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Hello and welcome to lecture 21 of the course Theory of Computation. In lecture 20, we saw 

Pushdown Automata. Pushdown Automata or PDAs were a new machine model that combine 

the powers of NFA and an additional stack. So, it is like NFA with an additional stack. This 

stack is an unbounded memory, but with restricted access. You can only access the top entry 

on the stack.  
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And we saw that it can recognise languages such as 0𝑛1𝑛, we saw examples. We saw the rules. 

We saw that it can recognise languages 0𝑛1𝑛 also other languages which were not regular. 

Meaning an NFA can only recognise regular languages, but a PDA, we saw that it could do 

more things. We said that eventually we will show that PDAs are going to be equivalent in 

power to context free languages, but that is not going to be shown in this lecture. We will see 

it in the upcoming lectures.  
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So, what I wanted to just quickly mention in this lecture, which is going to be a brief lecture, 

are some modifications that we could do in case of PDAs. Sat to, number one is this. If you 

recall we had said that if you have an NFA and it has multiple accepting states, we could 

convert it into an NFA that has only a single accepting state. We can pretty much do the same 

thing in a PDA. So, these are the old accepting states and as you can see, there are multiple 

accepting states.  

So, the ones in blue are old accepting states. We can have 𝜖 transitions. We create a new state, 

this red one, and we make 𝜖 transitions from the old accepting states to the new accepting state. 

The old accepting states are there, but they are no longer accepting states. So, this becomes the 

only new accepting state. The other ones, the blue ones, are made into normal non-accepting 

states.   

Whatever string leads to any of the blue states can take an 𝜖 transition and go to the new 

accepting state. Hence, the new PDA with this modification has only one accepting state. This 



is fact number one. So, given any PDA we can convert it into a PDA which has a single 

accepting state.  
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Number two is this. We saw two PDAs in the previous lecture. In both cases, the stack became 

empty for the PDA upon acceptance. So, in both cases we push the dollar symbol and then at 

the end we removed the dollar symbol. But at the beginning we said that, when we define the 

PDA, we said that the stack need not be empty.  

What I am saying is that given a PDA, suppose it accepts. So, it need not check the status of 

the stack while accepting. The claim is that if there is a PDA which does not ensure that the 

stack gets emptied while accepting because that is not something that needs to be ensured, we 

can modify that PDA into a PDA which always empties the stack before accepting.  

So, suppose there is a PDA 𝑃 that need not necessarily empty the stack, we can transform it 

into a PDA 𝑃′ which always empties the stack. So, how do we do that? Basically, we artificially 

ensure that the stack gets emptied. So, we need to do two things. We first insert a special symbol 

into the stack first. So, let us say the dollar. So, this special symbol is not something that is 

used by the PDA already. If the PDA already uses the dollar, you find another symbol which 

is not used by the PDA. Basically, this has to be unique.  

Before the PDA starts operating, we push the dollar into the stack. That is what I show here. 

Suppose this was the old start state. Now we modify it by pushing the dollar symbol and adding 

an extra state. So whatever transitions the old one had, let us say there are two transitions, those 

two transitions will happen from the new state here. So, it is exactly the old PDA but we are 

pushing a new symbol into the stack at first.  



Now we have this dollar at the bottom of the stack, which is a unique symbol which is not used 

by the PDA. The thing that we need to address is, suppose the PDA accepted without the stack 

being empty. Now, we will force it to empty the stack. So, how will we do that? So, suppose 

this was the old accepting state. Now for this accepting state, we modify it like this. This state 

becomes the first state out of the three that I have drawn here. We replace it by a series of three 

states.  

So, first let us say this is state 𝑞10. Then this is 𝑞10 and these are some two new states. This is 

new, and this is also new. What we do is, from the 𝑞10 we make an 𝜖 transition to a new state. 

So that there is nothing read from the input and no movement to the stack. And from the new 

state, we are able to move to another new state. So maybe I will call it New1 and New2. From 

New1, we are able to move to New2 and New2 is the accepting state. 

And what we do before going to New2 is that we ensure that the stack gets emptied. So, if there 

is a loop on New1, where we are able to empty the entire contents of the stack, whatever was 

the original stack alphabet. The only way to move to New2 is by popping out the dollar that 

we had originally inserted at the beginning.  

