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Hello, and welcome to Lecture 25 of the course Theory of Computation. In this second chapter

so far, we have seen context-free languages. And we have seen two ways to realize them,

context-free grammars and push down automata. And we saw that they are equivalent and we



saw examples for grammars as well as push down automata. In this section, which is the last

section of this chapter, we are going to see pumping lemma for context-free languages.

So, there are lots of similarities with the pumping lemma for regular languages that we had seen

at the end of Chapter 1. So, what is pumping lemma? It is a necessary condition for a language to

be context-free. So, just like the pumping lemma for regular languages was a necessary condition

for a language to be regular, this is a necessary condition for a language to be context-free.

And, so which means if a language is context-free, the conditions of the pumping lemma has to

be satisfied. And if we are able to show that the conditions of the pumping lemma are not

satisfied then we can infer that the language is not context-free. So, we can use pumping lemma

to show that the languages are not context-free. So, you can use it to show languages are not

context-free. We cannot use it to show that languages are context-free. To show languages are

context-free, we need to construct a PDA or CFG or something, but we can use pumping lemma

to show that it is not context-free.

And once again this was discovered by Bar-Hillel, Perles and Shamir in ‘61. In fact, the pumping

lemma for regular languages also was a special case on this. So, this is by the same people. So,

the structure or the statement of the pumping lemma and the way it is applied, all of these are

very similar. So, there are only some minor differences in the way the pumping lemma for

context-free languages differs from pumping lemma for regular languages. Many things are very

similar. So, we will highlight the differences, even in the statement of the pumping lemma itself

and in the way we apply it.

So, pumping lemma says that if a language A is a context-free language, then there is a pumping

length p, such that if you take any string s in A whose length is at least p, s is of length at least p,

then we can partition s into five parts uvxyz such that the following three conditions are satisfied.

So, if A is a context-free language there is a pumping length, and if you take any string in the

language which is of length at least the pumping length, then you can partition that string into

five parts uvxyz meaning as a concatenation of these five strings such that the following

conditions are met.

Condition 1 is that is in A, for all i. Condition 2 is that the length of is strictly

greater than zero. This means that both of them cannot have zero length. Or in other words, both

https://www.codecogs.com/eqnedit.php?latex=uv%5E%7Bi%7Dxy%5E%7Bi%7Dz#0
https://www.codecogs.com/eqnedit.php?latex=vy#0


of them cannot be empty strings. Either has to be a non empty string or y has to be not an non

empty string. And finally, we have the length of which is the middle part is at most p. So,

these are the three conditions. So, let us just contrast them with the conditions of pumping

lemma for regular languages.

In the case of regular languages, we had to partition s as , into three parts, not five parts.

And Condition 1 was that is in A, for all i. Condition 2 was that length of v was strictly

greater than zero, meaning v was not an empty string. I do not recall if I used or . I

think I used , so maybe I will just replace it with , s is equal to , Condition 1 was

that is in A, 2 was that this length of y is strictly greater than zero, meaning y is not empty,

and 3 was that the length of is at most p, the length of it xy is less than or equal to p. These

were the three conditions in the pumping lemma for regular languages.

So instead of five pieces, we split into three pieces. First part was that is in A for all i. So,

here it is five parts and we have, just to contrast, we have, instead of , we have . So,

the second and the fourth parts are going to be repeated, how many ever times, as per the count

of i. And here, in regular languages we had the length of y is strictly greater than zero.

Here, we are saying that is strictly greater than zero, meaning when we had y should be non

empty in regular languages here, we are saying either y or v should be not empty. And in regular

languages we have length of xy at most p, here we have vxy was at most p. So, there it was xy

which was the initial two parts, here which is vxy which is the middle three parts. So, there are

some similarity. This is, the structure is certainly similar. But in the actual statement itself there

are some small differences
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So, let us see why this is true. So, in pumping lemma for regular languages, we use the finiteness

of the DFA. So, we said that A is regular. So, there is a finite automata DFA for A. And then we

said that if the length of the string is greater than the number of states then it has to revisit some

state. And this revisiting some state was turned out to be the middle part of the string. So, now

when you revisit a state, you can revisit it again and again and again. You can go through the

same loop. This was the high level idea of the proof of pumping lemma for regular languages.

