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So, now let me formally define what a DFA is. We saw this Q, , , q0 and F. So, this is the QΣ δ

is the set of states which is finite, is a set of alphabet which is finite, is the transitionΣ δ

function. In other words, they are the arrows.
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So, if the alphabet is binary, if it is {0, 1}, then every state will have two outgoing arrows. So,

here for instance, s has two outgoing arrows, one for 0, one for 1, q1 has two outgoing arrows

one for 0, one for 1. So, in this case, one of these outgoing arrows comes back to q1 which is

okay.
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And in some cases, some of these things could be combined, like over here we have the

outgoing arrow for 0 and 1 both come back to q2. So, is a transition function q0 is a startingδ

state which is only a single state and F is the set of accepting states which are denoted a

double circle in the state diagram.
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Now, let us formally define when a string is accepted. We have already understood this and it

is just a formalization for the same. So, we say that a machine or a DFA M accepts a string w.

So, w is a string, and w1 and w2 are the individual symbols in it. So, let us say if w is 1011,

then it is like w1 is 1, w2 is 0, w3 is 1 and w4 is 1. So, these are the four individual symbols.

So, this is just w broken up into symbols.

So, we say that a machine M or a DFA M accepts a string if this string upon moving as per

the string, you end at an accepting state. So, in other words, basically, there is a sequence of

states such that r0 up to rn with r0 as the state before you read anything and r0 has to be the

starting state. And the first symbol w1 will take Q from r0 to r1. And w2 will take you from r1

to r2. So, this is just formalized below.



The i+1 symbol will take you from ri to ri+1, where the i+1 goes from 1 to n. or in other words,

i goes from 0 to n-1. And finally, you ended the state rn which has to be an accepting state

which is what is listed here. So, in other words, what is going on is the machine starts at the

starting state and moves as per the rules and ends at an accepting state. So, it is fairly simple.

It is just a formalization of whatever we have seen. So, we say a DFA accepts a string if at the

end of processing that string, it ends at an accepting state.

And what do I mean by processing? You start at the starting state and then each symbol you

move, you make the correct move. And we say M accepts a string and correspondingly we

say the machine or the DFA M recognizes the language A, where A is the set of all strings

that are accepted by the DFA M. So, I have been kind of alternatively using machine and

DFA, but I will continue to do that. So, think of machine DFA as the same computing device.

So, the distinction here is that M accepts a string and M recognizes a language. Sometimes,

people say M accepts the language but that can lead to a bit of confusion. So, that is why we

are trying to use M recognizes the language A. So, M recognizes the language means A is a

set of all strings that are accepted by M. It is exactly the set of all strings.

So, A is not a super set of the strings or it is not that A is a subset of the strings. A contains

certain strings that are accepted by M. If such a string is not accepted, it should not be in A. It

is exactly the set of strings that are accepted, not a subset or a not a super set. Sometimes, we

also denoted by this notation

L(M) = A
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So, now, let us see another example. Let us try to construct a DFA that accepts all the binary

strings which have the number of 1s in those binary strings are divisible by 5. So, if you

count the number of 1s it should be divisible by 5. So, let us try to see how to make use of the

states. So, recall we have only a finite number of states. We only have a finite number of

states and we want to use that. So, here the DFA needs to keep track of the number of 1s, but

we do not need to keep track of the number of zeros, that is okay.

But then there is a problem like, let us say, if the string is huge and it has 100 1s. So, you

need to keep track of the number 100. So, number 100 has to be divisible by 5, i.e. is a

multiple of 5. So, do you keep counting? If so, is there a limit? So, how do you keep track of

that much? The answer to that is we do not need to keep track of the exact count, we only

need to keep track of the Count % 5. So, we do not need to keep track of the exact count and

we only need to keep track of the Count % 5. In other words, the remainder of the count

when divided by 5.
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So, the key idea here is that we need to have a set of states and the thing we need to keep

track should be the number of 1s. So, basically, we can have something like this, q0, q1, q2, q3,

and q4. So, try to keep track of the number of 1s that you have seen. So, at q0, if you see a 0,

you remain there. If you see a 1, you move to q1. So, which means you have seen 11. If you

see a 0, you remain here. If you see a 1 here and the same thing you keep repeating. And

what happens when you see a 1 at q4?

