
Theory of Computation

Professor. Subrahmanyam Kalyanasundaram

Department of Computer Science and Engineering

Indian Institute of Technology, Hyderabad

Formal Definition of a Turing Machine

(Refer Slide Time: 00:17)

Hello and welcome to lesson 27 of the course Theory of Computation. So, we completed

chapters 1 and 2, which talked about regular languages and context free languages. In this

lecture, we will start with Turing Machines. So, we saw regular languages and context free

languages. So, we saw that regular languages used machine models like deterministic finite

automata and non-deterministic finite automata. In context free languages we saw pushdown

automata.

In chapter 3, we see Turing machines. So, which are actually an abstraction of modern-day

computers. As we will see, these will be more powerful than the models that we have seen so

far. And so, this is the beginning of the computability theory part, so, at the beginning of the

course, you may recall that I had promised that the goal of the course is to understand

computation and to see what can be computed and what cannot be computed.

Surprising as it may seem, there are things that even computers cannot do, which we think are

quite powerful and can do all sorts of computations, there are questions that even computers

cannot answer even if you give them all the information and all the time in the world. So, let

us see how the Turing machines differ from the automata that we have seen so far.

So, they differ in 3, 4 important aspects which I have listed down here. So, in many other cases

we have a state control and a tape which contains the input. So, if you recall in DFAs NFAs,

PDAs, etcetera. just one input symbol is read in each step or sometimes there is an ϵ transition,

but it is just, the input is just read and at the end if we are an accepting state we accept if you

are not an accepting state we do not accept. So, the first difference is that we have a read and

write head.

So, there is an input which is given in some tape and the head can read as well as write. So,

when you read the input, it can also write something onto the tape, it could overwrite the

contents of the tape, it could erase the contents and write something there. So, the first

difference is that we have a read/write head. The second difference is that in PDAs and NFAs

and DFAs, we just read the input symbols one by one till we reach the end and then that is it.

If we are at an accepting state at the end, we accept. Here, the head could move left or right.

So, there was no concept of the head moving to the left and right in the DFA or in PDA. So, in

Turing machines, the head could go to the left or to the right it could… so, it could take any

trajectory based on how the Turing machine is programmed. The next thing is that we have an

infinite tape. So, in DFAs, NFAs, etc. we had just the input given and that was it, there was no

notion of extra space or anything. Here we have an infinite tape and a tape that extends to

infinity on one side.

So, there are different models, which can extend to infinity in both directions, etc. But this is

the first model that we will see and we will stick with this model for most of the time. So, the

left side is bounded and the right side extends to infinity. And finally, we had accept states in

DFAs and NFAs and PDAs.

So, it was like this: we do the processing, you may be jumping across many states, you may go

to the accept state, but maybe there is more string remaining. What really mattered is where we

are at the end of processing the string. So, if at the end of the processing the string, if we are at

accepting state, we would accept that string. It does not matter if in any intermediate state we

happen to move to an accepting state. It does not matter, all that counts is whether we are at an

accepting state at the end of processing.

However, in Turing machines, there is a difference, we have special accept /reject states, which

immediately come into effect, meaning if you ever move to an accept state, that is it. The

computation is over and we have accepted the input. If we move to a reject state, again, that is

it. The computation is over and we reject the input. So, these are the 3, 4 distinctions that we

have in Turing machines.

(Refer Slide Time: 05:38)

𝐷  = {𝑤#𝑤 | 𝑤  ∈ {0,1}*}

So, at the end of the previous lecture, we mentioned this language 𝑤#𝑤, where 𝑤 is a binary

string. And we said that it is not a CFL. So now let us try to see how a Turing machine can

recognize this string. So, what the Turing machine will do is the following. So, I have written

the string here. So, one string is 01100#01100. And as you can see, this string is in the language

because it is 01100 which is w, hash, followed by the same string. And these things over here

are blank symbols, because there is an infinite tape.

After where we have the string, it is entirely blank symbols. But that does not matter, it is like

blank symbols, which are distinct from the inputs. Let us see how a Turing machine might try

to see whether this is part of the language that it has to recognize. So, what it will do is, it will

start from the left side and see the first symbol in the left side. So, the first symbol in the left

side is a 0. So, it can strike off the 0.

So, what do I mean by strike off the 0? So, it can replace the 0 with some symbol let us say

like, like this is 0 with a strike off or a you can replace it with an X or something like that. So,

when I say strike off, it means that it has to replace it with something which says that it has

already been read and then the Turing machine has to remember that it has struck off a 0 and

then it starts moving to the right side. Slowly, it starts moving to the right side and it will keep

moving till it encounters the hash symbol.

