Theory of Computation
Professor. Subrahmanyam Kalyanasundaram
Department of Computer Science and Engineering
Indian Institute of Technology, Hyderabad
Equivalence of Context Free Grammars and Pushdown Automata - Part 02
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Hello and welcome to lecture 23 of the course Theory of Computation. In lecture 22, we started
to discuss the equivalence of context free grammars and pushdown automata. In this lecture
we continue the proof of the same fact. So, we stated the following in lecture 22. One is the
theorem. The main theorem is that a language is context free if and only if some PDA

recognizes it.



And then we proved Lemma 2.21, which is one direction of the above theorem, which is that
if a language is context free, there is some PDA that recognizes it. We completed this proof.
Given a context free grammar we constructed, we explained how to construct a PDA that is
equivalent. So, that is how we proved Lemma 2.21. So, that constitutes one half of the proof
of theorem 2.20. Theorem 2.20 is an ‘if and only if statement’ so it needs both directions of the

proof.

So, what is the next direction? The next direction says that if there is a pushdown automata that
recognizes a certain language, then that language is context free. So, that completes, so this is
Lemma 2.27; and Lemma 2.27 and Lemma 2.21 together constitute the proof of theorem 2.20.
So, these two together constitute the proof of theorem 2.20. So, what we now have to show is

that if a PDA recognizes a language, then that language is context free.
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So, the way we do this is a kind of natural thing. If there is a PDA that recognizes a certain
language, so there is a PDA, so given the PDA we will explain how to come up with a grammar
such that this grammar will be equivalent to the PDA, meaning any string that is accepted by
the grammar will be accepted by the PDA and anything that is not generated by the grammar

will not be accepted by the PDA.

So, this will be equivalent, it will be exactly the same set of strings that is accepted by the PDA,
which will be generated by the grammar. So, that is the kind of high level picture of what we
are going to do. So, now let us get into the details of the same. So, the first point is that, if you
recall in the last lecture of week 4 and lecture 21, immediately after seeing PDA we had

explained a couple of things.

One is that given any PDA if it has multiple accepting states you can construct an equivalent
PDA, which has a single accepting state. So, you may recall that this was merely by: if it has
multiple accepting states you add a new accepting state and you make e transitions from all the

old accepting states to the new accepting state. So, that is how we did the first one.

The other two facts that we said is that given a PDA we can construct an equivalent PDA that
always empties the stack before accepting. So, if the original PDA did not empty the stack
before accepting, we can construct an equivalent PDA, where we can force it to empty the stack
before accepting. So, this involved putting some symbol at the beginning of the stack and then

ensuring that symbol is removed before it is accepted.

And the third thing is that we can ensure that every transition involves a push or a pop but not

both. So we are saying that every transition either pushes into the stack or pops out of the stack,



but does not do both. So, there will not be a transition of the type which does not touch the
stack at all. There will also not be a transition which does both push and pop. So, every

transition that you take will have a push or a pop, but will not have both.

So, now because we saw these things in lecture 21 and we explained how we can accomplish
this, we will be using these things. So, the task is to construct a grammar that is equivalent to
a given PDA. Now that we have told or we have seen how any PDA can be converted into a
PDA with these properties, we may as well assume that the PDA that accepts the language also

satisfies these properties.

So, we may assume that the given PDA satisfies these properties, meaning it has a single
accepting state, it empties a stack before accepting and every transition has a push or a pop.
Now from such a PDA we will construct an equivalent grammar. So, what are the strings that
are accepted by this PDA? These are the strings. So, there is a starting state to the PDA. Let us
say there is a starting state q,.4,+ and there is an accepting state q,... And the strings may travel

somehow and finally reach q,..

So, what are the strings that the PDA can read from the starting state or that the PDA can read,
so that it can move from the starting state to the accepting state, so this is what we want to
know. What are the strings that can take the PDA from the starting state to the accepting state?
So, you noticed that | said the accepting state. So, we are already making use of the fact that
the PDA has a single accepting state.

If it has multiple accepting states, then | cannot say: the accepting state. It may not be a unique
one. And because of property 2, we can assume that the stack will be empty when we reach the
accepting state. Because we assume property 2, we can say that the stack will be empty. So,
our goal will be to identify the strings that can take the PDA from the starting state to the

accepting state.

