
Theory of Computation
Professor Subrahmanyam Kalyanasundaram

Department of Computer Science and Engineering
Indian Institute of Technology, Hyderabad

Lecture 43
Co-Turing Recognizability

(Refer Slide Time: 0:16)

Hello and welcome to lecture number 38 of the course Theory of Computation. In lecture

number 37, we saw that A T M is undecidable. So, the acceptance problem of given a Turing

Machine M and the string A. w does M accept w this is not a decidable language, this is not a

decidable problem. Sometimes we also refer to it as a halting problem.

(Refer Slide Time: 0:44)



And we said that the real halting problem which is given M and w does M halts on w, does M

halt on w, this is also an undecidable problem. This is also an undecidable problem called T

M.

(Refer Slide Time: 1:02)

In this lecture, we will just define Co-Turing recognizability and say a few remarks which

will close off the fourth chapter in the book. So, let us define co-Turing recognizable. So, a

language is said to be co-Turing recognizable if its complement is Turing recognizable. So,

whenever this prefix co is there, it means it has something to do with its complement. So, A

is co-Turing recognizable if A complement is Turing recognizable, which means there is a

Turing Machine M that recognizes the complement of A.



Now, what does it mean? It means, so, consider the Turing Machine M that recognizes the

complement of A so, when x is in A complement, or which means when x is in not in A, M

accepts sorry, M accepts x. When x is not in A complement, meaning x is in A, then M, so,

what we know is M recognizes A complement, so whenever x is in A complement, A must

accept x, whenever x is not in A complement, M should not accept x, but then should not

could be two possibilities, M is we are not saying that M should be a decider. So, M can

reject x or M can loop on x, so these two possibilities exist, M can reject x or M can loop on

x.

So, there must be some strings in A. So, whatever is not in A complement is in A that M may

be rejecting and some strings in A that M may be looping. So, in other words, it is now if you

take M and flip its output. So, all the strings that are in A complement, will be rejected. All

the strings that are in A need not be accepted because there could be some strings in A that

could be looping again. So, that is what I am saying here, we can flip the output of M to get a

Turing Machine M prime.

So, M prime will always reject when given a string in A complement. Because whenever M

is given a string in A complement, it accepts. So, whenever M complement is sorry, M prime

is given a string in A complement, it will certainly reject, but it may not accept every string in

A because M may not need not reject everything in A and may loop on some strings in A.

So, in other words, what I am saying may be very quickly, you can draw a figure. So, there

are three types of strings. So, this is A complement, this is A. So, in A complement all the

strings M accepts. In A there are strings that M rejects. And there are strings that M loops.

So, these two together form A. These two sets together form A.

Now the point is that when we flip the output, this accept will become reject. And this reject

will become accept, but the loop will remain loop. So, that is why I am saying that for M

prime, it is not. The language recognized need not be A, it is some subset of A. But all the

things in A complement will certainly be rejected. Anyway, co-Turing recognizable means

that the complement must be Turing recognizable.

So, one of the interesting theorems is that a language is decidable. If and only if the language

is Turing recognizable, and is also co-Turing recognizable. So, A is decidable if and only if it

is Turing recognizable, and co-Turing recognizable. So, let us see the proof on why this is

true.



(Refer Slide Time: 5:55)



So, this is an if and if and only if statement, so we need to prove both directions. So, first, we

will prove the forward direction. Suppose the language is decidable. We will show that it is

both Turing recognizable and co-Turing recognizable. So, suppose it is decidable. Suppose A

is decidable, which means there is a decider for a let us say the decider is M, which means the

language recognized by M is A. So, M is also a recognizer for A. That is it. Now, we have to

show that A is co-Turing recognizable also.