So, the hash symbol is this, #. So, once it reaches the hash symbol, it remembers that it had

struck off a 0, then it sees the next symbol. So, the next symbol is 0, and the struck off symbol

also was 0. So, now it strikes this 0 off also and it continues. So, now it comes back to the left

side. Now, from the left side, it checks for the first symbol which is not struck off and the first

symbol that is not struck off is 1.

So, now it strikes off 1. It remembers that it has struck off 1 and then it keeps going to the right

side till it encounters the hash symbol. Once it reaches the hash symbol, it now starts checking

for the next symbols and it sees a 0. It sees something that was struck off and the next symbol

that is not struck off is a 1. So again, it strikes up this one. So, basically the first 2 symbols 01

and the 01 after the hash have been kind of matched.

Now, it comes back to the left side, the first symbol that is not struck off is 1, it crosses the

hash the first symbol that is not struck off is 1, so things are fine. It comes back, the first symbol

that is not struck off is 0, fine. Suppose it happens so that the symbol that we have here was a

1. So, now it will come to the left, the first symbol that is not struck off is 0, it remembers that

it struck off a 0. The first symbol that is not struck off on the right side of the hash is a 1, so

now it knows that the symbol that it struck off on the left side was 0, and the symbol that we

are seeing now is a 1.

We know they are not equal. So, then it will be rejecting this. So, it knows they are not the

same. And for that matter, it did not wait up to like. So now, if it is indeed a 0, then it will check

whether it is 0 on the left side and check whether it is a 0 on the right side and strike off and

then it will come back to the left and see whether there is any symbol to the right that is not

struck off. And it sees that everything is struck off till the hash so the first symbol that it sees

from the left side that is not struck off as a hash and then it goes to the right side and sees if

there is any leftover symbol that is not stuck off. So, suppose there was a symbol here which

is 0.

So, that means that the string to the left string to the left of the hash is not the same string to

the right to the hash. So, this means this will get rejected because there is something to the left

of the hash. Suppose, there was no 0 here and if it was just blank. In this case it will get

accepted, because everything to the left is struck off and it matched with everything to the right

and everything to the right is also struck off.

But, if you had some other things like let us say if you had 0110#01100 this will not be accepted

because it will strike off 00, 11, 11, 00 but then it will see a 0 that is left, not struck off. And

same thing, if it found something like let us say 01101#0110. Suppose this is the entire string.

Again, it will strike off 0 and 0, 1 and 1, again 1 and 1, 0 and 0 and then it will come and strike

off this 1, the last 1 in the left side, but then when it comes to the right side, there is nothing to

match it with. So, even in this case, it will get rejected. So, these two will get rejected. And an

even simpler string like I will just write, let us say, 01100#00100.

So, even this will get rejected because the first 0 will get struck off with this. This one, the

second symbol one will not get struck off because the second symbol after the hash is a 0 which

does not match. So, this will also get rejected. So, this is how a Turing machine may operate

on a language like this. So, if the Turing machine is trying to identify that language, this is what

it has to do. And the same thing I have written in a bit of detail. So, what does it do?

It strikes off the first position from the left side which is not already struck off. It remembers a

symbol that was struck off, moves to the right, goes past the hash symbol and cross checks with

the first symbol to the right of the hash that is not struck off. If it is not the same then it rejects

else it continues or repeats. Suppose it struck off something in the left, but there is no symbol

to the right side, then it rejects.

Suppose it strikes off something on the left, but there is no hash symbol at all. If there is not

even a hash symbol, then it is not even of this form. Even then you reject. Now, finally, if all

the symbols to the left side have been struck off and it has matched with whatever is struck off

on the right side, it is still possible that it is not in the language because there could be extra

symbols on the right side.

So, check if there are extra symbols. If there are extra symbols you reject. If there are no extra

symbols, it means whatever was struck off from the left matched with whatever was there in

the right. In that case you accept. So, these are the kind of intricate details on how a Turing

machine may operate.

So, we can formally define the Turing machine and all of this. Like we saw the transition

function in DFAs, and NFAs, we can define a transition function for the Turing machines as

well. And so that these kinds of rules, so, here I have written the proceedings or the way the

Turing machine has to operate in English, but this is kind of high level and we can encode that

into the rules of the transition function in a bit of detail. But that is kind of extremely intricate

and cumbersome to do.

The point is that almost anything that we want to do like this, where we give instructions, can

be accomplished. So, we will not get into those kinds of details. We will not get into minute

details as to how we accomplish these rules in a Turing machine. We will just give high level

description such as this. So, the details are tedious, the main point that I want you to know is

that all of this can be accomplished.

