and the problem is so easy to describe so I just

want to describe the problem, so we will see the proof in the coming week, so given some

dominoes, so the problem is this, given some dominoes we want to see whether can we list

them in such a way there is a match, match means can we list them in some such a way that

the top string and the bottom string are the same?

So, let maybe it is best described through an example so let us see this, so there are five

dominoes, first one is a b in the top and a b a in the bottom then ba in the top and a b b in the

bottom, b in the top and a b in the bottom, a b b in the top and b in the bottom, a in the top

and b a b in the bottom, now I claim that the following listing here this constitutes a match so

as you can see that I am using some dominoes more than once and it looks like I am using all

the dominoes at least once but even that is not necessary, we do not need to use all the

dominoes and I am allowed to use dominoes more than once, yeah.

So, let us see so if you read the top string it is a b a b a b so here if you see a b a b a b so it is

the same string then the rest is a b b a b b and from here it is a b b a b b so now the we are up

to here in the bottom and we are up to here in the top the rest is b a b b b oh no I think there is

a small error it is a b b divided the bottom is b so let us do it again so a b a b a b the first four

dominoes top part is a b a b a b first two dominoes bottom part is a b a b a b so now up to

fourth in the top up to second in the bottom.

Then a b b a b b up to sixth in the top a b b a b b up to fifth in the bottom, so now the rest is b

a b b and b a b b so this con, so if you read the entire top string it is the same as the bottom

string and this is what we mean by a match, so the question is this, given an instance an

instance like this, is there some way or can we tell whether there is such a match or not that is

a problem.

Given an instance is there a match or not, meaning match means is there a way to write the

dominoes in some order with possible repeats we do not have to have repeats but we can have

repeats in such a way that we get a match, this is the problem, so it is a very simple problem

very easy to, simple meaning simple to describe, however this problem turns out to be

undecidable, such a simple question you can tell it to some school going child but this

problem turns out to be undecidable.

So, this is an sharp contrast with what we have seen before, the other problems is it ATM does

this Turing machine accept does this halt, is this regular and like Rice’s Theorem and these

are they all seem very abstract things but here we are we have something which is very

clearly easily described and very concrete problem and surprisingly this problem turns out to

be undecidable.

So, maybe you can just try, try to see to come up with strategies and you would see that you

will not be able to create an algorithm for this so that may that may give you some indication

of why this is indeed so there is no general algorithm that is what it means to be undecidable

of course in some cases by inspection you can figure out a match in some cases by inspection

you can rule out a match but there is no standard clearly well-defined approach that will lead

us to telling lead us to clearly saying yes this is, this has a match or this does not have a

match. So, the question is, given this instance we have to figure out whether there is a match

or not, yes or no, but it is an undecidable problem.

So, that completes this lecture, lecture number 42. This also completes week 8 lectures so in

week 8 we have seen reductions, we have seen reductions we define reductions, we saw

undecidable languages using reductions, then we saw Rice's theorem which was a template

result that could show that many languages are undecidable like many languages that fall in

that framework.

Then we saw computation histories and saw the high level overview that ALLCFG or not high

level or not that high level but somewhere medium level overview that ALLCFG is

undecidable and then I stated the post correspondence problem so it is called Post

correspondence problem because it was invented by a mathematician called Post, so Post

means that and I said that we will see the undecidability of post correspondence problem so

also sometimes abbreviated as PCP next weekend also maybe applications for this and that is

all I have in lecture 42 and also week 8. So, see you next week.

