Theory of Computation
Professor Subrahmanyam Kalyanasundaram
Department of Computer Science and Engineering
Indian Institute of Technology, Hyderabad
Examples of Proving Undecidability Using Reductions
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Hello and welcome to lecture 40 of the cost Theory of Computation. In the previous lecture,
we saw what reductions are, we define mapping reducibility. And then we sought to, we
made two statements. One is that if A is reducible A reduces to B and if B is decidable that A
is an, A is decidable as well. So, you could use the reduction from A to B and then the
decider for B, and combine them to get a decider for A. The other result that followed was
that if A reduces to B and A is undecidable, then B is also undecidable. So, that is what I
have written over here. If A reduces to B and A is undecidable, then B is also undecidable.

And this is going to be very useful for us.

So, far the main undecidable language that we have seen that we have proved to be
undecidable was A TM. We prove from scratch using all the theory of countable and
uncountable sets and all that. So, A TM was the set of all Turing machines M and strings w,
where M accepts w. In other words, we are asking given a Turing Machine M and a string w,
we want to decide if M accepts w. So, now we are going to use the undecidability of A TM
and the fact that we can use the reductions, and using this theorem. We will combine all this

to show the undecidability of other languages as well.

So, the first language that we will show undecidability is HALT TM. So, what is
HALT TM? Given a Turing Machine M and a string w, we are asking whether this Turing



machine M halts on w, meaning let M run on W. Does M halt on w or does M loop on W?
This is the question. And sometimes this is referred to as a real halting problem, real halting
problem in the sense that A TM also sometimes referred to as the halting problem. But, here
is a problem that we are actually checking whether it is halting or not. So, there is a reason
why A TM is also referred to as a halting problem. Because of the difficulty, so, you can

always run M on the string w.

And this is we can just report the output, but the challenge comes when M does not halt on w
at all. So, there is no way to tell whether it is going to halt or not. So, the challenge is in
finding whether M halts on w even in A TM. So, that is why we sometimes refer to A TM
also as the halting problem, because the real difficulty there also lies in the, lies in the issue of

determining whether M halts on w.
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Anyway, the point the statement that [ want to say here is that HALT TM is undecidable. So,
we will see two approaches or we will see two ways to show this. They are essentially the
same thing, but then we will present it in two different ways. So, there is a small thing that we
are doing slightly differently from the textbook, Sipser textbook. The Sipser textbook
illustrates the notion of reductions using a lot of examples and a lot of things, and towards the
end of the chapter Sipser defines reductions. However, we have already defined reductions in

the previous lecture, and now we are going to go through the examples.

Anyway first, so here we will show that HALT TM is undecidable. So, first will assume it is
decidable and show that this implies that an A TM is decidable. And since this contradicts



the known fact that A_TM is undecidable, this should imply that HALT TM is undecidable.
This is the first approach, so, let us see what the approach is. So, suppose there is a decider
for HALTy, let us call it R. So, let R be the Turing machine that decides HALT TM, so, this
is decider for HALT TM, let us call it R. So, now let us see how we can use R to build a

decider for A TM.

So, suppose we are given an instance of A TM M comma w, we have to determine whether
M accepts w or not. We want a decision, decider for this. So, what we do is first we run you,
we feed M and w to R. So, R is a decider for HALT TM, so, this will tell R is a decider for
HALTy. So, R should tell whether M comma w is a YES instance or a NO instance of
HALT TM. In other words, R should tell whether M halts on w, yes or no? Suppose, R
rejects, then we reject. And so, what does it mean? If R rejects it, it means that it is a no
instance of HALT . In other words, M does not halt on w, so, M does not halt on w is, then
we reject. So, maybe I will just note it here, M does not halt on the w that is when we reject

here.

Suppose, R accepts the pair M comma w. What does it mean? This means that it is a YES
instance of HALT TM, meaning M halts on w. But, then halting could mean two possibilities
further, M could accept or M could reject. So, now it is easy because now we are assured that

M halts on W, so, then we just run M on w, we just simulate M on w.

Now, we just wait for the response because we know that it halts. So, we just complete the
computation and if it accepts, we say yes and we accept. If it rejects, we say reject, so that is
the decider for the A TM. So, given M comma w, basically we want to run M on w, this is

what we discussed earlier in the last week. We can run M on w and output whatever we get.

But, the issue that we ran into was that what if M loops on W? That was the issue. So, now
that issue here is taken care of by R, so, R is a decider for HALT TM. So, we ask R whether
M halts on W, and if R rejects, we know that M does not halt on W. And then if M does not

halt, it does not accept, so, then we can reject the instance.

