Theory of Computation
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Department of Computer Science and Engineering
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Rice Theorem
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Hello and welcome to lecture 41 of the course Theory of Computation. In the previous
lecture, we saw many undecidable languages, and from reductions using reductions from
Aqy. In particular, we saw two undecidable languages Er, and REGULAR ;. So, Epy is the
question. So, given a Turing machine, is the language recognized by this Turing machine the

empty language? That is what the team is asking. Given a Turing machine, does this Turing



Machine recognize the empty language?? And REGULAR 1, is given a Turing machine is

the language recognized by this Turing machine regular.

So, these are the two languages that we saw last time. And we saw that both of them were
undecidable. So, one way to look at both these problems or both these questions is like you
are given a Turing machine, and you are asked whether the language recognized by this
Turing machine satisfies some property. So, in one case we are asking if the language is equal
to the empty language, in the other case, we are asking if this language belongs to the class of
regular languages. So, we can ask many such questions of similar type. Given a Turing
machine, does the language recognized by this Turing machine contain only strings of odd

length? So, that is a question.

So, so this is a question that is specific to only the language of the Turing machine. So, I am
not asking you about other things like how many states it have, or how the transitions
happen? Or is there a state where it loops or anything of that sort? The questions that I am
talking about are only specific to the language. So once again, the question that I am talking
about is does the given a Turing machine, does the language recognizable the Turing machine
contain only strings of odd length? Another similar question is given a Turing machine does a

given Turing machine accept at least one Palindrome string?

So, palindrome is a string that reads the same way from left to right or from right to left.
Another question that I can ask is, given a Turing machine is the language recognized by this
Turing machine? Is it a finite language? Does it only accept a finite number of strings? So,
that is another question. Or, does the given Turing machine accept a specific string, let us say
10117 So, this is another question. Because so again, we are asking whether 1011 belongs to
the language recognized by this Turing machine? So, all these questions are questions

specific to the language recognized by the Turing machine.

And so, we saw two questions in the previous lecture and we saw that both of them are
undecidable, Ep,; and REGULAR ;. What Rice's theorem says is that all these questions that
I have listed here, all of them are undecidable. So, this is actually not covered in the textbook
per se, but it appears as a problem, and I think the solution is then the book itself. But, it is
not given in as much detail as any regular content of the text, because it just gives a solution

not much of explanation, So, the and the Rice’s theorem states that all these are undecidable.

So, given a Turing machine, if you want to ask, does this, does the language recognized by

this Turing machine does it satisfy a certain property? The answer is going to be almost



always this is undecidable. So, given a Turing machine, it is undecidable to determine
whether the language recognized by this Turing machine satisfies a property. And I say
almost always and not always because there are some minor cases where there is an
exception, so, these are going to be very easy to figure out. So, let me just now formally go to
the statement of the theorem. So, hopefully this gives you an idea of the informal
understanding of what the theorem states. So, given a Turing machine we are asking, does the
language recognized by this Turing machine satisfy a certain property, and to determine this,

answer to this is undecidable.
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So, what is it what do I mean by a property? A property is nothing but a subset of Turing
recognizable languages. So, for instance, being regular is a property. So, not all languages
like only some languages are regular, so that is a property, being finite is a property. A
language is finite if it has finitely many elements. And we say that a language L has property
P, so property P is a subset of languages if L belongs to that property. We also say that the
Turing machine itself has that property. So, we say that M the Turing Machine M also has
that property. So, instead of saying the language is recognized by M has that property,

sometimes we may say that M has that property.

The language recognized by M has this property, so, give some examples. So, one | already
said the set of regular languages is one property, and we saw in the previous lectures that to
ask whether the Turing machine satisfying this property is undecidable. Another property is
set of all languages whose members are only odd length strings, so set of all languages whose
members are only odd length strings. So, this is the same as this question, so, this question is
asking the first question that is listed here. It is asking whether the given Turing machine
satisfies property P2, P2 means P2 is a set of all languages that contain only odd length

strings.

