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Hello and welcome to Lecture number 32 of the course Theory of Computation. So, we have
seen Turing machines and we have seen various variants of Turing machines which are multi-
tape Turing machines, non-deterministic Turing machines, we saw the enumerator. So, one
thing that | said towards the end of the previous lecture was that all of these models have
differences, but they share one property. The property is that they all have unrestricted access

to unlimited memory.

So, this is something that DFAs for instance did not have, this is something that PDAs did not
have, PDAs had unlimited memory in terms of the stack, but there was only restricted access
to it. But Turing machines or whatever be the precise model that is used whether it is multi-
tape or non-deterministic, as long as we have unrestricted access to the unlimited memory, then



they are all equivalent in power. Equivalent in terms of what are the languages that can be

recognized by this Turing machine.

So, in that sense, they are equivalent. So, the amount of time taken or amount of space required
may vary from the specifics of the model used. So, perhaps non-deterministic Turing machines
can do things a bit faster. But we are not talking about the resources like time and space, we
are just talking about what is the class of languages that you can recognize with a certain Turing

machine model.

So, the good thing is that the model is robust as long as we have unrestricted access to the
unlimited memory, it does not matter what exact detail, what exact details we have for the
model. All the models recognize the same class of languages and decide the same class of
languages. So, we do not have to specify things like this language is recognized by a single
tape Turing machine but cannot be recognized by multi-tape. No, we do not have to get into
such things. Because a language that is recognized by single tape Turing machines is also
recognized by multi-tape Turing machines. It is also recognized by non-deterministic Turing

machines. In a way that is similar to programming languages.

So, whatever you can program with the C language, if you want to do a certain computation
task with C language, you can do it in other languages also, like Java or Lisp or other languages
too. So, now, the goal of this lecture is to kind of motivate you to what an algorithm is. So, so
far, we have only been saying things at a higher level. What we want to refer to as an algorithm

is exactly those set of things that are decidable.

And as | already mentioned, the details of the computation model, the details of a Turing
machine- single tape, multi-tape deterministic, non-deterministic all that may vary, but it does
not matter because all of them capture the same class of languages. So, something is decidable
means it is decidable across these different models of Turing machines. So, by an algorithm, 1

mean, something that is decidable on a Turing Machine model.

So, this is the first step towards formalizing the concept of algorithms. What is an algorithm?
We are now formalizing it. So, we know algorithms intuitively. Like you have a step by step
set of instructions. Or if you are cooking something, it is like a recipe. So, you start with this,
then you do this and then you check how much it has cooked and then you add the other

ingredients and so on.



So, similarly, it is also a step by step set of instructions. But more formally, you want to call
algorithms as the Turing Machine algorithms. Meaning, like a certain language is decidable,
so how that language is decided by a Turing machine. So, algorithms are exactly the class of
decidable languages and how the Turing Machine decides this. So, now, before proceeding, a

small detour about some history.

So, now, we might be taking this for granted as to what an algorithm is. So, we know what this
is, we have this definition. But there was a time when this was not formally captured by any
clear definition or anything like that. So, as | have said in the introductory lecture of this course,
this formalization happened around the second world war around the '30s, mid to late '30s, by

Alan Turing.

But then computation was something that people used to do even from the ancient ages. So,
people had to build stuff, people had to transact. Even in the BC periods people had to build
stuff, transact, so people used to do computations. But the formalization of what is a
computation was only done in the 1930s by Alan Turing. So, one of the historical things that
happened was in 1900.

So, there is this four-year conference that still happens, called International Congress of
Mathematicians, or International Congress of Mathematics. This happens once in every four
years. So, in 2022, there was one. And so, this is a very prestigious meeting, where
mathematicians meet and discuss various problems, which are of fundamental nature, and

which are relevant to society as well as mathematics.

So, in 1900, David Hilbert, who is a very famous mathematician, went to this meeting, and he
listed 23 problems. So, now these problems are called Hilbert’s problems because he posed
questions about these problems. And many of these problems are now very important, very
significant. So, one of his problems what we are going to talk about, is the 10th problem that

he listed. It is known as Hilbert’s 10th problem.