So, we know that M does not accept w and then we can reject, even in A_TM, we can reject.
If it, if R accepts M comma w, which means M halts on w, so now we know M halts. So, now
we simply run M on w, so we accept if M accepts and reject if M rejects. So, I have just

written some table in the same thing that I have been explaining.

(Refer Slide Time: 07:30)
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If M accepts w, then R accepts M, w, R accepts M, w. And then we can say then, then we run,
sorry, then we run M on w. If M rejects, if M rejects w, even then it is halting on w. So, in that
case also the decider for HALT TM R should accept M comma w. Again, we run R sorry,
again we run M on w in that case as well. The only issue is when M loops on w, so then we
want to, and then we want to reject the pair M comma w. So, now this is made easy by the

decider for HALT TM that is R, so we run R on M, w first, so R rejects. So, then we reject,

so then in this case also we reject.

So, these are the three cases: M accepts, rejects and loops. In each of these three cases, we are
able to determine what, determine what happens and then make a decision accordingly. This
decider, the decider that we just built over here, this never loops. Because if M loops on w,

we never run M on w, in that case, we know because of R. So, now the only main component



of this A_TM decider is the HALT TM decider. And by assumption, the HALT TM decider
exists. So, because we know that A TM is undecidable, in other words, A_TM decider does
not exist, this should mean that HALT TM decider, it should also not exist. Hence,
HALT TM is undecidable.

So, we cannot have a HALT TM decider, hence it is undecidable, so that is the proof. So,
what we did here is to just build a decider for A TM from HALT TM. So, this is not really
like a reduction in the way we defined it in the previous lecture. A reduction was a mapping
and we from one instance we constructed, from A instance we considered, B instance
et-cetera. So, here we are not doing that. We are just using HALT TM to build a decider for
Ay So, now we will see the same... same proof, slightly differently, slightly different
perspective. What we will do is we will reduce HALT, sorry we will reduce A TM to
HALT TM.

So, we said that if A reduces to B and A is undecidable, then B is undecidable. So, what we
will do is we will reduce A TM to HALT TM. Since, we know that A TM is undecidable,
this implies HALT TM is undecidable. So, the ideas the idea of this reduction I have already
said it in this lecture as well as one of the previous lectures, so, we need to reduce A TM to

HALT TM. So, let us see what are the possiblities.

(Refer Slide Time: 11:02)
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So, A TM let us say the instance is M, w. So, A_TM, the instance is M, w. And now what are
the three possibilities? Either M accepts w or M rejects w, or M loops on w. So, M accepts w

is the first instance that is written here M accepts w, it is a YES instance for A TM, because



M accepts w. It is also a YES instance for HALT TM, if M, w was HALT TM, itis an YES
instance. If M rejects w, it is a NO instance for A_TM, but the YES instance for HALT TM.
Because HALT is just a HALT TM is just checking whether it halts or not, so rejection is
also HALT. So, it is a YES instance for HALT TM, but NO instance for A TM.

If M loops on w, it never halts, never accepts, never rejects, it halts, sorry it loops. If it loops
on w, then it is a NO instance for A_TM, because M does not accept. It is also a NO instance
for HALT TM, because it does not halt. So, these are the three possibilities. So, M, w as an
instance, if you feed it to A TM and HALT TM, the outputs agree in the first case and the
third case. The issue is with the second case. So, if the same instance worked when we need
not do anything there, just the same M comma w could have been a reduction. But, then we
need to do something about the second case, this needs to be handled, because it is NO

instance for A_TM, but it is a YES instance for HALT TM.

If we could do something, we could do some modification to the instance. So, whenever M
rejects w, we do not halt, it becomes a NO instance for HALT TM also, then it is then it will
be fine. So, the question is can we modify the A TM instance M, w? So, that whenever M
rejects w, it does not halt. Or, we modify it into something, so that the modified instance
never halts. So, when M rejects w, we want to construct some M' W', such that whenever M
rejects w, M' loops on W'. So, in fact, what we will do is we will not construct a separate W',

we will have the same W. But, we will construct it different M.
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So, we will construct M'. So, what M' will do is it will follow M mostly. But, instead
whenever M has to reject, M' goes into a loop. So, what we can this is not that difficult to
accomplish, I will not write in detail. But so, so q rejects in m, we replace by some looping
state, Loop q loop in M'. So, q loop can be a loop state, meaning once you reach q loop, you
just get stuck there. The transitions just keeps you in q loop and never go out. So, if we make
this modification to M, whenever M was supposed to reject a string, M' will now just start

looping.