The question here is, does the Turing machine, does the language recognized by the Turing
machine contain only strings of odd length strings. P3 is set of all languages that contain at
least one string that is a palindrome. And p3 is the same question asked here. Does a given
Turing Machine accept at least one palindrome? So maybe I will just note it down here. So,
this is asking, does a given Turing machine satisfy P2? This is asking whether the given

Turing machine satisfies P3, and P4 is a set of all languages that contain 1011. So, this



question is asking whether the Turing Machine satisfies P4, so, that is what we are asking.
So, all these questions whether the Turing machine satisfies this property, or whether the

language recognized by the Turing machines satisfies this property, are all undecidable.

That is Rice's theorem. Now, what is P5? PS5 is a set containing the empty language. So, PS5 is
only one language is there in PS5, it is the empty language, so it is the same. So, here we are
asking we will use a different colour just to stand out. Does the given Turing machine
recognize the empty language? So then, if it recognizes the empty language, it satisfies P35,
because P5 contains only the empty language. So, notice that here there is an empty set
contained in a set. So, the set containing only the empty set, where this empty set denotes the
empty language. So, this is the set of which languages satisfy this property, the only empty,
only the empty language satisfies this property.

P6 is the empty set. So, notice the distinction between this and this P35 is a set containing the
empty language. P6 is the empty set, meaning it is the property itself is empty, meaning no
language satisfies this property. So, no language is contained in P6 that is P6, so however,

this is not going to be undecidable.

This is not undecidable. When I say this, I mean, given a Turing machine it is not
undecidable whether to check whether the language recognized satisfies P6. Because we
know that no language satisfies P6. So, any Turing machine we can say does not satisfy P6,

because whatever be the language it recognizes, it is not going to satisfy P6.

So, given a Turing machine you just check that it is a Turing machine, and you can say it
does not satisfy P6, so it is not undecidable. Anyway, so, once again I want to highlight the
difference between this and this. So, PS5 is the property that contains only one language which
is the empty language. P6 is the property is the empty property itself, meaning no language
satisfies this property.
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So, we say that a property is non-trivial. If there is at least one language that satisfies that
property, meaning that property is not empty. And to the property is not all the Turing
machine , all the Turing recognizable languages, meaning so, two extremes. One is a (prop),

if the property is empty, so P6 was the empty property.

So, that is the kind of trivial case, no language satisfies this, so we can say no Turing machine
also satisfies this. It is a trivial thing, so we do not even need to spend effort to check. Second
is the set of all Turing recognizable languages. So, given any Turing machine, it will
recognize the language that it recognizes, they will be part of the set of all Turing

recognizable languages, so that is also trivial.



So, between these two extremes, these two extremes, what is the empty property where no
language satisfies this? And two is the set of all Turing recognizable languages satisfying
this. Between these two extremes, any other property that so the two things, one is that it

must contain at least one language, so it is not empty.

Two is that it should not contain all the Turing recognizable languages. So, there should be at
least one in the language and one out of the language, one Turing recognizable language that
satisfies this property and one Turing recognizable language that does not satisfy this

property. If these two things are there, then it is not, then it is said to be non-trivial.

So, I do not want the property to be all the Turing recognizable languages, or I do not want
the property to be nothing also. So, otherwise, there is no, there is nothing interesting there.
So, we want not everything, not a thing. We want it to contain some language and it to not
contain some language also. So, it could be just one language that it is not containing, or one
language is containing, that is. So, all this all the properties that we listed here, except P6 are
non-trivial. So, P6 is a trivial property because P6 is equal to empty. So P4, for instance, P4 is

a set of all languages that contain 1011.

So, I can make a set of languages that are Turing recognizable, that contain 1011, you can
easily make something. You can also make Turing recognizable languages that do not contain
1011. So, you can have some other language, it is such a set of all palindromes, it does not

contain 1011, but it is Turing recognizable.

And set of all numbers, set of all strings that contain an odd number of 1s that contains 1011.
So, that is a Turing recognizable language that satisfies P4. So, P4 is non-trivial. There is a
Turing recognizable language that contains 1011, and there is a Turing recognizable language

that does not contain 1011.

