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Hello, and welcome to Lecture 24 of the course Theory of Computation. In Lectures 22 and 23,

we have been going through the proof of the equivalence of context-free grammars and push

down automata. In 22, we saw that for given any grammar, we can construct an equivalent push

down automata. In 23, we started proving that given any push down automata, we can construct



a context-free grammar. So, we in fact constructed the grammar in Lecture 23. And in, and there

was some part of the proof that was yet to complete, which we will complete in Lecture 24.

So, the claim was that given a push down automata we can construct a context-free grammar that

is equivalent to that. So, the rules of the grammar were the following. So, given a push down

automata P, the grammar that was constructed included variables like this where we wanted

the variable to derive all the strings that can take the push down automata from the state

to the state on an empty stack. So, this is what the variables were. And the rules of the

grammar were the following, which we said in that previous lecture. So, if are states of

the PDA, and is a symbol in the stack alphabet of the PDA and are from , which means

they are part of the input alphabet, they are symbols of the input alphabet or they could be empty

strings as well.

So, if are states, is a symbol in the stack alphabet and and are symbols in the

input alphabet or empty strings, then if we check if is part of and is part

of , if these two are there then you add the rule gives a . So, is a symbol of

the input alphabet, is a symbol of the input alphabet, and could either or both be an empty

string( ) and is another variable.

And the second rule was that for all the states , we add the rule gives and .

And the final set of rules was that for all the states , we add yields epsilon. So, these are

the three set of rules that we are adding. And for each set, there could be multiple such rules. For

instance, the last rule, for each state in the PDA, we will add one such rule. And what we wanted

to show was that if generates x then x can take the PDA from the state p with empty stack to

the state q with empty stack and the converse of that. So, these are in Claim 2.31, and 2.30 and

2.31. So, first let us try to prove the proof of Claim 2.30.

So, statement is that if generates x then x can take the PDA from p with empty stack to q

with empty stack. So, like I said in the previous lecture, if a string can take a PDA from p to q on

an empty stack, it can also take it from p to q by retaining whatever the stack contents were. So,

this is just to just to recall.
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And the proof is by induction on the number of steps in the derivation of x. So, the claim is that

if generates x, then it can do this. So, how many steps does the generation of x from

take. So, this is the induction. So, before getting into the proof, I just want to say one more thing.

So, the proof of Claim 2.30 and that of Claim 2.31 may seem like long proofs, but they are

actually not that difficult, they are kind of very standard approaches and both of them use

induction, and both of them are fairly straightforward things. So, do not be kind of scared by the

proof or scared by the kind of terminology that is used in the proof. It is basic common sense that

is applied to some settings. So, once you get past the notation and understand what is going on, it

should not be that difficult. So, coming back to 2.30’s proof, it is induction on the number of
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steps in the derivation of x. So, when you say derivation, derivation from . So, the base case

is that generates x in one step. So, if you look at the rules, these are the three types of rules.

gives a b, gives and gives epsilon. The only way that a variable

generates a string comprising of entirely terminals in one step is if you take the third rule. So, the

base case is that it generates string in one step. So, the only way we can get a string in one step is

by taking the third rule.

So, the only possible one step derivation is the third rule, gives epsilon, for some state p.

Which means only the string that is derived is empty string. So, the requirement is that if

generates epsilon, we want to show that epsilon can take the PDA from the state p to itself on an

empty stack. So, epsilon is empty string, an empty string kind of trivially keeps the PDA in the

same state by retaining whatever the stack was. So, this is true in the base case. So, base case is

true.

Now, let us move to the induction step. So, suppose it is true for some k steps. So, now we want

to take the case where derives the string x in k+1 steps. Let us see what is the first step of

the derivation, is a single variable, so the first step of the derivation is a rule of these types,

gives a b or gives . So, this gives us two cases, which we will see.

So, let us say the first step was this gives a b. So, recall that eventually, we want to get

to x. So, somehow we want to get to x. Which means a b is somehow derived into x. Which

means x begins with a and ends with b. Again, recall that a and b are either symbols of the input

alphabet or it could be empty strings as well. But they are not like longer strings of the input

alphabet.

So this means that x is of the form a “some string” b, where derives the middle string. So,

this means that x is of this form, a y b where a and b are either single symbols from the input

alphabet or empty strings and y is some string from the input alphabet. So, where y is in , and

must derive y. And will derive y in k steps because a and b are terminals. So, the rest of

the derivation is merely deriving y. And so since one step is already over, derives y in k

steps.
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This means that since derives y in k steps, and since we, by induction, we may assume that

y takes the PDA from the state r to the state s on an empty stack, this is what we can get by

induction. This is the statement we want to prove for k+1. We can assume the same for k. So, y

takes the PDA from r to s on an empty stack.

So, now we know that this is a rule gives a b is a rule because that is the first step. So,

that must be a rule. But why is this a rule? When do we add such a rule? if these conditions are

satisfied i.e the conditions being is part of and is part of . So,

this means that the PDA can read and go from to the state by pushing into the stack.