So, that is what we want and that is what I have written here. M' this is the main idea of M'.
Whenever M rejects an input, M', we want to enter into an infinite loop. So, basically, we
whenever M rejects, that was the issue here, this second line here. M whenever M rejects w, it

is a NO instance for A TM. The HALT TM instance we also wanted to know instance for



HALT TM. So, we make it not halt, we make it loop. So, the reduction machine will just
output M' and w, so we know how to construct M'. It is just a simple modification. When you

replace q reject in M with q loop in M', so where it just loops, so that is a reduction process.

So, the construction of M', so easy, so this is a very small modification we can easily do it.
And it is not that difficult to see now. So, now, the NO instance of A TM corresponds to a
NO instance of HALT TM also, because the M comma w is a NO instance of A TM, M
rejects w. The map instances M' w. So, M' loops on w whenever M rejects w. Whenever M
accepts w, M' also accepts w, whenever M loops on w also, M' loops on w. So, that there is no
change in the first and second, the first and last situations, the difference only in the, is only

in the second case when M rejects an output, and that is now hand built.

So, this means that whenever M comma w YES instance of A TM, if and only if M' comma
w is a YES instance of HALT TM. So, this shows that just to write, so, maybe use a different
color, red color, this indicates sorry, this indicates that A TM reduces to HALT TM. This
means [ do not think I wrote it anyway, this means that HALT TM is undecidable. That is
what we said at the beginning. If A reduces to B, A is undecidable, then B is undecidable.

So, that is how we show that HALT TM is undecidable. So, first we saw the sort of direct
approach, where we use the A TM, sorry, the HALT TM decider to construct the A TM
decider. Now, here we are actually presenting a reduction from A_TM to HALT TM, where
we modify the A TM instance to construct a HALT TM instance, so that it is a proper
reduction. YES, instance map to YES instance, and NO instance maps to NO instance. Now,

some more languages using Turing machines, which we will show to be undecidable.
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So, the language is first language is E TM. E TM given a TM, we are asking whether this

\.‘

accepts this recognizes the empty language. Given a TM M, we are asking whether this
recognizes the empty language? So, this is also undecidable, so let us see why. So, we will
reduce A TM to E TM here. So, given an A TM instance, which is M, w, we will construct
an E TM instance <M,w>, sorry <M, >, so this A TM instance. A TM instance will

construct E_ TM instance.

So, <M,w> and<M, >, means it is a Turing machine alone, there is no string because E TM
instance has only one Turing machine. But, it we will use will use w will be important in the
construction of M, <M, >. So, what is <M, > do? So, whenever M accepts w, we want <M, >
to be. So, in fact we will see what the reduction is and then I will talk about this, so, <M,> is

this.
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Wherever there is an input x to <M,>, so x is the input to <M,,>, x is the input to <M,>. If x,
so now M, w knows w, so, w is like a fixed string that it is aware of. If x is the same, if X is
not w, it rejects it. So, it first checks whether x is equal to w, if x is not equal to w, it rejects.
So, that is the first step that M does, sorry <M, > does. So, it rejects for any input that is not

W, so, the only string that it may accept is w.

So, let us see what it does when the input is w. If the input is w, it runs M on w, and then does
whatever M does. So, M may not be a decider, M', M, w may not be also, may also not be a
decider. So, if the input to<M,> is not w, it rejects. If the input to <M, > is w, we run M on
the input w, and we do whatever M does. If M accepts we accept, we meaning <M,>. If M

accepts, <M, > accepts. If M rejects, <M, > rejects, if it loops, <M, > also loops. So, of



course, these loops mean it is just, it just loops there is no reporting. So, let us see what is

happening here.

Suppose, M accepts so there are many inputs, there are many possible inputs that many
strings are possible for as inputs for <M,>. So, it rejects all of these inputs, the only string
that it even considers is a string w. If it is if the input is w, then it checks whether M accepts

w, or does it run M on w? Run M on w and thus do whatever M does.

So, it rejects everything that is not w, and then runs M on w if the input is w. So, if M accepts
w, then <M, > also accepts w. If M accepts w, then <M, > accepts w. If M rejects w, then
<M, > rejects everything that is not w, that is always the case. If <M, > sorry, if M rejects w,

then <M, > also rejects w, which means <M, > does not accept anything.

If M loops on w, even then <M,> does not accept w, even then <M, > does not accept any
string, any string in the alphabet over the alphabet. Because all the strings that are not w are
immediately rejected, the only string then it has any chance of accepting is w. So, if M rejects
or loops on w, then <M,> also does not accept w. Which means that if M does not accept w,
<M,> does not accept any string, so, the only possibility that <M, > accept some string is if
M accepts w. So, that is what I have written here. M accepts w means the language
recognized by L <M, > is not empty. So, the language recognized by <M,> is just, there are

only two possibilities, either it is empty or it is a single string w.