So, you can Google it, and there is a Wikipedia page just for this problem as well. So, the

problem is very simple. You can even ask it to a school going child. So, given a polynomial,

you are asking whether the polynomial has any integer roots. So, for instance, here | have a

polynomial. The question is, is there an integer x for which this entire thing becomes zero?
P(x) =7x® —8x*+13x3 —x+ 10



So, this particular polynomial, | have not verified it. Perhaps there is. So, you can try some
simple things. If you set x equal to 0, then it evaluates to 10, so it does not work. For x equal
tol,7—-8+13 -1+ 10 = 21. So, 0 is not a root, 1 is not a root. | am not sure if there is an
integer root, but you can try playing around. This is the question, given a polynomial does it

have an integer root?

So just to give another example, there is one other polynomial that | have written here in the
red box, 6x3yz? + 3xy? — x3 — 10. So, here, one possible set of integers solution for this, |

have checkedisx = 5,y = 3andz = 0.

This evaluates the polynomial to 0 because 6 the first term 6x3yz? becomes 0 because z is 0.
3xy? becomes 3 X 5 x 9, which is 15 x 9 = 135, —x3 which is 125. So, 135 — 125 is 10,
minus 10 which is 0. So, this is an integer solution to this polynomial. So, this polynomial is

over three variables, whereas the earlier polynomial P(x) was over one variable.

But the question can be asked for single variable polynomials, multiple variable polynomials,
and so on. So, one possible approach, let us say for single variable polynomials is like we
checked already. If you are coming back to this P(x), we checked already, 0 and 1. So, you

check 0, we saw it is not a root, we saw 1 is not a root, -1 can be checked.

P(-1)=7(-1D°-8(-D*+13(-1)3-(-1)+ 10
P(-1)=7-8-13+1+10= -3

So, 7x% is 7 and —8x* is —8, so —1. Plus 13x3 that will be —13, so you get —14. Plus —x,
which is 1, so it becomes —13. Plus 10 gives —3. So even this is not a root. So, we have verified
that 0, 1 and -1 are not root. And then you check 2, then you check —2, then you check 3, —3

and so on, so you keep checking.

So, you check whether 0 is a root, 1 is a root, -1 is a root, 2 is a root, -2 is a root. So, like that,
basically what we are doing is you take the real line, you check 0, you check 1, check -1, then
you check 2, then you check -2 and so on. So, basically, you are covering all the integers in the

line by going back and forth 3, -3, 4, -4 and so on.

So, all the things are covered. So, now, you may be able to figure out that this is an algorithm
or this is an approach. | do not want to say algorithm. Suppose there is some integer solution.
Suppose for instance 50 is a root. So, then when we do 1, -1, 2, -2, 3, -3, up to when you reach

50, it says it is a root and then we can say yes, 50 is a root, there is an integer solution.



But if there are no integer solutions at all, this process never ends. You check 1 is root, 2 is a
root, -2 is a root. All that you go back and forth and you never end. You are just cycling through
all these infinite integers and you will never stop. You will stop only if there is a root.
Therefore, this is a recognizer and not a decider. So, if the answer is yes, if there is an integer

root, it will stop and say this is the integer root.

If there is no integer root, it will not accept. It will not say yes. If the answer is no, it will not
say yes. But it will not say no also. There is no way for it to stop, because this continuous
computation. In that sense, it is not a decider. A decider has to always halt. If it has an integer
solution, we want to say yes. If it does not have an integer solution, we want it to say no and

stop the computation. But this does not stop. So, it continues computation.

And it never says yes, but it never says no, also. Now, can we convert this to a decider? Maybe
I will just erase this. But this approach, can we convert it to a decider? That is a question. Can
we convert this to a decider? Let us come to a single variable. If there was some bound. Let us
say you only have to check if there is a root, given it is going to be less than 100. Let us say

somebody tells you.