So, for every accepting state like 𝑞10, we add these two new states. So, this could be two new 

states added to every accepting state. So, this ensures that whenever it accepts the stack is 

empty. So, even though it is not a requirement that the stack is emptied while accepting, given 

a PDA we can convert into a PDA which always empties the stack.  
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Finally, I have one more modification or one more thing that I wanted to say. Suppose there is 

a PDA. So, if you look here, there is a push but there is no pop. In this transition there is no 

push, no pop, here also there is no push no pop. I am talking about this one. And here there is 

a pop but there is no push. So, in any transaction it is not required that there is a push or a pop. 

We could have both of them happening or only one of them happening or neither of them 

happening.  

So, the third point is that as per the rules of a PDA we are allowed to have four types of 

transitions. One where there is only push, one there is only pop, one there are both and one 

there is neither. So, the claim is that we can always convert the PDA into an equivalent PDA. 

Where every transition has one push or one pop but not both. Meaning every transition will be 

of the types 1 or 2. So if it is type 1, we can retain the transition. If it is type 2 also, we can 



retain the transition. If it is type 3, the transition has both push and pop. So, what I mean is if 

it has both push and pop. Something like 𝑥, 𝑎 → 𝑏. 

Now, what we can do is we can split this into two steps by introducing a new state in between. 

First popping 𝑎 and then pushing 𝑏. So, when there is both push and pop, we can introduce a 

new state and ensure that the push and pop are separated. When there is neither push nor pop, 

so, when there is a transition that does neither, it may just read the input or not even that, then 

we artificially push something and pop the same thing.  

So, when there is neither push nor pop, so something like this 𝑥, 𝜖 → 𝜖. Then again, we 

introduce a new state in between, and we push some dummy symbol into the stack, and then 

we pop it. So, in the two transitions that replace this one transition, there is one push and one 

pop. So, it is kind of a workaround, but as a result, we can have a PDA where every transition 

includes a push or a pop, but not both.  

So, these are the three equivalent forms, meaning given a PDA that does not satisfy this we can 

convert into this without any loss of generality. So, if you have a PDA that does not have a 

single accepting state, we can convert it into one that has a single accepting state, without 

changing the language.  

If there is a PDA where the stack is not empty, we can convert it into a PDA where the stack 

is empty, again without changing the language. And if there is a PDA which sometimes does 

both push and pop in a transition or does neither of them in a transition, we can convert it into 

a PDA where every move has a push into the stack or pop out of the stack, but not both. So, 

these are the three points that I wanted to mention first.  
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The next thing I want to mention is that we saw that context free languages are not closed under 

intersection; we saw an example. Now, however, we know that regular languages are closed 

under intersection. So naturally, one question is what if you take a regular language and a 

context free language, let us say A is a regular language and B is a context free language, and 

consider the intersection of A and B. So, the claim is that 𝐴 ∩ 𝐵 is going to be a context free 

language.  

So, we know regular intersection regular is regular context free intersection context free need 

not be context free. We know examples where it is not context free. But here I am saying that 

regular intersection context free is necessarily context free. We will not do the full proof. Rather 

we will just give a sketch of the proof because we have seen the ideas of this proof earlier. So, 

suppose A is a regular language and B is a context free language.  

So, which means there is a DFA M that recognises a language A and there is a PDA P that 

recognises the language B. If you recall, while we showed that regular languages are closed 

under union, we built a certain DFA. This was our first proof before we discovered NFAs 

where if you had two DFAs, we built a DFA where the states of the new DFA were Cartesian 

products or Cartesian pairs of the original DFA. So, this was DFA1 and this was DFA2.  

Basically, the movement in DFA1 is mimicked by the horizontal movement and the movement 

in DFA2 is mimicked by the vertical movement. And this is combined in the DFA whose states 

are the Cartesian product of the original DFAs’. This is what we did to show that regular 

languages are closed under union. This was the first proof before we discussed NFAs. So, the 

same idea works here as well. We have a DFA M and a PDA P.  

So, we make a Cartesian product of these, So, this is DFA M and this is, let us say PDA P, and 

the states are Cartesian pairs. So, the movement on the DFA is mimicked by the horizontal 

movement. And the movement on the PDA is mimicked by the vertical movement. So, if it is 

both moving horizontally one step and vertically one step, you do this, you move diagonally. 