(Refer Slide Time: 15:10)

So, one small question at this stage. Suppose we want to recognize this language,

{𝑤𝑤 | 𝑤  ∈ {0,1} ∗}. So, it is the same as D here, but there is no hash symbol. So, in our

algorithm here, we try to go past the hash and then look for the hash etcetera. If there is no

hash, how will it recognize this? How can a TM recognize this? So, it has to identify the

midpoint. How will it identify the midpoint? So, this is one thing that you can think about.

Perhaps it can do some kind of counting or something like that.

This is something that I want you to think about. So, what it can do is: one is that it can use a

counter of some sort, it can count how many symbols are there overall, and then it can identify

which should be the midpoint. If the count is an odd number, then you know that it is not of

this form, because 𝑤𝑤 means a string is repeating. So, the length is even. If the length is even,

let us say it is of length 20, then we know that the symbol, the point after the tenth symbol, is

the midpoint. Once we identify the midpoint, it is pretty much the same.

(Refer Slide Time: 16:43)

So, formal definition of the Turing machine. This is in fact a Deterministic Turing machine.

There are many variants of the Turing machine that we will see. There is a Deterministic Turing

machine. And again, I am not writing the definition in full detail, but just the main parts that I

want you to focus on.

So, Turing machine is a 7 tuple, (𝑄, Σ, Γ, δ, q0, qacc, qrej). δ is a transition function, then 𝑞0

which is the start state, then 𝑞𝑎𝑐𝑐 which is a single accepting state. Again, we do not have

multiple accepting states. When we have to accept, we just move to an accepting state. Then

𝑞𝑟𝑒𝑗 which is a single reject state. 𝑄, Σ, Γ are finite sets. 𝑄 is the set of states, Σ is the input

alphabet. Input alphabet means, the strings that are computed or processed in the Turing

machine, what are they comprised of? Σ. And Γ is the tape alphabet.

So, in the tape, we may use more symbols. So, everything that is in the input alphabet has to

be in the tape alphabet. But there could be other symbols in the tape alphabet. 𝑄, Σ, Γ are finite

sets such that Σ ⊆ Γ, because input alphabet, we should be able to write all the input on the

tape. And this blank symbol is part of the tape alphabet. So, this blank symbol which is used to

denote that a tape location is empty and the blank symbol is not part of the input alphabet. We

cannot have a blank as an input symbol. Then 𝑞𝑎𝑐𝑐ept and 𝑞𝑟𝑒𝑗ect have to be distinct.

Σ ⊆ Γ, ⊔ ∈ Γ, ⊔ ∉ Σ

𝑞𝑎𝑐𝑐ept ≠ 𝑞𝑟𝑒𝑗ect

𝛿(𝑄, Γ) → 𝑞 × Γ × {𝐿, 𝑅}

Because both of them are different. And this is how the transition is defined. So again, it is a

deterministic Turing machine. So, it is a function. If you are at a certain state q, and you read

something from the tape in Γ, then we go to another state, you write something onto the tape,

something like PDA because in PDA also you can read the input and the stack but here there

are not two inputs with a stack. There is only one input, there is no stack. But you could also

write onto the stack.

So, like that you could also write onto the tape. And then L, R which denotes left or right. So,

this indicates how the head should move. The head could move left or right. So, suppose you

were in state 𝑞4 and let us say this is the input tape. The input tape is let us say 0 2 3 1. And its

head is currently pointing at 3. Suppose we have the rule 𝛿(𝑞4, 3) = (𝑞6, 0, 𝑅). In that case

what happens is we will use a different color. In that case, what happens is 0 remains as it is, 2

remains as it is. So, the 3 is replaced by 0. So, it reads a 3 and replaces it by 0 and then the next

cell is 1 that is all the same. And if the tape head moves to the right.

So, which means the tape head is to the right and the state is 𝑞6. So, if the rule 𝛿(𝑞4, 3) was to

write 0 move right and then go to state 𝑞6 then this would be the next situation. If instead the

rule was this, (𝑞10, 1, L) which means to go to state 𝑞10, write 1 and move left then it would

have been 0 2 1 1 and 𝑞10 and you move left.

So, you were pointing to the third location at the number 3 now, you move left and you write

1 here which is written here this 1 is new, and then you move to the left and you are at state q

10. So, suppose the transition rule was delta 𝛿(𝑞4, 3) = (𝑞10, 1, L) then this is how the Turing

Machine tape will move. So, this is how we define the transitions.