Then that is a decider because we check 0, 1, -1, 2, -2 and so on and up to 100, -100. Let us say
then, if there is a root it is going to be of size or absolute value less than 100. So up to 100, -
100 we do and then if you do not find a root, we say that this does not have an integer root. So,
if we have a bound, then that bound can tell us this is the place where you can stop, you do not
have to check the infinite possibilities.

So, if there is a bound, that is a way to convert it to a decider. So, this works for a single variable
polynomial, which is what P(x) is above. For a single variable polynomial, we can get a bound.
And this bound can help us make it into a decider. So, in fact, this is a problem in the textbook

3.21. So, basically, it asks you to find a bound for a given polynomial.

So, given a polynomial, which is a single variable, or a univariate polynomial, it asks to find a
bound. So, it asks to say that if x is a root, then X is at most something or the absolute value of
X is at most something. However, this bound only works for the single variable case, and for
the multivariable case, there is no such bound. So, because there are multiple variables

involved, how do you bound it?

Or maybe single bound works for all. No, but we do not have the same bound. In fact, it was

shown by Matiyasevich in 1970. So, building on the works of others by Davis, Putnam,



Robinson and so on, the people worked on this problem before. So, but the final piece of the
puzzle was provided by Matiyasevich, and sometimes it is attributed to all four of them
Matiyasevich, Robinson, Davis and Putnam that there is no decider for this problem in the
general case.

General is multivariable case there is no decider meaning you cannot write an algorithm for
this question. So, this is a recognizer, a recognizer is not an algorithm. You always want to
halt. A recognizer does not halt or may not halt. But what we know is that there is no algorithm
that exists for the 10th problem. Or in other words, the Hilbert’s 10th problem is undecidable
in general. Meaning there is no algorithm for it.

So, this approach that I highlighted above, this is a recognizer not a decider. What Matiyasevich
showed building on the work of others is that Hilbert’s’ 10th problem is undecidable. So, this
was a big deal like something was asked in 1900 and finally in 1970, it was shown. So Hilbert’s
question was posed like is there a procedure by which we can find this, but the theory of

computability had to be built in order to answer this.

And this theory was built by Alan Turing in the 1930s. There was also a parallel body of work
by another mathematician called Alonzo Church. So, together, not together, but independently
they build two separate notions, which actually kind of coincide. So, therefore, without getting
into all the details, the point is this. What they say is that the intuitive notion of algorithms is

like a step by step approach, and we want a solution, we want it to halt etcetera.

This is identical to the Turing Machine deciders. So, the intuitive notion of algorithm is the
same as Turing Machine decider. So, if you want to formally show something has an algorithm
or does not have an algorithm you have to show it is undecidable. So, this is what we mean by
Church-Turing thesis. So, it was posed by two mathematicians, Alonzo church and Alan

Turing.

So, it says that the intuitive notion of algorithms is the same as Turing Machine algorithms. So,
this history was to kind of motivate this Church-Turing thesis. Such a fundamental problem.
To answer this, the theory of computability and the Church-Turing thesis had to be formulated.
So, what we said is what an algorithm is and we talked about Hilbert’s 10th problem in order

to motivate that.

(Refer Slide Time: 17:19)
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The next thing is about some details. Now that we have come to an understanding of what

exactly constitutes an algorithm. So, it is what a Turing Machine can decide. So, one question
is how do we decide? Or how do we give something as an input? So, sometimes the problems
are itself not clear. Like let us say you have a graph, now, how do we give the graph as an

input?

Or suppose sometimes you can ask questions like let us say | have a Turing machine. And let
us say | have a PDA. | want to ask whether this Turing machine and this PDA recognize the
same language. So, how do we specify the Turing machine as an input and the PDA as an
input? So, these kinds of things like how to specify inputs. | want to just talk about that and

some more details.