If M accepts w, L( M,) is the single string w. If M does not accept w, L( Mw) is empty. M
accepts w if and only if L ( Mw) is not empty. In other words, we are saying that M accepts w
means Mw is in A TM, and L Mw not empty means that <M, > is in the complement of
A _TM. It is not an empty language. So, what we have here is a reduction from A TM to the
complement of E TM. So, E TM asks whether the given Turing machine recognizes the
empty language. This E TM complement means it is the given Turing machine that
recognizes something which is non-empty. So, A TM reduces to E TM complement, this

means that E TM complement is undecidable.

This means that E TM complement is undecidable by our theorem that I stated at the
beginning of the lecture, so, this means that E TM complement is undecidable. And if some
language L complement is undecidable, then L is also undecidable, because if I had a decider
for L, I could just run the decider for L, and flip the accept-reject states to get a decider for L
complement. So, this implies that E TM is also undecidable. So, the trick here was to create a

Turing machine that only accepts w, so, if and only possibly accepts w. So, whenever M



rejects or loops on w, <M, > does not accept anything and the language is empty. Whenever

M accepts w, the language is not empty, so, that is the proof here.
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There is one other language EQ ry. So, EQ 1y 1s given to Turing machines we are asking
whether they recognize the same language, just like EQ, EQ-DFA or EQ-CFG. This is also
undecidable. There is a very straightforward reduction from E_TM to EQ 1. So basically, we
constructed a Turing machine that rejects every string, we constructed a Turing machine that

rejects every string.

So, to determine whether a given Turing machine recognizes the empty language, we can ask
whether this Turing machine is equivalent to the constructed Turing machine, which also
recognizes the empty language. So, I do not want to get into the details. It is very
straightforward and it’s all the similar lines to other proofs that we have seen, so I suggest to

read the proof from the book.
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The next language is REGULAR 1. So, what is REGULAR 1,,? REGULAR 1, is given a
Turing machine. We are asking whether the language recognized by this Turing machine is a
regular language. Given a Turing machine, we are asking if the language recognized by this
Turing machine is a regular language, so this is also undecidable. Again, we show it by
reducing it from A TM, so we reduce A TM to REGULAR 1. And this implies that
REGULAR 1y, is undecidable, so let us see how to construct the reduction. So, given an

A _TM instance, will show how to construct a REGULAR 1.

So, notice the REGULAR 1, instance is just one description of a Turing machine. So, given
an instance, <M,w> which is an A_TM instance, will construct a Turing machine M'. So, this
will be the REGULAR 1, instance, M' will be the REGULAR +,, instance. Let us see what it
does. M' when it gets an input x, so x is the input of M'. What it does is it first checks whether
x has the form 0 power n, 1 power n, notice 0 power n, 1 power n where [ want the number of
Os and the number of 1s to be the same. So, both have the same repetition, both have both

should appear n times.

So, if the x if the input x has is of this form, we accept, nothing else needs to be checked. If it
is not of this form, so suppose it is some other string, let say 0110 some something like that,
or something 101 some other form. Then what we do is we run M on w, we run M on w, so,
where M and w are as in the A TM instance. So, M' actually depends on M and w, M' knows
what is M, what knows what is w. Then, we run M on w. Again, it is not x but w, so, we run
M on w. And if M accepts w, we accept x, if M accepts w, M' accepts x. Let me repeat what

M' does.

Given the input x, it checks whether the input is of the form 0 power n, 1 power n, if it is of
that form it accepts. If it is not of this form, it checks whether M accepts w by running M on
w. It accepts x only when M accepts w, so, it runs M on w, and it accepts x if M accepts w.
So, let us see both cases. Suppose M accepts w, suppose this always happens, suppose M
accepts w. Now, all the strings that are of 0 power n, 1 power n form are accepted. If x does
not have this form, we run M on w, and accept x is M accepts x, sorry, M accepts w. If M

accepts w, we accept X.

So, if M accepts w, we accept x, which means that all x is accepted. If x is of this form, the
0-power n and 1 power n we anyway accept, otherwise we accept over here. But, in short all
x's are accepted. In other words, the language recognized by the Turing machine M' is X*, it

accepts all the possible strings. If M does not accept w, if M does not accept, so, then here it



does not accept w, which means, here we do not accept x. Which means if x does not have the

requisite form, meaning if x is not of the form 0 power n, 1 power n, it is not accepted.