Another one is P5, what is P5? P5 is a set containing only the empty language. So, empty
language is there in P5, and any other language if you take it is not there in P5. So, the set of
all palindromes is not there in P5, so set of all, because P5 only contains empty language. Or,
set of the language is containing two strings ‘0’ “1°, just two strings that is also not there in

PS.

So, PS5 is also non-trivial. So, all the properties listed here are not trivial except P6. So, this is
not a non-trivial property, rather, it is a trivial property, so, trivial properties are easy to check.

Given a Turing machine, if it is an empty language, it is you can say it is certain, empty



property you can say, the language does not satisfy this. All Rice's theorem says is that given
a non-trivial property, it could be any one of them, or it could be there are many more that

you can think of P1 to P5, they are all non-trivial properties.
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Now, consider the question PTM. So, what is PTM? Given a Turing machine M, does M
satisfy the property or does the language recognized by M satisfy the property is that in P?
Then, PTM is undecidable. Given a Turing machine, it is undecidable to check whether the
Turing machine satisfies this property, or the language recognized by the Turing machine

satisfies this property.

For any non-trivial property that is Rice's theorem. So, automatically, in the last class
whatever we did like Epy, is undecidable, REGULAR 1y is undecidable. Both of them now
immediately follow as consequences of Rice's theorem, because being empty is a property

and being regular is another property, they are both non-trivial properties.

So, immediately by application of Rice's theorem, we know that E;, is undecidable and
REGULAR 1y is undecidable. And now by whatever I have said, all of this, all of these
questions that are asked here, does the language contain only strings of odd length? Does the
language contain at least one palindrome? Does the language recognized by the Turing
machine contain 1011? All of these are undecidable questions. So, Rice's theorem says that it
is undecidable to check whether a given Turing Machine satisfies a non-trivial property. So,
that is the significance and that is the kind of explanation of what the statement of Rice's

theorem is.

So, it is as you can think of it is very very powerful, because not only did we prove that two
already proven undecidable languages are undecidable. Now, I am saying a very huge set of
languages, anything of this type, any question that you can think of. Now, given a Turing

machine is the language recognized by this Turing machine is it context free? Given a Turing



machine, does it contain any string that ends in 000? Does it recognize any string that does it
accept anything that ends in 000? Given a Turing machine does it recognize two strings x and

y, such that x is the complement of y?

So, I can make any number of questions and all of these are undecidable, because they are all
non-trivial properties. So, given that now, let us move to the proof of Rice's theorem. So, the
statement I have explained so far. The proof is also not that complicated, it is brief, it is

interesting.
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It is by reduction from Ary so, Apy we have already seen. Given <M,w>, we want to know
whether M accepts w. So, we will show that Ay, reduces to Py, Pry is the property TM. So,
and this by results earlier shown implies that Py is undecidable because Ay, is undecidable.
So, by the statement of the theorem, P is a non-trivial property, which means it is not the
empty property and it is not the property of all the languages, all the Turing recognizable
languages. So, we can let us first assume that the empty language is not in P. So, maybe I will
just write here, empty language is not in P, so, it is so, this is a without loss of generality

assumption.

So, suppose empty language was in the property. So, now what we are going to do is we can
take the complement of this property. So, when I say a complement, I am talking about a P
complement. So, when I say complement what I mean is, you take the set of all Turing

recognizable languages minus this(P).



So, suppose this is P, suppose this set of all Turing recognizable languages. So, now, if an
empty set is here, sorry empty language is here, then we can consider P complement.
Meaning now, so now asking whether a Turing machine has a property P and asking whether
it does not, asking whether it has the property P complement is the same. Because, if it has
the property P, it is not have the property P complement, if it has the property P complement,

it does not have the property P. So, to decide P is the same as deciding P complement.
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So, Pry, so what I am saying is that we can consider P complement instead of P. So, if P does
not contain the empty language, we can consider complement, and P complement certainly
contains the empty language and then proceed. And then deciding P complement is the same

as deciding P. So, it cannot be that Py, is decidable and P complement TM is undecidable,



because they are like you just flip yes and no, the answer is the same. If you flip yes or no,
the answer for Ppy becomes the answer for P complement. So, if Py is undecidable, it

follows that P, is also undecidable.

