
Theory of Computation
Professor Subrahmanyam Kalyanasundaram

Department of Computer Science and Engineering
Indian Institute of Technology, Hyderabad

Lecture 40
An Introduction to Mapping Reducibility

(Refer Slide Time: 0:21)

Hello and welcome to lecture 39 of the course Theory of Computation, this is also the

beginning of week 8. In week 7, we saw languages that are decidable and then we saw one

undecidable language which was the language ATM, which we also referred to as the halting

problem.

So, the undecidable language ATM was given a specific Turing Machine M and string W

does so, we have to determine whether this Turing Machine M accepts the string W. And this



was shown to be undecidable. And now, after a lot of hard work and with the theory of

countable and uncountable numbers uncountable sets, we were able to show that this

language is undecidable. Now, the question is now, how do we show are there other

undecidable languages? How do we show the undecidability of other languages?

So, do we have to do all this like from scratch like do we have to prove the undecidability of

other languages in a similar way to how we prove the undecidability of ATM. So, it turns out

that we do not have to do the hard work all over again, we do not have to do all of the hard

work, because we could use the notion of reductions. So, and use the fact that some known

language is undecidable for now, the one known undecidable language is ATM, but soon we

will figure out other undecidable languages as well.

So, for that the notion of reductions are going to be very useful. So, the reduction in very

simple terms means that you convert one problem into another. So, let us say you take a

problem A and you are able to convert that into a problem B. So, whenever you need to solve

problem A, so since you have converted into problem B you can insist just solve problem B.

So, this is a very very high-level idea of what reductions are.

So, just to give an idea, the figure here gives a pictorial depiction of this. So, here we have a

in the rectangle on the left side, and A as the small circle over here. So, instead of aΣ*

problem, I am calling it like, you can consider it as a set. So, for instance, maybe the question

is, does this given string have an odd number of ones? So, A will be the set of all strings that

have an odd number of ones and is the set of all strings. So, now, instead of asking doesΣ*

the given string has an odd number of ones we can equivalently asked the is the given string

in A.

Similarly, maybe B is the given string a palindrome, so B is set of all palindromes. So, now,

what I mean by a reduction or a conversion is that it is just a mapping. So, where if the one

string that is in A is mapped to one string in B, so an A string a is mapped to a string in B, a

string that is not in A is mapped to string not in B. So, that is what I mean by reduction. So, it

is very simple. So, a S instance in the left side is mapped to a S instance in the right side. And

a no instance in the left side is mapped to a no instance in the right side.

By S instance I mean something in A or B, by no instance, I mean something not in A or B.

So, we want to map strings in A to strings in B and strings not in A to strings not in B. So,

that is a meaning of a reduction. So, now what is the goal of this? So, the goal is that now



suppose you want to, you want to answer the question, a given string, let us say W you want

to answer whether this is in A, so we do not know if we do not have a way of testing whether

this is an A.

So, now we compute the mapping of w. Suppose the mapping of w was easily computable.

So, then we will map w, let us say for instance, that W was in A, so W was in A and the

mapping is computed so, you get some somewhere over here, write it a bit better𝑓(𝑤) 𝑓(𝑤)

somewhere over here. So, w was in A and f sorry, , the w and is in B.𝑓(𝑤) 𝑓(𝑤)

So, now, we know how to like given . So, just for the sake of understanding I am saying𝑓(𝑤)

that is in A and in a is in B, but we do not know this we do not know whether w is𝑓(𝑤) 𝑓(𝑤)

in A. So, we map and compute and then check whether is in B. So, if w is in A𝑓(𝑤) 𝑓(𝑤)

is indeed in B and then when we check when we ask where is in B we will know𝑓(𝑤) 𝑓(𝑤)

that it is in B and that will help us infer that f of that will help us infer that w was in A.

If w was not in A if w was outside suppose w was outside A, then would also suppose𝑓(𝑤)

w was here then would have been somewhere here. So, then when we check whether𝑓(𝑤)

is in B then we would get the answer no and that would help us infer that w is also not𝑓(𝑤)

in A.

So, now notice both of these are important we need yes instance to yes instance mapping that

is anything in A should map to anything in B and anything not in A should map to anything

not in B. Because if the second thing is also important because suppose w not in A, just for

the sake of argument, suppose w not in A got mapped to B, suppose such a mapping like the

one that I am drawing now, suppose that was there.