So, which means again it is like we have seen five 1s. So, now it is like we just need to keep

track of the count of 1s % 5. So, if you see 5 1s, it is the same as 0 1s and so you can come

back to q0. Now, I have five states and for each state I have two outgoing arrows. The thing

that is missing is which are the strings that are accepted. So, as the picture is currently no

string is accepted. So, the strings that have to be accepted are those strings in which the

number of 1s is divisible by 5 or is a multiple of 5.

So, let us just try some examples. So, let us just think of the string 11111. So, you start at q0

and end at q0. So, this has to be accepted. So, let us mark q0 as an accepting state. And what if

the string is 111110. So, it is the same movement and then you remain at q0. So, this is also

getting accepted. And now you can kind of play around with this and see that any string that

is desired indeed gets accepted. So, this is the way to construct a DFA.

So, basically, we need to figure out what is the information that we are trying to preserve.

Because we only have a finite set of states and we need to keep track of what is the

information that we need to keep track of. So, I have a question here in red color, the set of all



binary strings where the number of 1s is 2 % 5. So, here the number of 1s was a multiple of 5.

So, now, we are saying 2 % 5. What is the DFA that gives us this language?

So, if you think about it, the same kind of counting mechanism still works, but the accepting

state may have to change. So, maybe I won't give away the answer now, but you can think.

Can we use the same structure but change something small, just think about it.
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And now we come to another definition. So, notice that I am using these numbers here like.

So, this is the definition of regular languages, I am using these numbers. These are just the

numbers that are there in my edition of Sipser which is the second edition, I think, maybe

international edition.

But I am just using that to keep track. If you have a copy of the textbook by Michael Sipser

that may not have the same numbering, I will try to keep it consistent within my this course.

So, we say that language is regular if there is some DFA that recognizes this. So, this is a

definition.

All the languages that we have seen so far: set of all strings that have where the number of 1s

divisible 5 is a regular language because we drew a DFA for it. Also these languages: set of



strings that start and end with the same symbol that is a regular language. Set of strings that

end in zero is a regular language. Strings that end in 1, it is a regular language and so on.
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So, a regular language is a language if some finite automaton recognizes this.

(Refer Slide Time: 13:10)

So, let us just see some more simple examples for construction. So, a DFA for the following:

where the alphabet is {a, b} not {0, 1}, where the string contains ab as a substring. So, the

input must contain ab as a substring. So, if at any point of the string ab appears so aabb must

be accepted, bbaa must not be accepted, baab must be accepted because there is an ab here.

and abba must also be accepted because there is an ab there.



So, let us try to draw a DFA. We have a starting state. Now, to see if ab is a substring, we first

have to get an a. So, if there is a b from the static position, we can remain in the same state.

And if you see an a, you move to the next state. And after seeing an a, you could still keep

seeing aaaaaaa. So, for instance like bbaa so that you may be here. So, but once you keep,

once you see an a, now, you are halfway there. You have seen an a.

Now, you just need to, if either you keep seeing aaaaaaaa, or at some point ab will appear. So,

whenever the first b appears that will result in an ab substring. So, when the first b appears

you can accept, you can lead to an acceptance because now whatever comes after this, so,

either you may see an a or you may see a b.

Now, whatever comes it does not matter. Now, you can accept it because you already seen ab

as a substring. This DFA indeed captures all the strings that have ab as a substring. You can

work out and see what happens. So, one exercise is what are the strings that you can try out at

home is what are the strings that end in the first state.

What are the strings that end in the first or second or the third state? We know what are the

strings that end in the third state. These are the strings that contain ab as a substring. Because

it is a single accepting state. But try to see what are the strings that end in the first or the

second.
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Now, let us try to look at another question which seems very related. Find DFA for the set of

all strings where w does not contain ab as a substring. So, it is exactly the opposite of what

we are seeing now. So, how can we not contain ab as a substring? So, as I said earlier, once

you see an a you cannot have a b later. Because, once you see an a, either you keep seeing

aaaaa or if you see a b you are then you have a substring ab.

So, this is not possible. So, once you see an a you have to only be seeing a’s. But you could

see b’s prior to the a’s, but you cannot have a’s is prior to the b’s because then again it is an

ab. So, the only two things possible are strings of the form bbbbbbb like a full peace or in

other words it is like b* or it could be of the form some number of b’s followed by some

number of a’s. It is like b*a*.