So, it is enough to show that P complement TM is undecidable. So, now, because of this
thing, we can without loss of generality, so, again WLOG stands for without loss of
generality. Without loss of generality we can assume that empty language is not in the
property. So, basically what we are doing is we know that P is not the set of all Turing
recognizable languages, we want basically we want something outside the language, so that
we are going to be the empty language. We also want something in the language, so that we

are going to pick to be some language called LO.

So, LO is a language that is going to be in P, so, L0 is going to be language that is in P, and
empty set, empty language is a language that is not in P. So, now this these two languages the
empty language and the LO is going to be important in our proof. So, we can assume that

there is some language in the property, because it is not the empty property.

Because empty properties are trivial, so, let that be L0, L0 is in P. And since it is L0, it is a
Turing recognizable language, let MO be the machine Turing machine that recognizes LO. So,
we have the empty language not in P and we have the language L0 in P. And LO is recognized
by some Turing machine called M0. So now, we will make the reduction, the reduction is

from Ay to Ppy, from Aqy, to Pry.
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So, given an Ay instance, meaning given M comma w, we will construct a P, instance. So,
the Py instance that we are going to be constructing is called M', this is M'. So, given an Ay
instance, we are going to construct a Pry instance. So, let us see how to build the Py, instance
from the Ay instance. So, the reduction is very brief, not that much, it is very brief. It is what
is written in the blue box here. So, what does M' do? So, whenever it is given an input x, it

runs or it simulates M on w. So, where M' basically M' has the Ay instance encoded in it.

Aqy instance M and w encoded in it, sorry, M and w encoded in it. So, it runs M on w. So, x
is the input to M', M' runs M on w, so, not on X but on w. Now, M may accept, reject or loop
on w. If M accepts w, then M' is starts simulating MO on the input given to it, where MO is

this MO, it is a Turing machine that recognizes LO0. So, if M accepts w, then M' runs MO on x.



So, now is when the input of M' is starting to get operated on, it runs MO on x. If M' rejects w,
now M' sorry if M rejects w, M' rejects x. And if M loops on w, then it just then it does not

have to do anything, it just continues looping.

So, given the input M' simulates M and w, if M accepts, M' further goes ahead and simulates
MO on x. And once this happens when it simulates MO on x, it will do whatever MO on x, M0
does on x, it does. So, if MO accepts, it accepts M' accepts, so, maybe I will just note that
here. And basically, whatever and thus, and accept/reject as per M0. If MO accepts x, M, M'
accepts x, if MO rejects x, M, M' rejects x. Now, if M that is if M accepts w, if M rejects W,
then M' rejects x. So, let us see why this is a reduction, so, now it is just a bunch of rules, but

let us see why this is a valid reduction.

So, to understand this we need to understand what happens. It is not that difficult, we just
need to think about what happens when M accepts w and what happens when M does not
accept w. These are the yes no cases of M, M comma W being in ATM, and not being in

ATM. So, let us see in the first case what happens when M accepts w.

(Refer Slide Time: 26:27)

' mAMM 3 | (’9

It W m_t{'{\‘\ W, ‘»-w»hh Mu MR

NPTEL

it eds &, topd x L ‘
0l Accaft heged aap) ¥o

bi‘uwhﬁ%wﬁuhmmhhn

(M) €A = W o
= Wity W mx.
= L)« LMY Lo
= Lm)e?
= W) et




"W\‘L- YIM W Wy M‘\U\MW NI AR Ty,

'J? P{n o waeolably | 4 [l et ]‘\'w'ka
a\l}s wledabe Q!J L\)LO’.-.’@ Odpant. d"? @
C‘wﬂ ¥ L) ‘M\t‘w«lg ; 3'Ll:.‘:\? l.m.i\im. Lo

i T B Tt b, 3™ Mok

R

Mool . sdiy b tookid 4 sl

NPTEL

D CHAT o M0

’ J

inghance .
A I
Rubdon

W G vigd x
Cunlody, M o
1 Wty o, Sumadidy Mo o

NPTEL

Ruia Tt 1t e s il hopety
N Doy i o,
4 B L0 Mo ol LMY e 2]