M is a decider for A so, M always halts which means M accepts all the strings in A and

rejects all the strings not in A. So, we can take M and flip the output of M. So, it will always

reject strings that are in A and accepts strings that are not in A. So, in fact, if you flip the

output of M, you will get M prime which is a decider for A complement. So, a decider for A

complement will also be a recognizer for A complement. Hence, A complement is turing



recognizable, which means is co-Turing recognizable. So, the decider for A if you flip the

output, you get a decider for A complement, which is a recognizer for A complement, which

means A is co-Turing recognizable.

So, the forward direction is complete. If A is decidable, the decider for A sorry the recognizer

for A. And if you flip the output, you get a recognizer for A complement. Now, the other

direction is, if a language is both recognizable and co-Turing recognizable, we have to show

that it is decidable.



(Refer Slide Time: 7:40)



So, suppose, A is both recognizable and co-Turing recognizable. So, what does it mean? It

means that there is a recognizer for A, there is a recognizer for A complement, they need not

be related machines, there could be two different machines. So, let us say M is the recognizer

for A, which means, M is a Turing machine that accepts all the strings in A and does not

accept any string that is not in A. Again, it may reject or loop on the strings not in A because

it is not it may not be a decider.

Similarly, let M prime be the decider for A complement, it accepts all the strings in A

complement, it may reject or loop on the strings that are not in A complement, or which in

other words that are in A. So, now using these two recognizes, recognizer for A, recognizer

for A complement, we can build a decider for A. So, the decider is very simple. What we will

do is we will run M and we will run M prime both in parallel. So, on the same input, we will



not make the mistake of running one completely and waiting for the M instead will run in

parallel, we will run one step M, one step M prime and so on. So, it is like both of them

progress in computation.

The point is this given A string, it is either in A or in A complement, because A and A

complement, A complement is just defined to be everything that is not A, so, given any string

is either in A or in A complement. Suppose it is in A. So, given a string w suppose it is in A

which means we know that M accepts it because M is a recognizer for A, so we know that M

must accept w. If it is not in A which means it is in A complement, we know that M prime

accepts that because M prime is a recognizer for A complement. So, if w is not in A, w must

be accepted by M prime.

So, given any string, either it has to be accepted by M or it has to be accepted by M prime.

So, we run M and M prime in parallel, at some point one of them must accept. So, if M

accepts, we accept, it is a string in. So, we want a decider for A. So, we want all the strings in

A to be accepted, and all the strings not in A to be rejected.

So, and we know that any string that is given as input is either going to be accepted by M or

going to be accepted by M prime. So, if it is accepted by M, we accept, because it is a string

in A. If it is accepted by M prime, it has to be a string in A complement that we reject. And

one of this must happen because both every string is either in A or A complement, if it is in

A, M should accept if it is in A complement, M prime should accept.

So, running these two machines in parallel, one of them must accept and if depending on

which one you accept, which one is accepting, we this we say it is an A or A complement.

So, this is a decider, because if it is an A it is accepted, if it is not an A it is rejected. So, we

are combining a recognizer for A and a recognizer for A complement to build a decider for A.

So, again, just stating the result, the result is again that a language is decidable if and only if it

is both Turing recognizable, and co-Turing recognizable, so, decidable if these two are

satisfied then it has to be decidable.

(Refer Slide Time: 11:43)





So, finally, some minor observations using this theorem. So, we saw at the beginning of

lecture 37 that A T M is recognizable. So, this Turing machine that we talked about U this is

a recognizer for A T M, because whenever M accepts w, it is a yes instance of A T M, U

accept that pair. The issue happens when M loops on w. So, A T M is Turing recognizable.

We have shown that A T M is undecidable. So, if A T M is co-Turing recognizable as well, or

in other words, if A T M complement was also Turing recognizable, both A T M and A T M

complement will be Turing recognizable, this would imply that A T M is decidable. But we

know that A T M is not decidable.

So, we cannot have both an A T M and its complement being recognizable. Let me repeat.