And how does Turing Machine… so again, as I said, whatever we mentioned here, strike off

the first position and then go to the hash then go to the right side and see if they are the same

etcetera. All these things, all these things can be accomplished by states and transitions, but we

will usually not be getting into that kind of detail, because it is getting too cumbersome and

difficult to manage.

(Refer Slide Time: 22:10)

So, some more things. So, at the beginning of computation, let us say you want to give

something as an input to the Turing machine, just like you give an input to the DFA or an NFA.

So, then you keep the input in the left side of the Turing machine. So, suppose the input is

0011. So, then, you write 0011 on the tape, followed by blanks.

So, the rest of the tape is empty. And the head points to the leftmost location and you are at the

starting state, which is 𝑞0. And then it may read, it may write, it may move to the left or right

or whatever till it goes to an accept or a reject, based on the transition rules. So, 𝛿 does all this.

And as I said, computation starts from the leftmost end of the tape. And there is one small

point. So, here, we explained if it tries to move right from this point 0, you go here. If it goes

left we go here, but if we try to go left from the leftmost location, we just remain there because

there is nothing more to the left side.

And what like I said before the computations end, when you reach the accept or reject state,

but it is also possible that neither state is reached neither accept nor reject, this is called an

infinite loop situation. So, just like in a computer program, you could have an infinite loop,

which you can never come out of. Like that, even in a Turing machine, you may end up in a

situation where you just are doing something again and again or something repeatedly without

ever going to accept or reject.

So, there are 3 possible ways a Turing Machine computation may proceed. One is that it accepts

and ends. Another one is that it rejects and ends. Third one is that it neither accepts nor rejects

it could just continue computation forever. So, this is called looping, like an infinite loop and

accept and reject are called halt, because once you reach accept or reject you stop the

computation and you end.

(Refer Slide Time: 24:41)

So, the next thing is a definition called configuration. So, suppose there is a Turing machine

and suppose it has some rules. I am computing and I reached a certain point of computation.

Now I just want to tell you where I have reached so that you can resume the computation. So,

what are the information that I have to give you so that you can continue the computation.

So, I cannot tell you the input, because I do not want you to start from the beginning. But now

the tape contents may have changed. I may have overwritten on the input. I may have reached

some other symbols. I may have like written over things multiple times. So, it would be

simplest if I transfer the contents of the tape to you. Not just that, I should also tell you which

state I am in and which position of the tape the head is pointing to.

So, if I can tell you these things, then you can continue from wherever I have stopped. So, the

configuration contains exactly this information. It contains the state, the head position and the

tape contents. So, once I tell you all these 3, you can continue the computation from this point.

So, in this picture over here, the state is 𝑞𝑖 head position is 4th, it is pointing to the 4th symbol

and the tape contents is 101011 followed by blanks. Once I tell you this, you can start

computation from this particular point and then see where it goes. It does not matter how you

reached how I reached here.

So, these 3 pieces of information together are called configuration- state, head position, and

tape contents. Maybe I will just put a box because these 3 things are called configuration and

it is basically the information that I need to give you so that you can resume the computation.

Usually, we denote configuration in this kind of notation. Basically, we write the state in

between the input string. So, we know 101011 is the input. So, I write the state in between.

So, 𝑞𝑖 is the state I write it in the 4th position, this denotes that 𝑞𝑖is the state and the head is

pointing to the 4th location. So, this is one way to denote the configuration instead of telling

state 𝑞𝑖, head position fourth and tape content 101011, I can just give this string in which the

state is inserted into the fourth position. So, then you know the state you know the head position

and also you the rest of it gives you the tape content.

(Refer Slide Time: 27:58)

So, we say that a configuration C1 yields a configuration C2 if from the configuration C1 you

apply the transition rule and go to C2. So, suppose, you have this configuration, u a 𝑞𝑖 b v,

which means, you have u, you have a, you have b you have v and 𝑞𝑖 is the state and you are

pointing it at the location of b.

Now, suppose the rule is that, if you are in state 𝑞𝑖 and you are reading b from the tape, then

you have to write c, you have to go to state 𝑞j, and move left. Suppose this was a rule, if you

were in 𝑞𝑖 and you are reading b you have to move to the left go to state 𝑞j and write c. Suppose

this was the transition function this configuration, we will move to this configuration.

So, where b is overwritten by c and you move left and the state is 𝑞j instead of 𝑞𝑖. So, b is

changed into c and the tape head has moved one step to the left. So, we can say that u a 𝑞𝑖 b v

this configuration, which is what is given here. This is u a 𝑞𝑖 b v yields u 𝑞𝑗 a c v. So, notice

that the state in the configuration came one step to the left because the head has moved one

step. So here u and v are some strings and a b c are single symbols of the tape alphabet.