In this figure, just as an example, I have just drawn 2 and 3 states. But it could be like the DFA 

has 10 states, PDA 20 states. It will be a 10 × 20 grid. But in this case, there are a couple of 

things that are different.  

The PDA has a stack, while DFA does not have a stack. So, I can maintain a stack. So this 

resulting structure or automaton, which is a combination of DFA and PDA will be a PDA, 

because PDA P has a stack and now that stack can be retained. M does not have a stack, so the 



stack operations can be done as per PDA P. Just the state operations we follow the Cartesian 

thing. So, just going through the details, the DFA M has states 𝑄1 and transition 𝛿1, start state 

𝑞1 and accepting states 𝐹1. PDA P has states 𝑄2 and accepting states 𝐹2.  

𝑀 = (𝑄1, Σ, 𝛿1, 𝑞1, 𝐹1) 

𝑃 = (𝑄2, Σ, Γ, 𝛿2, 𝑞2, 𝐹2) 

And in the new PDA that is constructed, the states will be cross product 𝑄1 × 𝑄2 and the stack 

of the new PDA will faithfully reflect the stack of P. That is possible because we know M does 

not have a stack. And for the transition functions, we use the same idea as before. It combines 

the movements of the transitions in M and P. And the accepting states will be like in the case 

of union of languages. We said the resulting states let us say (𝑥1, 𝑥2) should be such that either 

𝑥1 is an accepting state of the first machine or 𝑥2 is an accepting state of the second machine. 

Or, the key thing is that we had an or operation.  

However, here we are talking about intersection. So, we want both M and the PDA to accept. 

Both 𝑥1 should be an accepting state of the DFA M and 𝑥2 should be an accepting state of the 

PDA P. In other words, this means that the set of accepting states of the new PDA should be 

just basically 𝐹1 × 𝐹2. Basically, it is an ordered pair, where the first element comes from the 

accepting state of M and the second element comes from an accepting state of P. And if you 

recall, we even mentioned this briefly while discussing the proof of ‘regular languages are 

closed under union’. We said that by changing the accept states into 𝐹1 × 𝐹2 we get the closure 

under intersection.  

So, this is the same thing. The accepting states are 𝐹1 × 𝐹2. States are 𝑄1 × 𝑄2 and the stack, 

because only one of them has a stack, that faithfully reproduces the stack contents. That is 

pretty much the idea, but otherwise, the details of the proof are pretty much the same. So, my 

suggestion is to work out the details of this proof just to give yourself an idea of how this proof 

goes about. And that is pretty much what I wanted to say in this lecture. So, we saw these three 

modifications of the PDA. 

We can do these modifications, but still, it will be equivalent to the original PDA. We can 

modify it. We can convert it into a PDA with a single accepting state. We can convert it into a 

PDA where it empties the stack upon accepting. We can convert the PDA where every 

transition includes a push or a pop, but not both. And then we said that if A is regular and B is 

context free, then 𝐴 ∩ 𝐵 is necessarily context free and we gave the sketch of the proof and I 



suggest you to work out the details of the proof and that completes lecture 21. It also completes 

the lecture of week 4.  

In this week, we first saw the Chomsky Normal Form, which is a specialised form for 

representing context free grammars. Then we saw a CYK algorithm, which is an efficient 

algorithm to check whether a given string is generated from a given grammar. You can apply 

this algorithm as long as the given grammar is in Chomsky Normal Form. We then saw closure 

properties of regular context free languages, including this one, which is also kind of a closure 

property. Intersection of regular and context free is context free.  

And then we saw PDAs. We saw definitions and we saw some examples. And that completes 

week 4. In week 5 we will continue discussion on context free languages. So, in fact, we will 

see that the class of languages recognised by PDAs are also the same class as context free 

languages. So, there is an equivalence here much like regular languages are those that are 

recognised by DFAs as well as regular expressions. So, here also context free languages are 

those that are recognised by context free grammars as well as PDAs.  

So, there is an equivalence. One is a language grammar based model and one is a machine 

based model. And we will see more, like why they are equivalent and why PDAs are equivalent 

to context free grammars. And we will see more details about context free languages in the 

upcoming week. So, see you next week, and thank you. 