Basically, if the length of the string is long enough, some states have to be revisited because you

have only a finite number of states and by using pigeon hole principle. In case of context-free

languages, we use the finiteness of the context-free grammar. Not the DFA, not the PDA but the

finiteness of the grammar. Basically, the idea is this, if a string is long then we may have to apply

the rules many times because every rule may have a limited length of sring appearing in the right

hand side.

So, if the string is long, we may have to apply the rules many times. So, the derivation may be

long. And in a long derivation, because you have only fixed number of variables, some variable

must come again. So, some variable must repeat. And this is what we exploit to get the pumping

lemma. So, if the string is long, the derivation has to be long, when I say derivation has to be

long, I mean many steps. And if there are many steps, we cannot have all distinct variables

because the number of variables is bounded. So, some variable must come again.



And this we will exploit to show that these conditions should be met. So, in other words, suppose

T is the starting variable and T derives s. And what we mean is this. So, at some stage, let us say,

you got some string like, this where R is some variable and u and z are some strings which

consists of both variables and terminals or let us say u and z are entirely terminals, and R is a

variable.

Then let us say, because the string is long, this R yields again. So, which means that the R

yields something that has an R again. So, if the string is long, the derivation has to be long, ans

some variable R must derive itself at some point. So, that is what I have written here. R derives

. And then the middle R derives x. So, that is what is happening, and this is what we will

exploit for the pumping lemma.

The key point is this, the fact that R derives itself. So, this is what we will use. So, now one may

ask why not derive R. So, we got from R but we could use the same thing again. So, for

instance we can do this, we said T gives and R gives . So, the middle R gives .

Now, what if this R again gave .

And we may do this again. So, you have at the beginning and at the end, and this

middle R, is going to give . So, we may use that rule. So, if R is able to derive as per

the rules of the context-free grammar, we can derive, we can apply it again and again. So, this

means I can get something, some string like or I may be able to get something like

this let us say T gives , now instead of R, I can put , and again instead of this new R, I

get again and now I am going to replace this findla R by x, we know it is allowed. above

the R was replaced by x. So we get . Or I could do something else, I could do

something like T gives . This is one possible derivation. And now directly, instead of

deriving , I can derive x from R. So, I could get . So, notice that now by these three

derivations, these three derivations, I got three strings. One is , two is ,

another one is .

So, what we are saying is that if some R derives itself, the part v and y, I could repeat it, in the

original string v and y repeated or came up just once, but I could have it two times or three times

or even zero times. So, the three strings that we got here are, or or
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and so on. So, all of these things can be derived from the starting variable as per the rules of the

grammar. So, all these strings may be derived from the CFG.

So, just because we know that R derives v R y and R derives x, we can combine them in different

ways to get these things. And that is pretty much the high level idea of the proof of the pumping

lemma. So, the only things that we need to formalize here is, I just said a hand wavy thing like if

the string is long, the derivation is long and then some variable must be repeated.

So, once we kind of quantify these things, what do we mean by the string is long, and what do I

mean by the derivation is long, and how can we, conclusively, say that some variable must derive

itself. So, these things, once we kind of formalize, the proof is there. That is the proof.
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So let us go to the formal proof. Let b be the maximum number of symbols on the right hand side

of any rule. If you look at all the rules of the grammar, A gives xyz or A gives 0 A 1 or

something, so look at the right hand side and see how, what is the length of the right hand side,

how many symbols does it contain? And I say symbols, I am talking about both variables and

terminals. So, let us call it b.

For instance, if it is a Chomsky normal form, we know that any rule, the right hand side has at

most two variables, or a single terminal. So, then we know that b is 2. In case of a general

context-free grammar, I am just calling it b. So, it could be 3, it could be 10, it does not matter.

We just want a finite number which we can define as per the grammar because a grammar has a

fixed number of rules. You look, go through all the rules and see which rule has a maximum

number of symbols on the right hand side and you call that b.