Now, let us say we check the map instance and we say we get that result B, but we do not we

cannot infer anything about where it came from because it could have been a w that is in A

and got mapped to B or it could have been a w that was not in A and got mapped to B. So, it

is important that this kind of mapping is not there every w that is not in A should get mapped

to something not in B. So, this kind of thing is not it should not be there.

So, the goal of the reduction process is to make judgments about something some string being

in A using something that is already known, like suppose we have a way to check whether a

given string is in B, then instead of checking whether the given string is in A being converted

to the map instance, and then check whether the map and instance is in B.



So, that is the general game plan here. So, now suppose we can reduce. So, now this this

leads to some statements. So, I just stated now and we will see it a bit more formally after the

formally defining the reduction. So, we can say things like this, suppose so, this notation

means that A is reducible to B and A so, the notation is A less than or equal to with a

subscript m.

𝐴≤
𝑚

𝐵

And B is decidable meaning we can check whether a string is in B or not, then A is also

decidable because we can convert an A instance to a B instance and then use the decidability

of B. Suppose A is reducible to B and A is undecidable, suppose there is no way to tell

whether A decide A then this also implies that B is undecidable. This is because if A was

undecidable, sorry, if B was decidable, suppose if B was decidable, then the reduction then

the if B was decidable, then A reduces to B and B is decidability gives a decidability for A.

So, B cannot be decidable. So, these are the two main inferences that we get.

(Refer Slide Time: 9:29)



So, we will come back to this right. So, now let us formally define what is the reduction. So,

before that, we need to define what is a computable function? A computable function is a

function from such that it can be computed by a Turing machine. So, what do I meanΣ* → Σ*

by computed by a Turing machine? So, suppose, the Turing machine gets w in the input, it is

able to compute and it halts. It writes on the tape and stops.𝑓(𝑤) 𝑓(𝑤)

This is what I mean by Turing Machine computing a function. So, a function is computable If

it can be computed by a Turing machine. So, not everything is computable like just like not

every function every language is decidable we say that a language A is mapping reducible, so

far, I will be just saying reducible so, the formal word is mapping reducible or many one

reducible, so this is another terminology many one reducible.

So, we say mapping reducible or many one reducible to language B and denoted by this

notation , if there is a computable function f, so, f is a reduction such that for all w we𝐴≤
𝑚

𝐵

have this, this relation, what so what is this relation? Is same thing that I have been repeating

right from the beginning of this lecture, w is in A if and only if is in B. So, all the𝑓(𝑤)

strings, so, notice that this is if and only if all the strings in A. So, both ways, all the strings in

A should get mapped to strings in B and all the strings not in A should get mapped to strings

not in B.

So, or in other words, if was in B, then w must necessarily be in A. So, if was in𝑓(𝑤) 𝑓(𝑤)

A, it should not be the case that w was not in A. So, it is if and only if w in A if and only if

in B. In other words, w not in A also means is not in B. So, such a function that𝑓(𝑤) 𝑓(𝑤)

satisfies these properties is called the reduction. So, two things one is this relation, this



correspondence w in A if and only if is in B, and second is that the function f should be𝑓(𝑤)

computable; it cannot be some arbitrary function that exists. So, these two together make the

reduction.

(Refer Slide Time: 12:02)

So, some quick points, first is that a reduction from A to B is also a reduction from A

complement to B complement. Why is that maybe we will very quickly draw it on the side.

𝐴≤
𝑚

𝐵 ⇔ 𝐴≤
𝑚

𝐵

So, suppose this is and this is A this is B suppose there is a mapping right? So, everythingΣ*

in A goes to B and everything not in A goes to not in B. Now, we can view the same function



by not in A is A complement and not in B is B complement this also it maps everything in A

complement to something in B complement.

And everything not in A complement to something not in B complement. Something not in A

complement the double negative not in A complement means it is in A to something not in B

complement means it is in B so we can view the same function as also a function from as a

reduction from A complement to B complement. So, maybe I will just write it here the

reduction f from A to B is also a reduction from A complement to B complement.