So, these are the only set of strings that should be accepted and if you notice which is kind of

what we did over here. So, you have a state q1 where till you keep seeing b’s you are stuck

here. If you see an a, you move to q2 and then you remain there if you see an a. If you see b

again, you move to q3 and then you are stuck at q3. So, q3 is a set of strings where ab features

as a substring. So, q2 is where you have seen at least one a and q1 is where you have only seen

b’s. So, all b* end in q1.

Once you see an a, you go to q2. Now you can check that this DFA indeed accepts all the

strings that do not contain ab as a substring. And now you can see one interesting thing.

Though I reasoned it slightly differently, these two DFA’s, the one over here and the one over

here, they are kind of the same DFA. The transitions are exactly the same. It is just that their

accepting states are different.

So, in fact, the set of accepting states of the second DFA say M2 and accept states of previous

DFA M1 are the opposite! So, M1 and M2 are kind of complementary in that sense. And the

language also interestingly what we were looking for is the complement. So, here in the case

of M1, we were looking for all the strings that contain ab as a substring. M2 recognizes all the

strings that do not contain ab as a substring. So, M1 and M2 are complementary.
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And this gives us the following statement that regular languages are closed under

complement. Because, you can have the same construction of the DFA just that whatever is

accepted by the, let us say you. So, what does the statement mean? Suppose there is a

language A which is regular then the language AC which is all the strings that are not in A

that is also regular. This is what it means.



So, A is regular if and only if AC is regular. Why is this true? Suppose, A is regular then there

is a finite automaton for A. So, maybe some states, some transitions,. Now, this is the

machine that accepts A.

Now, to get AC, you could have exactly the same thing but with complementary accepting

states. So, something like this is, it is not a, it is only a pictorial thing. So, all the blues are

accepting and all the reds are not accepting. So, this will be AC. So, take any regular

language, there is a DFA for it.

Now, you take the same DFA, you make accepting as not accepting and you take the not

accepting as accept states. So, you take the set of accepting states and you take the

complement of that. That will give you the DFA for AC. This is what it means to say, regular

languages are closed under complement if A is regular, then AC is also regular. I have one

more question here that you can try: the set of all binary strings where this string begins with

one and ends in zero. So, try to construct this as well.
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So, I will just end this lecture here. So, I will just summarize what we have seen so far. So,

we saw what is a finite automata, we saw some examples of a deterministic finite automata or

DFA’s as we called it.
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It is deterministic because each state has exactly one outgoing arrow for each symbol that we

see over there and it is finite because there are only a finite number of states. So, the language

of a DFA is the set of strings that are accepted by the DFA. And we formally saw the

definition. The definition is a five tuple with the number of states. The states alphabet

transition function starting state and accepting states. We saw some examples about some

DFA’s and which language they accept. We formally define what it means for a machine to or

a DFA to accept a string, even though we had informally seen that.
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We say that DFA M recognizes the language A if A is a set of all strings that are accepted by

M.
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And we saw some languages for questions of this form where we are given a certain language

and we wanted to create a DFA for it.
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And we defined regular languages which are the set of all languages for which we can

construct a DFA.
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So, one may ask at this point, why do I make a definition like this? It may feel to you, it may

seem to you that for anything you can make a DFA. All languages you may be able to make a

DFA but that is not the case. At some point, we will see why that is the case. Maybe not at

some point but very soon.
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So, these are a special class of languages for which we can make DFA’s. Not all languages

for, we cannot make DFA’s for all languages. And then we said that if A is the regular,

meaning if we can get it, if we can draw a DFA for A, we can also draw a DFA for AC. In

fact, it is the same DFA but just that we change the accepting state to non-accepting and

non-accepting state to accepting, just like what we did over here. So, accepting to

non-accepting and non-accepting to accepting. So, that is a summary of today's lecture.



(Refer Slide Time: 26:23)

And in the next lecture, it will be lecture 4, we are going to see regular operations. So, these

are union, concatenation and star operations. And we are going to also, after that we are

going to explore closure under regular operations.

So, we want to say things like if A is regular and B is regular and then A union B is regular.

Meaning that, if there is a DFA for A and a DFA for B, we can build a DFA for the union of

A and B and similar statements for concatenation and star. So, this is all for the lecture on

regular languages and see you in the next lecture.