And now, let us note one thing that if the height of the parse tree is at most h, then the length of

the derived string cannot be more than . Let us quickly see why.

Suppose b was 3. So, in one step of the derivation, like from the starting variable, let us say T, I

could get three different symbols and then let us say some of them are terminals, some of them

are variables. So, the worst case is everyone is a variable. They can give rise to let us say three

more variables. And this can keep going. And if the height is let us say h, at the end, we will

generate a string of length 3 power h, because if you look at it after the first level, there are three

symbols, if you look at a second level, there are nine symbols. So, every time it gets multiplied
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by 3, but it need not get multiplied by 3 but it may get multiplied by something smaller, but then

we want to give an upper bound. So we said that the maximum number of variables or terminals

on the right hand side is 3. It could be 2, it could be 1, but this is an upper bound. So, the worst

case is every rule gives three variables, or three terminals or whatever. So, now we get 3 power

h.

So, if the height of the parse tree is h, then the length of the string is at most . So in this case,

every rule gives rise to at most 3 symbols on the right hand side. If it was now, instead of 3, it

was b, then we would get . So, now, let us say the number of variables is given by the

cardinality of V, here V(capital V) is the set of variables. So, denotes the number of

variables.

Now, the pumping length that we get is just . Clearly this is at least . This is

pumping length (p).

So, for any string of length at least the pumping length, to derive that string, the height of the

derivation tree must be at least V+1. So, any string of length at least p, the parse tree has to be of

height at least V+1. Why is this? Because if the parse tree has height V or less then the length of

the string will be or less. But by the choice of the string, the length of string is at least p, and

we know that p is at least . So, the height of the parse tree has to be at least V+1, if not

more. So what do I mean by height of the tree? By height of the tree what I mean is, if you look

at the tree, there is some path that is of length V+1 from the top of the tree to the leaf of the tree,

from the root of the tree which is the top to the bottom of the tree which is a leaf.

So, there is a path of length of at least V+1. So all the root to leaf paths cannot be of length less

than or equal to V, there has to be at least one path, root to leaf path, of length greater than or

equal to V+1. So, it has length greater than or equal to V+1 means that all through the paths all

the intermediate symbols are going to be variables because if you get a terminal, let us say small

a, then the small a cannot derive anything more. So, it stops there. So, we know that all the, all

the labels in the, in this path are going to be variables except for the last label which will be some

terminal, let us say ‘a’ or ‘0’ or something.

So, in the path of length V+1, we have all the labels as variables except one, which is at the

bottom. So, let us say a path of length 3 has four vertices or four dots. So, it may have T,A,B and
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some symbol 0. So, it has three variables and a terminal. So, a path of length V+1 has similarly,

at least V+1 variable and one terminal.

So, in this path of height V+1, so, there are at least V+1 variables and one terminal. But we know

that the grammar has only V variables, size of V by definition is the number of variables.

So, which means that some variable must appear, at least one variable should be there that

appears more than once. And let R be that variable. Pick R to be such a variable that appears

more than once. And if there are multiple such variables, you look at the bottom, you look at the

bottom of the tree. From the bottom, you look at V+1 variables, not from the top, from the

bottom, and from the bottommost V+1 variables, you choose a variable that repeats.

So, there could be multiple variables that repeat, but you pick a variable that repeats in the

bottom V+1 variables of that path. So, this is the choice of the variable. This is how we choose

R. So, this is the key thing. Because the string is long. So, again, let me just say it once again, we

took a string of length at least p, where p is . Because the string is long, the height of the

parse tree is at least V+1, and because the height of the parse tree is at least V+1, some variable

is there that repeats, and let that variable be R.

And if there are multiple such variables that repeat, you choose such a variable that repeats from

the bottom bottom V+1 symbols. So, this choice will matter in some aspect of the proof.
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So, the picture that we have, we have the starting variable T here. At some point, R is derived.

So, when R is derived, the part to the left of R is u and the power to the of R is z. So, if you look

at the derivation till that part, T gives u R and z. But we know R derives itself again, and let us

say R derives, v R y. And the second R derives x. So, now the thing is that we could replace this

gray triangle, with a copy of this, and, this bigger triangle because it is R that is deriving. R can

derive v R y.