Now one question. Suppose the rule was, instead of 𝛿(𝑞𝑖, 𝑏) = (𝑞𝑗, 𝑐, 𝐿). If it gave (𝑞𝑗 , 𝑐, 𝑅),

then everything would have been the same. But this is what I have written here. Instead of

𝛿(𝑞𝑖, 𝑏) being (𝑞𝑗 , 𝑐, 𝐿) if it was (𝑞𝑗 , 𝑐, 𝑅) so, this L became R, everything would be the same

it would override it with c, it would enter a state 𝑞𝑗, but instead of pointing at a it would point

at the first symbol of this place that I have depicted here. If the rule was of 𝛿(𝑞𝑖, 𝑏) = (𝑞𝑗 , 𝑐, 𝑅)

then this would be the configuration u a c 𝑞𝑗 v.

So, we say that the configuration C1 yields C2 if C2 is a successor configuration of the

configuration C1. And notice that we are in deterministic Turing machines. There is no non-

determinism. So, given this particular situation, when I said this particular situation, the next

step is clearly defined. So, we know that u a 𝑞𝑖 b v we know that this yields u 𝑞_𝑗 a c v. And

that is the unique configuration that it can yield. In a deterministic Turing machine there is only

one clear configuration that it yields, so we say this.

(Refer Slide Time: 31:57)

Now finally, maybe I will just conclude by saying when does a Turing machine accept a string.

If we say the Turing machine accepts a string if there are a series of configurations such that…

this sort of thing we have seen in DFAs, NFAs, PDAs, etcetera. So, the starting should be

proper ending should be proper and all the steps in between should be proper. We say that

Turing machine accepts w if C1 is a starting configuration. Starting configuration means the

entire input string should be in the input tape and we should be at the starting state.

So, the input starting configuration is 𝑞0 w, I think we mentioned this earlier. Here we had

mentioned it, if the input was 0011 and 𝑞0 is the starting state, the head should point to the

leftmost and the input should be the only thing in the tape. So, C1 should be the start

configuration and for all these pairs C1 C2, C2 C3 etcetera. We want C1 to yield C2, C2 to

yield C3 and so on. So, this should be a valid sequence of configuration so, that they are all

valid successes of each other. 𝐶𝑖 → 𝐶𝑖+1 for all 𝑖 and finally, 𝐶𝑘 should be an accepting

configuration. What do I mean by accepting configuration? It is a configuration which has an

accepting state.

So, every configuration contains a state. So, the state in the configuration 𝐶𝑘 should be the

accepting state. So, once we have these 3 you start correctly all your moves are proper and end

with an accepting state then the string is accepted and the language recognized by the Turing

Machine M like before it be denoted 𝐿(𝑀), it is a set of all strings which are accepted by the

Turing machine.

So, once again, a Turing machine accepts a string if it starts with the starting configuration,

which has the starting state in the state and the input string in the input tape and that is the start

configuration. And for each of the, 𝐶2, 𝐶3 etcetera are valid successors of the previous one.

And finally, 𝐶𝑘 is an accepting configuration. And the language recognized by the Turing

machine is a set of all strings that are accepted by the Turing Machine. So that is it as far as

this lecture is concerned. So, we defined what is Turing machine. And in fact, what we saw is

a deterministic Turing machine.

So, later we will see many, many variants. So, we will see non deterministic Turing Machine

we will see Turing machine with multiple tapes, etcetera. But right now, what we saw was a

deterministic Turing machine. And we saw the distinctions with respect to PDAs and NFAs

etcetera. It has read write head, which can move left or right, we have infinite tape and special

accept, reject states. We saw what is the configuration, we saw a formal definition. We saw

what is the configuration, it contains 3 things- state, head position, and the tape contents.

We saw this notation to denote the configuration, which is the tape content where the state is

inserted in the head position. And we saw the conditions for a string to be accepted in a Turing

machine. So, this computation has to continue. Initially, you start with the input in the tape,

and the head to the leftmost point, and the start state, and then you just let it run.

If it reaches an accept state it accepts, if it reaches a reject state, it rejects. And if it does not

reach either, it does not accept or reject, but it just continues, it is a loop and the set of all strings

that are accepted is called the language recognized by the Turing machine. And that completes

this lecture, lecture 27. That also completes week 5 lectures. So, in week 5, we saw the

equivalence of PDAs and context free grammars. We saw pumping lemma for context free

languages. And we saw the beginning of introduction to computability theory, which is the

definition of Turing machine. And we will see more about computability theory and Turing

machines in the upcoming week, which is week 6. So, see you in week 6. Thank you.