And also, the PDA can go from state s to state q by reading b from the input and by popping t

from the stack. That is what this rule states. So, a can take the PDA from State p to State r by

pushing t and b can take the PDA from State s to State q by popping t. And by induction, what

we have already explained, y takes the PDA from r to s by retaining the stack contents. y takes

PDA from r to s on an empty stack which means y can also take the PDA from r to s by retaining

the stack contents.

So, which means, this, now let us say initially, the stack was empty. By reading a, the PDA

pushes t into the stack and then goes to the state r, by reading a, it goes to the state r. State p

initially, and then state r. And then there is a string y. By reading y, the PDA can go to the state s

on an empty stack or by retaining the stack contents. And finally, by reading the symbol b, it

pops the stack content, the symbol t from the stack. And then, it takes it from s to t.

It takes the stack from s to t, which means the string a y b, takes the PDA from p to the state q on

an empty stack. Once again, a takes this PDA from p to r by pushing the content t, y takes the

PDA from r to s by retaining the stack content, and b takes the PDA from s to q by popping t. So,

a y b takes the PDA from p to q on an empty stack.

And we know that a y b is nothing but x. So, we know that x can take the PDA from p to q on an

empty stack, which is what we want to show. So, this is the Case 1 of the proof. So, the next part

is that, what if the first step of derivation was this gives ?

This means, like I said before, some rules are applied, and finally we should get x. But how can

that happen? The only way this can happen is the variable generates some y and the variable
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generates z, where x is yz. So, this means that x can be generated like this. So, the first step

is already done. gives . So, the remaining number of steps is k.

So, which means must generate y in some number of steps, must generate z in some

number of steps. Both the number of steps is at most k, because together, we are using only k

plus 1, and 1 is already over. So, now since both of them use less than k steps, we can use

induction to infer that y takes the PDA from p to r on an empty stack, and z takes the PDA from r

to s on an empty stack, because we assume that for all the strings that have less than k steps of

derivation, so this is what we said here, suppose it is true for k steps. And now we are trying to

prove something that requires k+1 steps.

So, by induction y takes p from p to r on an empty stack and z takes p from r to s on an empty

stack. So, x is just the concatenation of y and z, which means x takes the PDA from p to q on an

empty stack. So, the claim is true in this case as well because you can think of it like this. So, y

and z together form x. y takes it from p to r, and z takes it from r to q. So, the entire string yz

which is the same as x, takes it from p to q on an empty stack.

So, we have shown that whatever may be the case, whether it is the first rule applied is

gives a b or gives , whatever be the case, we have shown that the string that is

generated will take it from p to q on an empty stack. So, this completes the proof of Claim 2.30 ,

which says that if a string is generated by , that string can take the PDA from p to q on an

empty stack or by retaining the stack content.
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So, next thing to be proved is Claim 2.31 which is the other direction. Suppose there is a string x

that can take the PDA from p to q on an empty stack. Then that string is generated by . Like

I said before, this is also an induction which is straightforward. So, here the assumption is that

the string takes the PDA from p to q on an empty stack. So, how many steps of the PDA, how

many step, transitions of the PDA is required to generate that string. So, the induction is on that

number of steps.

So, induction on the number of steps required by the PDA in the PDA computation. So, the

simplest case is when the computation has zero steps, the PDA does not do anything. So, when,

in zero steps the PDA is not able to read anything, which means the string corresponding to that
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is the only one string that can be read without any number of steps, which is the empty string. So,

the empty string keeps the PDA at the same state or can keep the PDA in the same state because

that is the only thing that it can do because we assume that the computation has zero steps.

So, in zero steps, the PDA can only process the empty string. So, the empty string is empty. And

let us say it was in state, some state small p, and we know that, we know that gives empty

string is a rule. So, this empty string is generated by the grammar. So if the computation of the

PDA has zero steps, the only string possible is empty string, and that is generated by the

grammar. So, now, we have to consider the computations of a bigger number.

So, suppose the claim is true whenever the PDA requires some k steps for some k. So, now we

want to show it for k+1 steps. So, now we have a string x which takes the PDA from p to q on an

empty stack using k+1 steps. And then we have to show that generates x. So, like in the

other claim, we have two cases. So, assumption is that for all the strings that take PDA from one

state to another using k steps or less, the grammar, the corresponding variable in the grammar

generates this.

Now, we are considering such a string for which the PDA requires k+1 steps. So, there are two

cases which we had kind of referred to in the previous lecture. First case is the stack never

becomes empty. So, the PDA starts, it just takes from empty stack to empty stack. So, we know

that the first step involves a push, and the last step, again we ended in empty stack, which means

it must involve a pop. So, if the stack never becomes empty, the symbol that was pushed in the

first step must be popped only in the last step or by k+1 step. So, assume that the symbol is t. So,

t is something in the tape alphabet. Let the first symbol that is read from the input be a i.e when

pushing that symbol t, the PDA must be reading something from the input tape, let that symbol

be a and in the k+1 step, the symbol be b.