So, one point is that so far, when we talk about Turing machines, we could go into various
depths of detail. So, the most detailed is that | can talk about the transition functions &, states
q;, individual transitions, when it goes one step right and writes a symbol B and so on or one
step left and so on. So, this is at the level of state and transition function, we will not be doing

this level. The other one step higher level is about head movements.

So, you scan the input, go to the rightmost end, and then you put a symbol there, then you come
back. That kind of detail where you specify what the heads do and how you plan to change the
tape content etcetera, or how you plan to verify the tape contents. Even this level we are not
going to be talking about from now on. From now on our discussion is going to be at a high
level where we describe the algorithm in just English. So, we will say that you take the input

and then you check something.
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So, for instance, given a graph. How do we specify a graph as an input. So, you may have seen
in data structures, and even in one of our previous lectures, we talked about this way to specify
a graph called the adjacency matrix. So, given an input string, we want to verify it is a proper
adjacency matrix. So, it is simple, we can just check whether it is a square so the number of

entries is a perfect square.

So, the matrix will be entered as let us say all the entries of the matrix. So, if itisann xn
matrix, all the n? entries will be provided serially. So, the number of entries is a perfect square
and you also have to check that there is symmetry of the matrix. So, the adjacency matrix of
an undirected graph is going to be symmetric. This also | think | mentioned two lectures back.

So, you also have to check whether the ij¢" entry is equal to the ji*" entry. So, this is how you
would verify whether a given input string corresponds to an adjacency matrix of a graph. So,
this is how we will deal with things. So, what we are going to do is to not talk in the level of
the machine or at the level of like head movements etcetera. We are only going to be talking

about high level unless we have to go into the machine level detail.

So, for instance, another thing that you can ask is given an input string, which corresponds to
a graph. Does this correspond to a connected graph? Is this graph connected? So, we know
graph algorithms from the algorithms course. We can do traversals like breadth first search or
depth first search. So, of course, we can only do it if the thing that is given to us is actually

corresponding to a graph.

So, we first check whether the input corresponds to a graph. If it is not even of the proper form,
if it is not a 0 1 adjacency matrix then we immediately reject it. Let us say if it isa 0 1 string,
but it does not correspond to an adjacency matrix then also we reject it. If it corresponds to a
graph now, we know what graph it is and then we can execute the breadth first search or depth
first search.

And we accept if it is connected, reject if it is not connected. Another problem like given an
integer, is it a prime number. So, these are all questions that we can ask. And like | said before,
we can also ask questions like given a DFA does it satisfy some property, given a Turing
machine does it satisfy some property. So, we will have to encode the given DFA. We will

have to provide the DFA as an input or provide the Turing machine as an input.
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So, how do we encode? You could encode in many ways, but one way is you can have this
encoding with zeros for the input symbols. So, this corresponds to the encoding of the input
symbol. So, blank is given the encoding 0. First symbol, let us say a,, is given the encoding
00, a, is given 000, a5 is given 0000 and so on. So, how many of our input symbols are there

we could have that.

And similarly, accept state g is given 0, reject state q,.; is given 00, start state g is given
000, then q, is given 0000, g, is given 00000 and so on. And so, zeros are used to encode
symbols as well as states. Now, if you want to encode a transition function, let us say like this,

(qi aj) = (qp, as, R). Meaning when you read a; from the tape.

And when you are in state g;, then you write the symbol a; onto the tape. You go to state g,
and then move one step right. So, this one we can encode it like this. So, g; is denoted by 0+3,
i + 3 zeros because if you see g, has four zeros, so g, will have five zeros and g; will have
i + 3 zeros. a; is denoted by 0/*1. So, a, has two zeros, a, has three zeros, so a; will have

Jj + 1 zeros.

And then g, will have p + 3 zeros, as will have s + 1 zeros. And | am using 1’s as delimiters.
So, | am explaining how to encode this transition function. So, these 1°s are delimiters. And
finally, we have the right movement. Right is denoted by two zeros. So, | have denoted left by
0 right by 00 etcetera. So, this entire string denotes this rule that is highlighted, the transition

function of that Turing machine.