So, a reduction from A to B is also a reduction from A complement to B complement. At this

point, I want to say another thing, a reduction from A to B need not be a reduction from B to

A maybe I will just note it down somewhere where do I have to move some things around, so

one thing a reduction from A to B maybe I will just rewrite it suppose f is a reduction from A

to B, then the inverse of f not be reduction from B to A.

So, we may not be able to the main reason is that we may not be able to just invert the

function perhaps, so the only thing that we are saying that everything in A should map to

everything something in B everything in A should map to something in B, perhaps everything

does not go to it does not go to all of B, the image of A maybe only a subset of B. So, that is

the reason so there may be so we can we cannot invert the function, there may be other

elements in w that, sorry there may be elements of B that are not images of something in A.

So, f inverse may not be defined for that.

So, f inverse may not be defined, that is one point. One other thing is that I just want to stress

when you when we are checking whether something is a reduction, we need to check two

things, first is this correspondence w in A if and only if f(w) is and B and second is, is the

function f computable the goal is you transform an instance of A into an instance of B and

then use the decider for B.

So, to get a decider for A we need to first transform the instance of A to an instance of B and

then use the decider. Now, if the instance of if the transformation is not computable means,

we do not know how to you get this transformation, then it is not really useful to just have the

decider of B. So, it is important that f be computable, otherwise we do not have a computable

way to get to the B instance. So, both of these are important whenever we are talking about

reduction both of these needs to be checked.



(Refer Slide Time: 17:03)

Examples, so just to give examples, so the first example is we have in fact already seen some

examples in the previous week. So, if you remember, we showed that ANFA is decidable. So,

this is the acceptance problem of an NFA. So, given an NFA we want to and a string w the

goal was to show the goal was to check whether this string is the string accepted by the given

NFA.

So, what we did was, we recalled that every NFA has an equivalent DFA and we were able to

be constructed this equivalent DFA using the equivalence proof and then so since so given

NFA and a string w, we converted the NFA N to an equivalent DFA M, and then we use the

ADFA decider. So, ADFA is the problem of given a DFA M and a string w is a problem of

determining whether the DFA M accepts system w.



So, now, since N and M are equivalent, it is good enough to answer ADFA on it is good

enough to answer A DFA on M W, because N and M are equivalent. So, N accepts w if and

only if M accepts w, so we could just run the A DFA decider. So, we need to construct the

equivalent DFA and then run the A DFA decider, so this is what I am saying. N accepts w if and

only if M accepts w, because N and M are equivalent. In other words, <N, w> is in A NFA if

and only if <M, w> is in A DFA because A NFA just is asking whether N accepts w and similarly

A DFA.

So, <N, w> is in A DFA, sorry A NFA if and only if <M, w> is in A DFA. So, and this is what we

want, this is what we want. So, what we want is w is in A if and only if f(w) is in B. Here our

w is instead of w we have <N, w> in A NFA if and only if <M, w> is in A DFA so our w is in

<N, w> and f(w) is <M, w>. So, the convert and also the conversion process was clearly

defined what is a process etc. that is computable.

So, this is an example of something that we have already done, there what we were doing was

a reduction. Another example, also something that we have already done is the reduction

from EQ DFA to E DFA. So, EQ DFA is the problem of given two DFAs. Are these two equivalent?

Do they both recognize the same language E DFA is a problem of given one DFA asking

whether this accepts the empty language or this recognizes the empty language.

(Refer Slide Time: 20:18)



So, what we did, if you remember, if you recall is that given an EQ DFA instance, so EQ DFA

instance is <A, B>, we constructed a DFA C maybe I will just write that we constructed A DFA

C such that C accepts this language. This language, what is this? This is the symmetric

difference of a and . So, this accepts all the strings, so maybe I will just draw it just𝐿(𝐴) 𝐿(𝐵)

for the sake of convenience. So, this is and this is .𝐿(𝐴) 𝐿(𝐵)

So, is everything that is in , but not in and everything that is an but not𝐿(𝐶) 𝐿(𝐴) 𝐿(𝐵) 𝐿(𝐵)

in . So, this shaded portion, so this is the shaded portion is what should be, so𝐿(𝐴) Σ* 𝐿(𝐶)

everything that is in A but not in B and everything that is in B but not in A so this is called a

symmetric difference.

