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Hello and welcome to lecture number 34 of the course Theory of Computation. So, in the past

lecture number thirty-three we started with decidable languages, we talked about decidable

languages that were built on regular languages. And in this lecture, we will talk about

decidable problems that are built on context free languages. So, just like we saw acceptance

problems of regular languages, the first thing that we will see is the acceptance problem of a

context free language. It is a (give) so meaning we are so, that it is ACFG. So, we are given a

context free grammar G and a string W and we are asked whether this context free grammar

generates the string W.

Here again the naive way that one may guess. So, we have the grammar, so we have some

variables, some rules, some production rules etcetera. We could try generating various

possibilities. So, from the start variable, you try all kinds of possibilities and you look and

you check whether the given string W is generated by the grammar, but, the problem is it is

not clear when to stop because there are so many possibility there could be so many

possibilities and it is not clear when you are supposed to stop and which branches you take

when to stop etcetera.



So, you can try out some simple ways, then some other ways, some other ways and so on, but

it is not clear when you stop.So, if you never get the string W, if by chance you happen to get

the string W in one of these derivations, then you can say yes, G generates W and you can

accept, but if you do not see it, then how long will you keep trying out things? So, meaning,

if W is not generated by G, you will never, you will never possibly halt. So, that is also an

issue. So, that is why I am saying here that this idea may result in a recognizer, but cannot

provide a decider because if W is not generated by G there is no clear way to reject.

But, the problem here is that we do not know when to stop it. So, if there are some

derivations that you can try and then we say, we tried many things, but now, we are sure that

W is not generated by G that that should be a good thing so, is there some something that will

give us a guarantee that if you try these possible derivations, these possible generations, and

you never got the string W.

Now, you are never going to get W like suppose there is such a guarantee thing you try this

and if you cannot get W till this point, then you are not going to get it. If that guarantee is

there, then we can build a decider, but that guarantee is given to us by the Chomsky normal

form. So, if you recall, we saw Chomsky normal form in second chapter and importantly, we

saw it all suppose the string is of length n, then any derivation using the Chomsky normal

form must take exactly 2n -1 steps, any derivation of that string must take exactly 2n - 1 steps

meaning if the string is of length ten it must exactly use nineteen steps, not more not less,

exactly nineteen steps.

So, what we can do is? So, we have the grammar, we have some variables, some rules

etcetera, you can simply try all possible derivations of nineteen steps. So, you start with the

start variable, you try out all possible ways to replace the start variable by another using a

rule then each of these possibilities you try out all possible next steps and all possible next,

next steps and so on. But if you know that you only have to try out 2n -1 steps. So suppose

the string as I said is of length ten then we know that we only have to try out all possible

derivations of nineteen steps.

So we can do that we can try out all possible derivations of nineteen steps because we have to

we may have to try out all possible but we know that we can stop after nineteen steps, if you

do not get W after nineteen steps, we know we are not going to get it in the future, because W

is of length ten, if you do not see W in nineteen steps, we are not going to see it after

twenty-one or twenty-five steps.
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So, this helps us build a decider what we do is given a grammar, we can convert into

Chomsky normal form, this also something that is something that we have seen in the second

chapter. All grammars can be reduced and can be converted to Chomsky normal form and

equivalent Chomsky normal form, which means, whatever is accepted by G will be accepted

by the grammar in Chomsky normal form and whatever is not accepted will not be accepted.

And now, you list out all possible derivations of 2n -1 steps, so, this is important. In the

Chomsky normal form, you try out all possible derivations of length 2n -1. If the string that

we like so, you are given an input G and W and you are asked whether G generates W. So, if

W is an empty string, so, now, 2n -1 will be minus one, so, it does not make sense, but if it is

an empty string there has to be a rule to start gives empty string.

So, if it is empty string then you just check whether you check all the derivations of length 1,

otherwise you check all the derivations of length 2n -1 and then see whether W is generated

in any of these derivations, if it is generated you accept meaning there is some rule or some

set of rules applied in some sequence generating W. If W is not generated that means it is, we

have tried up to 2n - 1 steps, it is not going to be generated later also, so, you can safely

reject.

So, what you do is we convert the grammar into Chomsky normal form with all the possible

derivations of 2n minus 1 steps and accept if W is generated and reject if it is not generated.

So, the earlier way did not give us the confidence to reject if it was not generated, because,



there is simply no guarantee that we will be done after doing this many steps and Chomsky

normal form is able to provide that assurance.