And when it takes it to the accepting state the stack will be empty. Of course, when you start
processing also the stack is empty, when you, the PDA does not come or does not begin
operations with a filled stack. So, this is the key thing here, we want to know which are the
strings that the PDA can read, which will allow it to move from the start state to the accepting

state, and when it is reaching the accepting state the stack will be empty.
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So, this turns out to be quite convenient in the construction that follows. So, what our main
thing is going to be. So, now the goal is to construct a grammar such that the grammar should
generate all these things that take the PDA from the start state to the accept state. So, what we
will do is in general we will have variables of this type A,, which are the variables of the
grammar. We will construct the grammar in such a way that this variable will generate all the

strings that take the PDA from the state p to the state q.

We will construct the rules of the grammar in such a way that A,, will generate all the strings
that can take the PDA from the state p to the state g keeping the stack empty or with an empty
stack. So, when it takes it to the state g, the stack will be empty. So, | am writing it here again,

more formally. This is the set of all strings.
Apq = { all strings that move P from (p, empty stack) — (q, empty stack) }

All strings that take the PDA, capital P from, the state p and an empty stack to the state g and
an empty stack. So, this will be the set of all strings. Maybe | will just draw a small picture.
Suppose this is state p, let us say the stack is empty here and you want these strings that can
move from the state p to state q. But notice this, from empty stack to empty stack, which means

maybe something gets added into a stack and finally those gets removed.

Which means if the stack had some content here, let us say | am just denoting by the shaded
area, if a string can take the PDA from p to g on empty stack, it can also take from p to g while
retaining the contents of the stack. But how does empty stack to empty stack happen? Because
it cannot pull out anything from the stack. Instead, it will push some things and by the time it

reaches q it retrieves those things.



So, suppose the stack was not empty. It had some content. Let us say some string called k or
something. So now, keeping the string k there, if you take the same set of transitions, it will
put some things into the stack. So, originally it could take from empty to empty, so the k will
be there and it will put some things in and then it will remove those things. When it reaches g,

whatever was put would have been removed.

So, empty stack to empty stack also means that it can retain whatever the stack contents were,
so this is something that will become relevant later. So, right now | am just defining it as those
strings that can take the PDA from the state p with the empty stack to the state g with the empty
stack. But what | am remarking is that these strings also take from state p to state g while
retaining the stack. So, maybe | will just remark here, these strings also allow the stack to be

retained, so A, also can be interpreted in this manner.

So, this is going to be for all any state p and any state g including where p and g are the same.

So, now consider the variable A What are the strings that take the PDA from

Astart,9accept”

qstart, the starting state to the accepting state, while retaining the stack or while keeping the
stack empty. This is exactly the set of strings that are accepted by the PDA, so that is what |

have written here. A should basically generate those strings that are accepted by

Qstart, 9accept’

the PDA.

So, what we will do is that we will set this variable A as the starting variable.

Adstart,» Qaccept’
because what is the language generated by the grammar? It is the language set of strings
generated by the starting variable. So, this will be our starting variable and this is the key thing.

The variables are all of the type A,, and A will be, will generate those strings

Astart, Qaccept

which are accepted by the PDA and that is what we want.
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So, now let us try to understand the rules. So, we have just told what the variables are, so now
we need to define the, we need to set up the rules of the PDA. So, let us consider what happens
when we move from a state p to a state q. So, when you are moving from a state p to the state
q, let us say we start with the empty stack. So, that is what the definition is, (p, empty stack) —

(g, empty stack). So, there are two possibilities.

So, let us see what happens. So, initially you are in state p with an empty stack. We know that
every move has a push or a pop. So, the next move from here must involve a push, because
there is nothing to pop. So, the next move involves a push, let us say it puts some symbol, let

us say r or something, let us say | or something into the stack.

And let us consider what happens, and at the need to go to state g with the empty stack. Now
what would have been the last move that took us to g. We know that every move has a push or
a pop. The last move would not have been a push because if it was a push this stack will not be
empty. So, the last move has to be a pop. So, some symbol, let us say k or something was there

that was removed.

So, there are two possibilities; one is that the symbol that was pushed in the first move | is
exactly the symbol that is popped at the end. Which means whatever we put on the stack at the
beginning, now you kept putting things on top of it, maybe removing some things, etcetera, but

we never touched the first symbol that was put. So, maybe | will just create some space here.
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So, what | am saying is there are two possibilities, one possibility is that the first move you put

something in and then on the stack put some things. So, here you are at state p and at the end
your state g. This is the stack content, stack depth or stack height or something you can call it.
It does not have to be like this, it could go up, but it never empties in the middle, meaning the
first symbol that you put, let us say k or something that or | or something that is never getting

touched. So, this is one possibility.