So, notice that, recall that a is part of and b is also part of . So, a and b could also be

empty string. This means that the first symbol x is a, if a is not empty, and the last symbol of x is

b. So, we can write x as a y b for some string y.
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So, we know that ‘a’ takes the PDA from p to r by pushing t and b takes a PDA from s to q by

popping t. This also means that y takes the PDA from r to s. So, initially it was empty and upon

reading the symbol a, you push a ‘t’. And then you read ‘y’ which eventually gives us the same

situation, the same ‘t’ is still retained. It never becomes empty. So, always, this ‘t’ is there, for all

the intermediate steps. And finally, b takes out this ‘t’. So, this means y could also take the PDA

from r to s. So, the state here is small p r s and q. So, this means that y could also take the PDA

from r to s on an empty stack because it retains the stack means it can also take it from r, an

empty stack, to s, an empty stack.

So, by induction we assume y takes it in k-1 steps because one step, the beginning step is by

reading a, and the last step is by reading b. So, y takes it from r to s by retaining the stack in k-1

steps. By induction assumption, so the assumption was that any string that takes k steps or less is

generated by the corresponding . So, this means that generates y. And since, by already

we observed that a takes p from p to r by pushing t, b takes p from popping t from s to q.

This means that because we have these two conditions satisfied, this means that gives b

is a rule. So, we know that gives a b, and we have to show that gives x. We
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already have seen that gives y. Since, we already have seen that gives y, which means a

y b is generated, but what is a y b? We already assumed that x was a y b. So, this means

derives x, which is what we wanted to show.

So, if the stack never became empty which meant that this symbol pushed in the Step 1 is the

same as the symbol popped in this last step, now that allows us to infer that a pushed something

and b popped, there are rules where you push something initially and the same thing is popped at

the end, which which gave us these two conditions. And by induction we could infer that

derives y, and combining all this, we get that derives x. The next case, so this is, recall, this

was Case 1, the stack never becomes empty.

(Refer Slide Time: 26:59)
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The next case was when the stack becomes empty somewhere in the middle. So, which means,

initially you were at State p, then finally, you are at state q and let us say it became empty in state

r, somewhere in the middle. So, suppose the entire string is x. Suppose the string that took you

from p to r was y, and the string that took you from r to this q was z, which means x is y z.

Now to process x, it requires k+1 steps, that is by assumption. Now, we know that y takes the

PDA from p to r in less than or equal to k steps, and z takes the PDA from r to q in less than or

equal to k steps because both of these movements have take at least one step. Hence, so when the

stack empties by the middle, y is the substring that takes the PDA from p to r, in some l number



of steps, where l is at most k, and z takes the PDA from r to s in some k+1-l steps, again which is

less than or equal to k.

And we assume that x is y z. By induction, since y took the PDA from p to r in less than or equal

to k steps on an empty stack, it follows that derives y. That is the induction assumption.

Whenever there is some string that takes it from state p to state r in k steps or less, derives

that string. So, since y takes it from p to r in k steps or less, derives y. And since z takes it

from r to q in less than or equal to k steps, r q derives z.

We know that derives is a rule, for all triplets p q and r such a rule is there. And

we know that derives y and derives z. So, or derive y and z respectively, and

that y and z together from x. So, this gives us that derives x. So, even in this case when the

stack empties in the middle, we are able to see that any string that takes the PDA from p to q is

derived by the variable . And that completes the proof of claim 2.31.

So, just to summarize, 2.30 said that if generates a string, then that string can take the PDA

from p to q on an empty stack, or by retaining the stack. 2.31 said the converse. If a string x can

take the PDA from p to q on an empty stack, then that string is generated by the variable .

So, together, we get that generates exactly those set of variables that take this PDA from p

to q on an empty stack.

And that was a missing piece for us to show that the grammar that we generated, that we

constructed here is equivalent to the, to the PDA that we began with. So, this completes the proof

of the equivalence of the grammar constructed with the PDA. And together with that we are also

completing the proof of the fact that any PDA, or the fact that a language is context-free if and

only if it is recognized by a PDA.

Which means both of them generate or both of them recognize exactly the same class of

languages, which is context-free languages. So A language is context-free if and only if it is

recognized by a PDA. So, the class of language recognized by PDAs are exactly the same as the

class of context-free languages.
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So, this completes the proof. Even though, as I said, even though this proof, 2.30 and 2.31 may

have seemed long, they are not really that complex. We are just using the basic induction and we

are trying to understand what is happening in the derivation of a string from the grammar and the

processing of a string by the PDA. And we see that there is a direct equivalence.

And this completes the equivalence of CFGs and PDAs. In the next lecture, we will see ways to

show that languages are not context-free. So, just like we had pumping lemma for regular

languages, we will see pumping lemma for context-free languages in the next lecture. So, I think

we will stop Lecture 24 for now, and see you in the next lecture, lecture number 25.