flan Tiw o walidally Tk ol poidde
leida i T W s oty P,

E\’M : ﬂ(M,qﬁ \ 4 wﬂ \.‘/11

Do il ihey lmém?ﬂ« ;
Evte ey & P

That is the case M comma w is a yes instance of Apy. M comma w is an Ary, this is same as
M accepting w. In that case when M accepts w, what M' does is to simulate MO on x. It
simulates MO on x, and does whatever M0 does. So, what is the language now recognized by
M'? So, the set of strings recognized by a set of strings accepted by M' is the same as the set
of strings accepted by MO0, because M this condition is satisfied. So, M' is now simply kind of
mirroring whatever MO does, it does whatever M0 does. So, the language of M' is the same as

the language of M0, so that is what I have written here.

Language of M' is the same as the language of M0. But, what is the language of M0? M0 was
the Turing machine that was chosen such that it recognizes L0, which is a language that
satisfies the property. So, the language recognized by M' is LO. And we know that LO is a
language that satisfies the property, meaning that the language that is recognized by M'



satisfies the property, which means M' satisfies the property, which means M' is in Ppy. So,

the answer to this question does M' satisfy the property P? The answer is yes.

Because the language it recognizes is M, M, sorry LO, and LO is a language that has a
property. So, if M comma w is an ATM, if M accepts w, then M' has the property. So, the
YES instance of ATM maps to the YES instance of PTM. Now, we also want to see that NO
instance of ATM maps to NO instance of PTM. So, in the case of YES, what happens is if M
accepts w, M' becomes a mirror of M0, everything is the same. But, what happens if it is a

NO instance?

(Refer Slide Time: 28:46)
=> LM) ey

= Wyehy ﬁk)

NPTEL

M) Ehin = W dsund augt o
= L") ¢
= LW &P

= (M) § F'M
go (ﬂ,uﬁekw‘ <=§ (“\'S e an‘
T ol ).




W G g -
Sy, M, @
I Wy o, Somulady M NPTEL
it V\W t&,w‘utx. l
wd oo e wiper Vo

(s v by i owldely o valluion

(M) ehp = W o
= W iiwdidy Mo mx.
= L)« LIM): Lo
= L) e?
= MYyl

EH‘QQP ()
ATRRTOR, WP R\ TR A (L% %'
\l' ¢CP,‘K nden 35 MM A\ NPTEL
Wk A o ted).

lopars
b [ lﬁ!\)-&”‘w.
ooty

S\'W-E iim » Yy WQQHM\Q ﬂ) ?w\ {"MLM/
b Py o wakeadeble, & follan thed Dry
b ool S WLOG o ane. B P

QWL?‘AMM i ELDG\YW}\M Lo
W Ty gt gy, 3TM Mg ik
M L(“a\ Lo,




t&.ﬂ' ?n@nlwhm!w ki

Aiw - 1("1,-&7 \ @

m— 3
e it m
= %)

TR TW A Q(gm&d IR
10 geP, w owde P aded A9 tnthe
ok A, Y ).

P W\‘ﬁf‘w'wf%{, ?
lowapass
i i
gy

&w; fm W e owloned b P ()Y,
1 T e s Ut

s S ®

(W L% Nm.t Gm ) ; )Qc,vl) NPTEL

T g ot L ot 0 Bk G . REGULARTy
e wdudelle

2w T ) g ™, nad LEW:- 0]
REkOMAL gy = FCMY I Wi kTH ) nd
LK) s el }
e btk s oas, ot vl o fuike I e
lovgarg ) e gan TH ki o i
‘Md‘" Wtumksﬂmm&\wm_

g N S X
T odun ode sd A ol bl 7




[,L = Yoyt f,.w W gt ey OUY7

®

NPTEL

Ruais Basuun sauys o Aot s uliodabl
(Fotig s Piobn 508

DAL K gt P n b M Tuing
uopuirght. losuasgs.

W %MKWLMP%?
U LER. U all e sy oty T

ok sy L bon vty

Ey_ug_lu AR gdj\,uﬂwuflw\ QDMW\

® 8 s 4l Qg ot toddam sy
A Lo Fiinag

EM‘ ARE Rdf\unw Q“W‘ (~

) ?L' {1 ¢ /Lpﬂ 0‘“‘@"’3" thet tdam "“"t NPQL
oA Gith Bhinas.