Now, if the language is in and are the same, then the symmetric difference will be𝐿(𝐴) 𝐿(𝐵)

empty. So, now after constructing this language, the DFA C we can just ask whether so we

have to determine whether A and B are equal. So, instead what we will do is we will

construct this DFA C which recognizes the symmetric difference and then just ask whether

this DFA does it accept the empty language.

So, once again if and only if the language of C is empty. In other words, A and𝐿(𝐴) = 𝐿(𝐵)

B is a S instance for EQ DFA if and only if C is a S instance for E DFA. So, all of this so notice

that if and only if, so if this is an yes instance of EQ DFA this is yes instance and if this is a no

instance of EQ DFA, there is a no instance as well. So, this is if and only if, and this is

important B it is not enough if one direction is satisfied for a reduction we want both of these

arrows both of these should be checked, it is not enough if w in A implies f(w) in B both

directions have to be checked.



So, now and also the conversion process or the construction process of C is well. It is a

procedural process, you may recall from the closure properties of DFAs that we constructed.

Hence, we can construct a DFA C such that this is satisfied and hence we can say that EQ DFA

reduces to or mapping reducible to E DFA. And since, if you remember, we had a decidability

process for a decidability algorithm for E DFA you can use this to decide whether EQ DFA

whether the given EQ DFA instances are decidable.

So, here in the first case we used A DFA to decide A NFA here we are using E DFA is decider to

decide EQ DFA. So, now, let us see a slightly different example to the different example, the

example is different because, so far, we were saying that A reduces to B if you can convert A

instance to B instance and then solve B instance and this helps us solve A instance.

So, B decidable implies A is decidable. So, we reduce EQ DFA to E DFA , E DFA is decidable

hence EQ DFA is decidable. Now, we are going to say the opposite we are converting A to B.

We know that A is not decidable this implies that B is also not decidable because if B were

decidable then we could decide A by converting it to B and then solving B. But we know that

is not decidable so this route should not be available to us. We should not be able to convert

A to B and then decide B. So, we know the conversion process exists, so hence B should not

be decidable. That is the only possible conclusion that we can arrive at.

(Refer Slide Time: 24:35)



So, this is such an example. So, we will reduce ALLCFG to EQ CFG. So, what is ALLCFG? AllCFG
say is a language that consists of description of context free grammars which accept all the

strings or we generate all the strings. So, must be so all the strings should be𝐿(𝐺) Σ*

generated seems like a very easy thing to check. The grammar should generate all possible

strings. EQ CFG is the same as EQ DFA or similar to EQ DFA given two grammars G1 and G2 we

are asking whether they both generate the same language G equal to .𝐿(𝐺1) 𝐿(𝐺2)

So, now we will see how to reduce ALLCFG to EQ CFG. So, ALLCFG is asking whether this

grammar generates everything EQ CFG giving two grammars and asking whether these two

grammars are equivalent. So, this is not that difficult actually. So, given a grammar G and as

an ALLCFG instance, we want to know whether G generates everything. So, it is very easy to



convert it to an EQ CFG instance, what we will do is we will construct a CFG H. It is a very

simple CFG, so H is this, H has only two types of rules.

The starting one is that the starting variable is, one second. So, H is this, what is that? There

will be one variable which is starting variable S, S generates A S where a for any terminal A

and two is S generates empty string. So, basically any string in the using this , the alphabetΣ

can be produced using this, so this is very easy to see. Maybe I will just note it here.Σ

𝐻:  𝑆 → 𝑎𝑆|ϵ

Note, L(H) is . So, L of H is and so now we can just ask is G and H equivalent? InsteadΣ* Σ*

of asking does G generate everything, we have constructed a grammar that generates

everything which and H is is the fact that it generates everything is very easy to say. So, now,

instead of asking whether G generates everything, we can ask that G and H are equivalent

because if G and H are equivalent G will also generate everything. So, that is it so G is an all

CFG, meaning G generates everything if and only if G generates everything. But then

everything the is also the language of H.Σ*

So, now it is the same as asking is G and H equivalent? Or G and H equivalent. So, G is an

all CFG if and only if G H, the pair <G ,H> is an EQ CFG, and that is what we want and the

construction of this EQ CFG instance is also easy, all we need to do is so you have given G

some grammar G, all we need to do is to construct H and H is this, we just write down this

grammar and then give it to the next machine, that's it.