So, the only x that is going to be accepted are through this line. The only x that are going to
be accepted are going to be through this line, 0 power n, 1 power n. So, if M does not accept
w, the only x that is going to be accepted are 0 power n, 1 power n, which means the
language recognized by the Turing machine M' is just the set of all strings of the form 0
power n, 1 power n. I will just repeat this because it is kind of the key part here. If x is the
form 0 power n, 1 power n, you accept, if x is not of this form, we run M on w and accept x if
M accepts w. If M accepts w, this means that strings both of the form 0 power n 1 power n,

and not of the form are also accepted.

So, which means every string is accepted, so, the language recognized by M' is X*. If M does
not accept w, then strings not of the form 0 power n, 1 power n are not accepted. So, the only
strings accepted are 0 power n, 1 power n. So, but now, let us see what these languages are. If
M accepts w, then the language £* is a regular language, £*, you can easily make it almost
like a regular expression. If M does not accept w, then the language is one of our favourite

non regular languages 0 power n 1 power n.

So, which means, M accepts w means that M' the language recognized by M' is regular, M
does not accept w, means the language recognized by M' is not regular. So, the language
recognized by M' is regular if and only if M accepts w. So, in other words, M comma w is an
instance of A_TM, meaning if and only if L( M") is regular. And L( M') is regular, if and only
if M' is in regular REGULAR 1y, by the definition of REGULAR . So, M comma w is an
A TM if and only if M' is in REGULAR 1y, which means.

Now, we have a reduction from A_ TM to REGULAR +1,;, mapping reduction from A_TM to
REGULAR 1. And also, the construction of M' is something that is computable. So, M' we
just have to encode these simple things. If x has of this form, we should accept, if it does not
have this form, we know M and w, we just run M on w that is it. So, the construction of M' is
computable. And also, we have this correspondence M comma w is in A_TM, if and only if
M' is in REGULAR . So, key thing again is that M accepts w if and only if L( M') is
regular, that is the key thing.

So, M L, M accepts w which is this, if and only if L( M') is regular which is this. Hence,
REGULAR 1y is also undecidable. REGULAR 1y is a Turing machine asking whether the
language recognizes regular. So, I just want to quickly tell two things. So, REGULAR 1y, is



asking given a Turing machine is the language recognized by the Turing machine regular.
E TM is asking given a Turing machine is the language recognized by the Turing machine,

the empty language.

So, in both these cases, REGULAR 1y, as well as E_ TM, we were given a Turing machine,
and we were asked, is the language recognized by this Turing machine? Does the language by
the Turing machine have this property? In one case, the property was that is this regular, the
second sorry, and the second case this property was that is the language empty. So, both had
that structure and we have showed that it is undecidable. So, in fact, it turns out that we can

generalise this.
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So, the statement is called, this theorem is called Rice's theorem, so, the point is this. If so,
consider the language called PROPERTY 1. So, PROPERTY 1y is like being given a Turing
machine, we are asking whether the language recognized by the Turing machine is important,
the language recognized by the Turing machine, does it have some property? We are not
asking whether the Turing machine has a property, we are asking the language has some
property? Like is the language regular? Is the language context-free? Does the language have

at least one zero? Is the language all the strings in the language palindromes?

So, all these are questions of the language. So, we are asking, does the given Turing machines
for the given Turing machine have the language recognized by this Turing machine? Does it
satistfy some specific property? So, that is PROPERTY 1. Rice's theorem says that whatever

be the property or in, if the property is interesting or non-trivial, this question is undecidable.



So, we already saw that the REGULAR 1y is undecidable, we already saw that E TM is
undecidable. So, the REGULAR 1y is asking, does the given Turing machine recognize a
regular language? E TM is asking, does the given Turing machine recognize the empty

language?

So, whatever may be the property that we're looking for, the testing of whether this Turing
machine set recognizes a language with this property for any specific property, the answer is
undecidable. It is not decidable. So, that we will see in the next lecture, and that is it for me in
lecture number 40. We just use the statement that if A reduces to B and A is undecidable, to
show that B is undecidable, we first showed HALT TM is undecidable. Then, we showed
E TM is undecidable. Then, I briefly discussed EQ 1, and asked you to read the proof, and
finally, we saw REGULAR 1, is undecidable.

And in the next lecture, lecture number 41, we will see Rice's theorem, where we will see that
for a given Turing machine, testing whether this Turing machine, the language recognized by
this Turing machine has a certain property. This is also undecidable for any property. So, see

you in lecture 41. Thank you.