() S0 ol s Yk e o
NlMM uaPM«A»

@Y By e 0 bl bduags Bk o 1011
O F5 § T e T ik covbining 1T confy
by
/'l ity patoly
(0 luoguage. & i iy pariy)
R Ml sk wdandobly
N o towad pepot
DAZ. Dt P i ok e Mt 4

Suppose, M does not accept w, so, it could be reject, it could be a loop. So in that case, if M
rejects w, M' simply rejects the input, meaning if M rejects w, whatever be the input it does
not matter, M' is going to reject it. And if M loops on w, then M' does not even get to do

anything, so even then M' does not accept anything.

So, in either case, in either case, the input is not going to be accepted by the machine M'. So,
which means the language recognized by M' is the empty language. So, whatever be the input
X, it is not going to accept that, because once M rejects w, M' just rejects x, it does not depend

on what x was.

So, we are not doing anything if M loops on W also, because if M loops, it just going to run
M on w forever. It is never going to get to do anything on x. So, in either case, M' is not

going to accept the string x. So, the language recognized by M' is an empty language, and by



our assumption an empty language does not have this property. And it was an assumption
without loss of generality. So, the language recognized by M' is not in the property, so M' is
not in Ppy,. So, this we have shown that NO instance of Ay if M does not accept W, results in

NO instance of Py,

So, both YES instance and NO instance have been mapped, which means that M, w is an
Ay, if and only if M' is in Ppy. So, this means that the correspondence of the reduction is has
been verified, and indeed this construction is a very fairly simple construction. Suppose, once
we are given M and MO, the rest is and w, we can just build this Turing machine. If I are
given the descriptions of the Turing machines M and MO and the string w, it is easy to build
this. So, the existence of the Turing Machine M' is not that difficult to see. And we have

completed the correspondence and that completes the proof.

So, we have a reduction from A, to Py, and that shows that since A, is undecidable, Py,
is also undecidable. So, considering how much we can do with this theorem. So, we are
saying that whatever may be the property, it is impossible or it is undecidable, to check
whether the Turing machine has a property. And it can you can apply any sort of non-trivial

property to it.

So, considering how useful or how broadly applicable this theorem is, the proof is actually
not that hard. So, when you consider what we are getting out of this proof it is not that much
complex, of course, it is like three four lines and there are simulating two times of simulating

going M on w and then MO and x.

But, still given how many kinds of results we can derive from it or infer from it, it is actually
not that difficult, or not considering that it is not that much of an effort. So, that completes the
lecture on Rice's theorem. So, what is Rice's theorem? Given a Turing machine, it is
undecidable to determine whether the language recognized by the Turing Machine satisfies a
certain non-trivial property. So, given a Turing machine it is undecidable to tell whether the
language recognized by this Turing machine is the empty language, or the language
recognized by this is a finite language, or the language recognized by this contains a certain

string.

Or, it contains only certain types of strings, let us say only palindromes or at least one
palindrome. All these questions are undecidable. And it is important to have non-triviality.
Because if the property is a trivial property like that no language satisfies, then, so for

instance, the empty property, no language is going to satisfy this. So, given any Turing



machine, you can say it does not satisfy the empty property, because it recognizes some
language. And thus, whatever be the language, it is not part of this property, because we

know nothing is in this property.

So, it is trivial, it is not undecidable to check whether the Turing machine satisfies a trivial
property. There are two trivial properties, one is the empty property and the set of all Turing
recognizable languages. So, empty property is not satisfied by any Turing machine, whereas
the set of all Turing recognizable languages is satisfied by all the Turing machines. So, one is

always no, one is always yes.

Apart from this any other property in between that excludes at least one language, and
includes at least one language, all of this is undecidable. So, that is a proof of Rice's theorem,
and the proof was by reduction from ATM. So, it involves this and we explained that over
detail, and that completes lecture, lecture 41. And in the next lecture, we will see some other

techniques for showing undecidability, and that is all for lecture 41. Thank you.