And one more point is one more related point is that we have actually seen an even more

efficient algorithm, which was a CYK algorithm in the second chapter. In fact, in the book

the CYK algorithm appears in the seventh chapter I think, but, for the purpose of this course,

I think we advanced it and covered it in the second chapter. So, in fact, given a grammar G

and a string W, the grammar G being in Chomsky normal form, we saw an efficient way to

check whether W is generated by this grammar. So, CYK is even more efficient than blindly

trying out all possible derivations of length 2n -1.

So, it uses a very dynamic programming approach, which is much more clever and smart, you

end up saving a lot of work that you would otherwise redo. So, the CYK algorithm is actually

another way to decide this, but since the question is whether we can decide or whether it is

not decidable. Even the algorithm that is listed here, we will do. So, we are not really at this

point, we are not really optimising on the resources that complete ACFG, ACFG is decidable.
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The next is ECFG. So, given a grammar does it generate or does it generate the empty

language? In other words, given a grammar is there even one string that it generates. If you

recall in the previous lecture, we showed that EDFA is decidable. So, we said that you cannot

possibly try out all possible strings whether that string is accepted by the DFA instead we

looked at the DFA as a graph. We looked at DFA as a graph and checked whether any

accepting state is reachable from the starting state.

Based on this we decided, so, the in the case of ECFG it is similar we can for the same reason

as why we could not do EDFA by brute force checking each string whether it is accepted by the

DFA, for the same reason we cannot check if each string whether it is accepted or generated

by the grammar.

So, we know that ACFG is decidable but we cannot keep doing like the first string whether this

string is generated by this grammar, second string the second string is generated with this

grammar. If some string is generated then we know the language is not empty, but if the

language is indeed empty, you will just keep checking soon after another after another, there

are infinite strings and you will never end, so (there) this will not be a decider.

So, what we have to do is look at some other approach. So, in the case of DFA we try to see,

we try to view it as a graph and check whether this state is the accept or one of the accepting

states is reachable from the starting state.
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So, here we do something which is similar in spirit. So, you want to know whether any string

is generated. So, what we do is, it may not be immediately, it is a slightly clever approach.

So, what we do is, so, in the first tape, as we know multi tape is the same as single tape, you

list the rules of G or you list the grammar G tape 1. And tape 2 what we do is? You initially

list all the terminals it is a b 01 that is it, these are your terminals you list these things in tape

2.

Now, what you do is this? Now, you have this in the tape 2, tape 1 is just tape 1 will just

continue to store the grammar. Now, you check if there is any variable that will now go

through all the rules one by one now, suppose there is a rule that would say A gives a b a. So,

now A derives a string that is entirely terminals.



aba𝐴→

So, which means the variable A is able to generate something that is entirely terminals. So,

then we include A in tape 2. So, any variable that is able to generate a string of entirely

terminals we include here. Now, suppose there is a rule let us say B gives 00A, now, we know

that 0 and 0 are terminals and variable A is capable of deriving a string of entirely terminals.

So because A derives a b a so basically what we do is we check whether there is a rule where

the right hand side is entirely in the tape 2.

𝐵 → 00𝐴

So, first the right hand the tape 2 content only terminals. So now, we asked whether there is

some rule where the right hand side is entirely in tape 2. So now A and 0 are there in tape 2.

So now we add B to the tape 2. So, suppose there is a new rule where let us say C gives DA,

then that you do not add C because D is not in tape 2.

𝐶 → 𝐷𝐴

Now, suppose there is a rule, let us say E gives AB where A and B are both variables, but

both A and B are there in the tape 2. So, now you can include E also in the tape 2. So, like

that we proceed. So, initially tape 2 contains only terminals, you go through all the rules and

if any rule if in any rule the hand side is entirely in tape 2, you add the left hand side also the

variable in the left hand side also to the to tape 2. So basically what I am saying here is if in

any rule, the rule is of this form A gives U1 U2 etcetera. We will just move this slightly, A

gives U1, U2 etcetera.

𝐸 → 𝐴𝐵

𝐴 → 𝑈1𝑈2...

Now, if all of U1 U2 etcetera could be either symbols either terminals or variables. Now if all

of the right hand side are in the tape 2 you add A to the tape 2, otherwise you go through all

the rules if one round you go through all the rules and you add no rule you are not able to add

any rule to tape 2 or you are not able to add any variable to tape 2 then you stop, if at least

one variable were able to add to tape 2 you do another round and in that round if you are able

to add something you again do another round and you repeat till you are able to go to go

through the entire round without adding any variable to tape 2.