Another possibility is, this is possibility two, the first symbol that we put, let us say k or | or
something, something happened at some point you pop it. So, if you pop the first symbol that
you put, then basically at some point the stack becomes empty and, so maybe let us say at some
state, at that time we were in some state  and then again you do something and finally the

stack again becomes empty.

Which means some other symbol, the first symbol that we put was removed in the middle and
then again, some things got put and even those things got removed. That is why you moved
from empty to empty and again to empty, so these are the two possibilities. So, the red one and
the blue one. So, first we will consider the red one and we will try to create a rule that sort of
corresponds to the situation.

So, that is what | have written here. The last move pops the same symbol that was pushed in
the first move, that is what | have written here, which means the stack never got empty in the
meantime. It was always non-empty. So, now consider a string, so basically this rule, so it may

not be immediately clear, but this rule is kind of corresponding to that.

(Refer Slide Time: 18:41)
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So, consider a string in A, so remember a string generated by A,,. Here | am writing it as a

set, but it is a variable. So, now for this particular situation we add a rule like this, so where
Apq derives or Ay, yields this following thing. The rule is A,, — a A,sb where, a,b € X,

which could be terminals or could be empty also.

And if you, basically you are able to read the symbol a and go to the state r and then go from,
then you have the variable A,.; and then from s you are able to read the symbol b and then go
to the state g. So, we are saying what is the state in the next step, let us say it is r and what is
the state in the last step before g, let us say it is s. Basically, what you are saying is the first

symbol that was pushed here from p to r was something.

While we push that push that symbol. Let us say the symbol that was pushed was t. While we
push that symbol, we read the input symbol a, and now at the end we again, we are again
popping the symbol from when we move from s to q, this the first symbol that | have pushed
and that happens while reading the input b. Which means from r to s whatever was the stack

that that single symbol, we never touched that.

So, the remaining part of the middle of the string took the took the PDA from r to s while
keeping the stack intact, meaning whatever was already there in the stack it retained it. Which

means that it can also take the PDA from r to s with an empty stack.
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And this is the first type of rule, and the second type of rule is corresponding to the blue part
over here. This one where the stack gets empty. So, for that we add the following type of rules,

where for every three variables p, g and r, we add the rule A,, - A, A, 4. And for all triplets
of rules, states p, g and r. | am sorry, there is an error. It is A,,, so not A,. So, for all triplets

of states p, g and r we define this.
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So, maybe | will just say it a bit more formally here. And this is the intuition, so the intuition I
wanted to convey before that. So, more formally, suppose there is a PDA with a single
accepting state. So, notice that we are able to write a single accepting state because of the
normalization that we refer to here. P has a single accepting state. And we are able to say that
these things, like the first symbol, the first move should be a push because of the second

condition.

Because we are insisting that every move has to be a push or a pop otherwise the first move
could have been nothing. So, the variables are all of the type A,, and the start variable is

A So, instead of g4+ | am just using q,. And the rules are this. So, once again let

o, 9accept’

me explain, for any four states, p,q,r,s € Q and t € I'. So, t is a symbol in the stack alphabet

anda,b € Z..

if (r,t) € 6(p,a,e) and (q,€) € 6(s,b,t)
add A,; = a A,sb

Which means a, b could be symbols of the input alphabet. Input alphabet not stack alphabet.
They could also be empty strings. So, what are we saying here? We are saying that if (7, t) is
in 6(p, a, €) meaning you have the input, so the next symbol from the input is a and something
else and you are in state p, so you are able to read a and move to state r while pushing t and

you are popping nothing. So, € is popped.

So, from empty stack, you will go to a stack with a symbol t. If this is a rule and the next part
is, (q,€) € 6(s, b, t), meaning from the state s you are able to pop t and go to g and you have
read some parts of the input and the symbol that you are now reading is symbol b. And you are
able to move from, basically you have, let us say you have t in the stack, you want to remove
the t in the stack.