So, I could, instead of thegray triangle (refer aboev figures), I could replace the entire triangle

(green + grey). So, now if you see the derivation, the string that is derived is u v v x y y z. I can



again do this. Again, this small triangle can be replaced by this entire triangle. So, I will get v

repeating three times and y repeating three times, u v v v x y y y z.

Or I could even replace the bigger triangle with a smaller triangle. The bigger triangle where R

gives v R y, I can replace with the gray triangle where R simply gives x. So, in this case the

entire string is u x z.

So, now you can see for v and y, how many ever times I want, I can repeat them. So, the number

of times v and y repeat is the number of times we use this replacement rule. We used R gives v R

y once and again R gives v R y. So, we used two times. So, you get u v v x y y z.

In next case we never use R gives v R y. So, you do not have any v or y. So, that is the proof of

the first part of the pumping lemma, which says that for each , is in the language,

which is what we have shown. So, we can kind of divide the string in such a way and get v and y

such that if you repeat v and y the same number of times, all those strings are in A.

So, we chose R to be the variable that repeats from the bottom. On the first derivation of R, what

comes before R is u and what comes after R is z. And when R derives itself, what comes before

R, that is v, and what comes out after R is y. And finally, in the second instance of R, what is

derived by R is x. That is how we get u v x y z.

So, the first part of, the first statement that we can split s into u v x y z such that for all i,

is in A, is verified. And now we have to show that vy is non-empty and vxy is at most

p. So, let us see why that is true.
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Suppose v and y were both empty, then that means in the parse tree that we have (above) , uvxyz

is equal to uxz. So, now which means this parse tree that I have drawn here (below),

this parse tree is a simpler way to derive the same string. This is a bigger parse tree because it

has to derive, it has to allow R to derive itself and so on.

So, which means this is a smaller pass tree. But by our assumption, the parse tree that we chose

was one that was the smallest. But the parse tree that we chose was one which had the smallest

number of nodes. So, if v and y are both empty, that contradicts the choice of the parse tree.

Hence, v and y cannot be both empty. And now we have to show that vxy is of length at most the

pumping length. Let us see why, and we chose R to be something that repeats. So, this is by the

choice of R. We chose R to be a variable that repeats in the lowest V+1 variables of the path. The



height of the entire subtree of R (green + grey) is no more than V+1. We know that in the, even

in the V+1 variables, there is some repeats. This means that for any tree of height h, we already

said this, for any tree of height h, the length of the string is at most .

Which means that R has height at most V+1, so length of vxy is at most . And what is

? is nothing but our pumping length. So, this is exactly what we want.

So, that is it, that completes the proof of the pumping lemma. So, just to give the high level

picture once again, if a string is long, meaning longer than , then the parse tree has to be of

height greater than V+1, which means some, there has to be some path where some variable

repeats. And now in that path, you choose the variable that repeats. So this picture(below) is the

one that guides the choice of the strings uvxyz.

So, from the starting variable to the repeating variable, what is the string that comes before the

repeating variable? That is u. What is the string that comes after the repeating variable? That is z.

And now the repeating variable R derives itself. So R derives some string then next R derives

some other string. So, string that comes before (second R) is v, and the string that comes after

(second R) is y. So, R derives v R y. And finally, the second, in the second repeating of R, what
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is the string that derives, that is derived by R, that is x. And this defines the five variables, five

strings uvxyz, and the three conditions also, we verified.

And that is the proof of the pumping lemma. Again, once again, pumping lemma for context-free

language is very similar to the pumping lemma for regular languages in the way it is stated and

structured, and also in the way it is applied. Just that, the difference is in the conditions itself will

be used to proof that a language is not context-free.

But the way we argue, the structure of the proof etc is going to be very, very similar. And I think

that, we have run enough time, and that completes the proof of statement and proof of the

pumping lemma for context-free languages. And we will see some examples of this in action in

showing that some languages are not context-free in the next lecture, which is lecture number 26.

Thank you.