And when you say which means at that point you cannot add any more variables so because

you added you did not add any anything even if you do one more round it is not going to

make a change.

So, the point is tape 2 contains those variables. So, it contains terminals, it also contains those

variables like A B and E, from which we can generate a string of terminals. So, if you start

with A, A is able to generate a string of terminals, if you start with B, B is able to generate

00A, and where A can again generate a string of terminals. So, A B E can generate a string of

terminals. So, the variables in tape 2 are those from which we can generate a string of

terminals.

Now, you are done with the process, all you have to check is whether the start variable is able

to generate a string of entirely terminals? So, what is the language? Language is simply the

set of all strings that is L(G) for a grammar is nothing but any string that is entirely composed

by terminals, which is derived from the start variable.

So, now, we are asking whether the start variable can generate a string of terminals, but then

in tape 2, we are now maintaining a set of variables that can generate a string of only

terminals. So, all you have to do is check if the start variable is there in the tape 2. If the start

variable is there in tape 2, you know that the language is the start variable is able to generate

a string of only terminals, which means the language generated by the grammar is not empty

it at least has one string which means you reject, if the start variable is there in tape 2 you

reject, if the start variable is not there in tape 2 you accept.

So, again, we instead of addressing it directly in the naive way by trying out one string after

another, we are we constructed a clever algorithm where you kept track of those variables

from which we can generate a string of only terminals and then at the end, you checked

whether the start variable is in that list, if start variable is in that list, the language generated

is not empty and then you reject if start variable is not in that list then you accept. So, this is

an algorithm for ECFG whether the grammar generates the empty language or not.
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The next thing I want to talk about is theorem 4.9. I will just state the theorem, you can read

the proof in the book, it is very similar to ACFG or rather it uses ACFG, it just says every context

free grammar is decidable sorry!! Not context free grammar, what I meant is every context

free language is decidable, every CFL is decidable, given a context free language and given a

string but then you can check whether the string is in the context free language or not.

So we will close with one or two small points. So, in the case of DFAs or regular languages,

we saw this, the fact that EQDFA was decidable; it is a question whether two given DFAs are

equivalent whether they recognize the same language? Now, we can ask the same question

for context free languages or context free grammars. Given two grammars G and H, do they

generate the same language?

So, given two grammars G and H, do they generate the same language? Now, since we saw

EQDFA, maybe the first thing that comes to mind is can we use the same thing? Can we

construct a ACFG which generates exactly the symmetric difference of L(A) and L(B)? The

answer is unfortunately no because the regular languages were closed under complement,

intersection and union. So here, notice that we are using complement here L(A) complement,

intersection for , the intersection L(B) and over here another intersection so we are using𝐿(𝐴)

intersection and complement and also union.

However, context-free languages are not closed under complement; they are not closed under

intersection. So, there is no way to build a context free grammar in general that will generate

the intersection of two context free grammars or that will generate the language which is the

intersection of the two languages entered by two different context-free grammars, so, we



cannot use the same approach. So, EQCFG at least we cannot use the same approach, we will

have to think of some other approach because the context free languages are not closed under

intersection and complement.

And unfortunately, it turns out that this is one language which is not decidable, in fact no

approach works. So, I am not telling you why I am not telling you the proof, but I am just

telling you now that it is undecidable. So right now for, for now, you have to take it as a fact,

maybe one of the later lectures maybe, maybe next week or the next-next week, we will see

why it is undecidable.
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And that completes the topics that I have in decidable problems arising out of context free

languages. So, we saw ACFG where we converted the grammar into Chomsky normal form

and checked whether the given string is generated by the grammar. So, the Chomsky normal

form gave us a bound on how many steps to check, then we saw ECFG whether the given

grammar generates the empty language.

So, here we maintained a set of variables which are able to generate a string of only

terminals, not in one step, but maybe multiple steps. And you and then we check if the start

variable is in that list, and then we use that to decide whether the grammar generates empty

language or not. And we said that EQCFG cannot be we cannot use the same trick as EQDFA,

and in fact, it is undecidable.

And that is all I have in the, that is all I have in the regular sorry! Decidable languages

decidable problems arising out of context free languages. And now, in the next lecture, we

will move to some theory that we need to have in order to show languages are undecidable.

So, the next step is trying to understand undecidable things. So, before that, we need to

understand certain other mathematical theories, so that we will see in the next lecture. Thank

you.