Basically, you are popping t from the stack and you are pushing nothing. Then both of these
things are satisfied, if you can go from p to r by pushing t and reading symbol a and you can
go from s to g by popping t and reading symbol b; then you add this rule, A,, — a A,sb.
Notice that p, g, r, s need not all be distinct, a and b could be empty strings. But t's cannot be

empty string because every move has to have a push or a pop. t will not be empty.

So, this corresponds to the case where the symbol that we first pushed is popped at the end.

Once again, if you are able to move from p to r by reading the symbol a from the input and



pushing t into the stack and you are able to move from s to g by popping t from the stack and

reading b from the input state, then you add these rules, add these rules of the type, A,, —

a A,sb. So, that is the first set of rules.

And that you have to do for all the possible quadruples p, q,r,s, whenever we are able to
identify such, we have to see whether these rules are there. If we can say that (r,t) € §(p, a, €)
and so on, then we add this rule. The next set of rules are simpler, because there is no condition
to be checked. For any triplet of states p, g, r, again including the case where they are not

distinct, we add the rules A,; = A, Ay

So, it is straightforward A,, — A,,A,,. We add these rules for all the triplets p, g and r. And
finally, if you notice if you just have these two types of rules, the type 1 and type 2 that |
mentioned, you notice that every rule has a variable in the right hand side. The starting variable

was A . and all the rules are of this type. It has a variable in the hand side, so it is never

o0, Qaccep

going to generate a string that is entirely of terminals.

So, you need to have rules where somehow there is no terminal in the right hand side or
somehow we have to eliminate the terminal, no variable in the hand side or we have to eliminate
these variables. So, for that we add these rules, for all the states p in the PDA we add a rule

App — €. S0, notice that the third set of rules is consistent with what we want. We wanted the

rules A,,, to generate all the strings that can take the PDA from a from state...

So, A, we wanted it to be the set of all strings that can take the PDA from p to g on an empty
stack. So, empty string takes the PDA from p to p on an empty stack, it trivially does it. Empty
string mean it reads nothing and you do not make any move. If you are already at an empty

stack you will continue to be at an empty stack. So, that way this is kind of a base case.
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So, this completes the construction. And the way we have constructed it perhaps may not be

5\
o)

immediately clear that this generates the grammar that is constructed in this manner is
equivalent to the PDA. So, we want to show that for all p and g, A,, generates a string x, if
and only if x can take the PDA P, from the state p with an empty stack to the state g with an
empty stack.

So that is, once we show that the rest becomes clear. Because if you show that for all the states,
all the variables A,,, we want to show that A,,, generates a string x if and only if x can take the
PDA from p and empty stack to g and empty stack. If we show this then it follows that the

starting variable A This generates all the strings that can take from the starting state

do, daccept”



to the accepting state on an empty stack. Which means that the set of strings accepted by the

PDA is equal to the set of strings generated by the grammar.

So, this is the key thing that we have to show from now on in order to prove that this
construction results in a grammar that is equivalent to the PDA. So, this again, in fact, we are
in one direction of the proof of the theorem. Now we are again in a situation where we have to
prove this equivalence that the constructed grammar is equivalent to the PDA or the constructed

grammar, this variable generates exactly the string that we want.
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So, what we will do is to show the following two claims, the first claim is that if A,,, generates
x, then x can take the PDA from p with an empty stack to g with an empty stack. So, this is
one direction and the other direction is that if string x can take the PDA from p with an empty
stack to g with an empty stack, then A, generates x. So, together these two claims will prove

this highlighted sentence.

The part that | am highlighting now A,,, generates the set of all strings that can take the PDA
from (p, empty stack) to (q, empty stack). So, claim 2.30 and 2.31 together will prove this.
Since | think we are kind of over the usual, the prescribed time limit, we will show the proofs
of 2.30 and 2.31 in the next lecture.

So, just to summarize what we saw - the goal was to prove the direction of the proof, which
says that if PDA recognizes a language, then that is context free. The approach to proving it

was to construct a grammar given a PDA. So, we assumed some normalizations, which we had



shown that was possible for any PDA. Namely PDA has a single accepting state, a PDA empties

stack before accepting and every transition involves a push or a pop but not both.

And the grammar involved variables A,, which were corresponding to those strings that can
take the PDA from state p with an empty stack to state g with an empty stack. And we
constructed the rules of the grammar. And now what remains is to show that the variables A4,
indeed generate exactly those set of strings that are desired. And that will be proved by the

following claims 2.30 and 2.31. And this we will see in our next lecture. So, see you in the next
lecture.