So, constructing <G,H> is easy and this if and only if condition is also satisfied. Hence, we

can say that ALLCFG reduces to EQ CFG. So, this tells is that ALLCFG is mapping reducible to

EQ CFG we can convert an ALLCFG instance to an EQ CFG instance. Now, suppose I am telling

now that ALLCFG is undecidable, meaning there is no way to decide given a grammar whether

it generates all the strings.

Now, the point that I want to make is that this implies that EQ CFG is also undecidable. Why?

Because if EQ CFG was decidable we can decide ALLCFG by converting it into equals EQ CFG

and then deciding EQ CFG. If EQ CFG was decidable we could do this but EQ CFG but we know

that ALLCFG is not decidable, hence EQ CFG should not be decidable. Otherwise we could do

this thing that I said.



Hence, it follows that so just reading through this again, if EQ CFG was decidable, we can

reduce the ALLCFG instance to EQ CFC and then use the EQ CFG decider to decide ALLCFG. But

then ALLCFG is undecidable so I am just stating I am just using this without proof. So,

ALLCFG is undecidable. So, this contradicts that, that implies that our assumption that the EQ

CFG was decidable was wrong. Hence it is undecidable.

(Refer Slide Time: 29:39)

So, ALLCFG undecidable implies that EQ CFG is undecidable. So, now we have seen

decidability and undecidability using reductions. Now, let me just formally state it, if A

reduces to B, and B is decidable, then A is decidable. So, just formally stating this theorem

5.22 in the book. So, what do we do we take, we first compute a given a string w and we



want to check whether it is an A or not. We just compute or we just compute the function f,

which is a reduction from A to B.

So, this is a reduction machine from A to B and then input f to the decider for B. So, the

assumption is that B is decidable so there is a decider for B and whatever if B says f(w) is in

B yes, then we say w is in A, if B says f(w) is not in B then w is not in A. So, the black thing

is the decider for A. So, using a decider for B and reduction function, we get a decider for A.

And the same thing implies that if A reduces to B and A is undecidable, then B is

undecidable is exactly what we set here in the context of EQ CFG and ALLCFG if A is if B was

decidable by this construction over here, we could not we can construct a decider for A but if

we know A is undecidable, then we cannot have a decider.

(Refer Slide Time: 31:13)

And the next two things are theorem 5.28 and corollary 5.29 is the same thing, except that we

have replaced decidability by recognisability, that is the only thing if A reduces to B and B is

Turing recognizable, then A is Turing recognizable, and if A reduces to B and A is not

recognizable, B is also not recognizable. So, that is pretty much it for as far as this lecture 39

is concerned.



(Refer Slide Time: 31:44)

So, we saw reductions and what are reductions? Reduction is the way to transform one

problem into one language into another. So, the main thing is that the reduction should be

able computable . The function should be computable; there should be a Turing machine that

computes this function. And the main thing is that all the yes instances of A should go to yes

instance B and all the no instances of A should go to the no instance of B, this is the most

important two things to check.



(Refer Slide Time: 32:12)

One is that the function is computable, two is that the sequence that is or this correspondence,

if w is in A, then how w is in B, if w is not in A, then f(w) is not in B.

(Refer Slide Time: 32:34)



And this if A reduces to B and B is decidable this implies A is decidable if A reduces to B

and A is undecidable, this implies B is undecidable. So, using this, we saw that assuming

ALLCFG was undecidable, we saw that EQ CFG was undecidable and we recalled two

decidability proves that we have already seen and in fact, we had used reductions there. But

at that time, we did not have the framework for reductions.

Now, we are kind of setting it in the framework for reductions and viewing them as

reductions, the A NFA and EQ DFA proofs. So, that completes lecture 39. So, now we know how

to get through something undecidable using reductions. So, in lecture 40 we will show we

will start seeing we will start proving that certain languages are undecidable by using this

sorry, by using this corollary 5.23. The corollary that A reduces to B and A is undecidable

implies B is undecidable. So, that is in lecture 40 and that is all from me in lecture 39. Thank

you.