So, the theorem that we just saw said that a language is decidable if it is both recognizable

and co-Turing recognizable. So, we know that A T M is recognizable. If A T M complement

is also recognizable, that would imply that A T M is decidable. We know that an A T M is not

decidable. So, that should mean that necessarily A T M is not co-Turing recognizable which

means A T M complement is not Turing recognizable, because if A T M complement was

co-Turing recognizable, it will imply that A T M is decidable. Hence, we can infer that A T

M complement is not Turing recognizable.

So, this is the first time we are seeing a specific language and saying that this is not Turing

recognizable. A T M was decidable but it is sorry A T M was undecidable, but it was

recognizable. So, here is a language the complement of A T M which is not even

recognizable.

(Refer Slide Time: 13:52)



Finally, one couple of more points. We asked if or we mentioned that EQCFG is not decidable.

And we are saying that EQCFG is co-Turing recognizable meaning it will be the complement

of EQCFG is recognizable. So, why is it recognizable? So, if you just to remind ourselves

EQCFG is like you are given A and B context free grammars. So, given A and B is L A equal

to L B. Are they equivalent? This is the question. So, if they are not equal and so I am talking

about co-Turing recognizable, it is a no instance.

Suppose it is not equivalent, we can just run through all possible strings. And there has to be

some string that is accepted by A or generated by A but not generated by B or vice versa

generated by B not generated by A. So, you just run through all these things starting from

empty string then string of length 1 string of length 2 and so on. At some point you will find a

string that is accepted by one but not by the other. If they are not equivalent, you will find

such a string. So, that is why the complement of EQCFG the no instance when A and B are not

equivalent, is Turing recognizable.

In other words, EQCFG is Co-turing recognizable. So, the complement of EQCFG is

recognizable, which means EQCFG co-Turing recognizable by this process. And I mentioned

earlier that EQCFG is undecidable. Right now we are not going to prove it. But right now let us

take it as a fact.

Now EQCFG is undecidable. But it is also co-Turing recognizable. If it was co-Turing

recognizable that would imply that because it is Turing recognizable and co-Turing

recognizable, it is decidable but we know that it is not decidable. Hence, it implies that EQCFG

is not Turing recognizable. Maybe I will explain again if EQCFG was Turing recognizable then



theorem 4.22 implies that EQCFG is decidable which we know is not the case. Hence EQCFG is

not Turing recognizable. So, that is the last point that I want to say.



(Refer Slide Time: 17:35)

So, just to recap what we saw in lecture 38, we define co-Turing recognizable, A is co-Turing

recognizable, if A complement a Turing recognizable, then we show this theorem that a

language is decidable if it is both recognizable and co-Turing recognizable.



(Refer Slide Time: 17:48)

And using this, we inferred that we saw the proof. Using this we inferred that A T M

complement is not Turing recognizable, or in other words, A T M is not co-Turing

recognizable, so maybe I will just write that here. A T M is not co-Turing recognizable.

(Refer Slide Time: 18:16)

And similarly we saw that EQ CFD is not Turing recognizable, because it is co-Turing

recognizable and undecidable.



(Refer Slide Time: 18:24)

And that is where we end lecture 38. This also the end of week seven’s content. There is also

the end of chapter 4 in the book. So, in chapter 4, and in week 7 so, week 7 was this entirely

chapter 4, we saw decidable languages using regular languages, decidable languages using

context free languages. We saw the theory of countable and uncountable sets, we saw

undecidable languages, we saw that A T M is undecidable. We saw the proof for that. And

now we are seeing some other results about co-Turing recognizable Turing recognizable as

well. So, this completes chapter 4, and also week 7.

In chapter 5, which we will see in week 8, we will see reductions, which is a way to

transform one problem to another. And because one of them is easy, the other problem is

easy. And because one of them is hard, the other problem is hard. We can make relative, we

can make inferences about the relative difficulty of these problems using these

transformations.

So, at some point, we had seen some aspects of these transformations earlier. At that point I

had indicated, these are called reductions. So, we will see that in chapter 5 and as far as week

8, as far as the week 7 is concerned, this is it. So, see you next week.