8(ai-a;) = (ap.as R)
| Oi+3 | 0j+1 I or+3 | 0st1 | 00 |

So, like that, this is just one snippet, one part of the Turing machine. So, the entire Turing
machine set of rules can be encoded in this manner. So, the point here is to convey that this can
be done, not really get into all the details, but this can be done and we can do it. So, from now
on, we will just assume it can be done. Similarly, we can do so even for deterministic finite

automata or pushdown automata. We can encode in the similar way and we can ask questions.

So, I can ask like given a Turing Machine M, so | can give it as input, | can ask does this Turing
Machine accept only palindromes. So, it is a yes, no question. Does the Turing machine only

accept palindromes? Or | can ask, is there any palindrome that is accepted by this Turing



machine? Or I can give a Turing Machine M and string w. Is this string w accepted by this

Turing machine?

I can ask these questions. | could ask questions of DFAs, NFAs etcetera. So, some languages
have some names. We will see more of them in the upcoming lectures in the upcoming weeks.
So, Apra IS a language where you are given a DFA and a string and you are asking whether
this DFA accepts the string. So, it is the set of all pairs B w, where B is a DFA that accepts w.

So, this is called Apg,.

Apra = {(B,w) | Bis a DFA that accepts w }
Anra = {(N,w) | N is a NFA that accepts w }
Ary ={(M,w) | M is aTM that accepts w }

In fact, the language that | described earlier here. Given a Turing Machine M, does M accept
w this is denoted as Ary,. It is the acceptance problem of a Turing machine. So, this Apg4 IS
acceptance problem of a DFA. Similarly, we can ask Ayr,4, does a given NFA accept a given
string. | could ask Epgy, it is like the emptiness problem. Epr,4, given a DFA is the language

accepted by this DFA the empty language.

Eppa = {(A) | Ais a DFA,L(A) = ¢ }
EQprs = {{A,B) | A, B are DFAs,L(A) = L(B) }

| could ask EQpr,4 the equivalence problem, given two DFAs are they both equivalent. Are the
language recognized by them the same. So, EQpr4. | could ask the acceptance problem for a
context free grammar. Given a grammar G and a string w is a string w generated by this
grammar. So, | can ask all these kinds of questions. So, the point that | want to say is that for

almost any question we can encode and post it to the Turing machine.

And a Turing machine can do some processing or some algorithm, and if such an algorithm is
possible, it may be able to provide such an answer. So, in computability theory, we are going

to be asking questions of this type, can we, so we started by asking this Hilbert’s 10th problem.
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So, given a polynomial, can we tell whether it has an integer root or integer solution? And then

we learnt that this is an undecidable problem meaning there is no way you can write an

algorithm for it. There is no way you can build a decider for it. So, now in the upcoming

lectures, we will ask questions like this. Like is Apr4 a decidable problem.

Given a DFA and a string can we tell whether this string is accepted by this DFA. Given a

Turing machine and a string, does this Turing Machine accept the string. Is this Ay, a

decidable problem. So, we are now going to get into decidability undecidability theory. So, this

was a precursor to that.
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So, in order to understand that we first formalize the notion of algorithms, which we said is
going to be deciders.
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And we stated the Church-Turing thesis. Now, we are explaining how to and how almost
anything can be specified as an input to a Turing machine.
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And in the next upcoming lectures, we are going to focus on these languages like these. We
will see whether they are and will try to understand whether they are decidable, whether they
are recognizable, etcetera. So, we will see that there are languages that are not decidable, there
are languages not even recognizable. So, surprising, as it may seem there are such languages

too. But with this, we conclude week 6. This also concludes Chapter 3 in the textbook.

So, in week 6, we saw variants of Turing machines. We saw the Church-Turing thesis, which
is in this lecture, and we set the stage for the decidability theory that is going to come in the
remaining weeks. So, that is all I have for you in Lecture number 32 and in week 6. So, see you

in week 7, thanks.



