
Theory of Computation
Professor Subrahmanyam Kalyanasundaram

Department of Computer Science and Engineering
Indian Institute of Technology Hyderabad

An Introduction to Context-Free Languages - Part 01

(Refer Slide Time: 0:16)

Hello and welcome to Lecture 16 of the course, Theory of Computation. So far in the course,

we have seen regular languages. We have seen how they are represented. So we saw DFAs,

NFAs, regular expressions. We saw pumping lemma which gave us a way to show how

languages are not regular. We also saw Myhill-Nerode theorem.

So now, in this lecture, we are going to start on a new topic which corresponds to Chapter 2

in the book called Context-Free Languages. Actually, this is a; we can consider this as a next

step from the regular languages. So this will be somewhat more general than regular

languages. And one of the applications will be that it is useful in let us say compilers or

parsing languages.

So for regular languages, we had 2 or 3 ways to represent them. So one was using DFAs or

NFAs and one was using regular expressions. So DFAs and NFAs were basically a

machine-based model. So we had an Automaton in either case and whereas regular

expressions was like an expression that needs to be interpreted into a string. And you could

do that in multiple ways.

Similarly, in the case of context-free languages also we will see the same similar situation.

We will have one machine-based model, which is called PDA. So PDA stands for Push Down

Automaton. And we will see a something like regular expressions called context-free

grammar. So grammar-based representation.

So in regular languages, we had 2 machine-based representations whereas, in context-free

languages, we only see one called Push Down Automaton. But in this in the case of

context-free languages, we will first see the grammar-based representation called context-free

grammar.

So the class of all languages that can be represented by context-free grammars is going to be

called context-free languages. Later, we will see the other representation also. We will also

show the equivalence but first, we will start with context-free grammars.

(Refer Slide Time: 2:34)

So as I said, already, it is more general than regular languages and have a more interesting

applications. So we can do more things with context-free language. So let us start. So what a

context-free grammars?

So basically, we have some variables and we have rules to interpret these variables. So here

in the left side, we have these 3 rules. One is that A → 0A1. Then A gives then A → B, then

B → b.

So we can think of the right arrow as a rule- of a substitution rule or a production rule. So A

yields 0A1 or A yields B or B yields b. So what this means is that we can in a certain

situation, we can replace A with 0A1 or we can replace A with capital B or we can replace B

with capital B.

And typically what, there will be two kinds of objects that we will deal with. One is denoted

with capital letters- A and B, called variables. So typically capital letters. So, in this

example, it is just A and B and two is terminals.

So in this example, there are 3 terminals 0, 1 and b. So small letters numbers and maybe other

symbols also sometimes. These denote terminals. So terminals means that you cannot further

substitute them with other things whereas variables are variables. So there are ways to

substitute them.

So here is A is a variable, capital A is variable. There are two different ways to substitute

them. So you could replace A with 0A1 or you can replace A with B. Whereas, once you

have small b, then you cannot replace them or you have 0 or 1 you cannot replace them with

anything else. So a variable needs to be replaced and till you get a terminal.

(Refer Slide Time: 4:50)

So let us see what all we get from this grammar. So let us try to see some examples. So one is

that A yields 0A1 and now let us say or maybe I will use another one. So A also gives us B,

and B gives us b. So now b cannot be, you cannot do anything with b because it is a terminal.

Another possibility is A yields 0A1. Now 0 and A, 0 and 1 are terminals but A you can again

replace it with B and B again you can replace it small b. Now another way to do it is A gives

us 0A1. Now we can again use the same rule to replace this A. So to replace the underlined

A, we can again use 0A1. So this underlined A was replaced with 0A1.

And now let me say I have 00A11, so I am replacing it with a b, and then B with a b. I can do

this any number of times. So A gives 0A1. Now, this A gives 0A1 again and this A again

gives 0A1.

So, these are all strings that can be obtained. So notice the strings, the ending strings that we

have. So the first case it was b, then it was 0b1, then 00b11, and then 000b111. So and now,

you may be, you may kind of see the pattern here.

So strings generated are b, 0b1, 00b11, 000b111 and you can see the pattern here. And you

can also convince yourself that these are pretty much all the strings that are generated look

like this. So, b and then some 0s before b and some 1s after B where the number of 0s and

number of 1s are the same. So these are the kinds of strings generated by this, this particular

grammar.

And so now once we reach some string like this, let us say we reach 00b11. So now, we

cannot do any replacement because 00b11, each one of them, the three terminals here 0, b,

and 1. That 0 appears twice; 1 appears twice.

But these are terminals, meaning you cannot replace them with something else. You can only

replace a variable. Variable in this case, there are two variables A and B, A and B, capital A

and capital B can be replaced but small b and 0 and 1 cannot be replaced.

So the goal, even though I did not formally define it, I hope that the goal is now clear. To get

a string, we need to start with A. So why A? I will just very soon tell you. So you look at the

first; so I have written 3 rules here.

So there is one, there is 2. So this is rule number 1, this is rule number 2, and this is rule

number 3. So you look at the rule, the first rule and see what is the variable that is replaced.

In the first rule, the variable that is replaced is A. The variable that is on the left side of the

rule. So the rule is one variable and what to replace that variable with.

So the variable can be replaced by another variable. It could be replaced by one terminal. It

could be replaced by two terminals or it could be replaced by two variables or a string of

multiple variables and terminals, a combination, could be any of these.

So you look at the first rule and the variable on the left side of that rule, left-hand side of that

rule that is the starting variable. Now you start with the starting variable and you get to some

string that is entirely composed of terminals. And that is a string that is generated from the

language. So in this case we saw multiple strings and you can get even more strings. In fact,

there are infinite strings that can be generated.

(Refer Slide Time: 9:48)

So again, I have written it in detail here. So the start variable is on the left-hand side of the

first rule. So what you have to do is to start from the start variable and repeatedly replace the

variables, you repeatedly replaced the variables in the resulting strings. We repeat using the

rules, using the rules and you repeat like how many times you have to do this? You have to

do this till there are no more variables.

So in this case, there are like we reach these strings, the underlying string. So there are and

when we reached these, there are no more variables. So this is the goal and we will state it a

bit more formally a bit further but this is how you get a string from a grammar.

So you start from the start variable and you repeatedly replace a variable with using a rule. So

here we use we have 3 rules, replace A with 0A1, replace A with capital B, replace capital B

with small b and you do that till you end up with a string that is consisting of only terminals

or completely eliminate variables.

(Refer Slide Time: 11:05)

You can also draw a thing like this. This is called the parse tree. So this is a tree where we are

seeing how 000b111 is derived from A. So we start with A. We started with this A and this a

yielded 0, A, 1.

So this the topmost A yielded 0A1 and the second A again yielded 0A1. And the third A yet

again yielded 0A1. That is how we got 000 to begin with and 111 at the end. But the fourth A

just yielded B, capital B and the capital B just yielded a small b. And that is how we got the

000b111. So this is the same derivation but we are writing it in a tree form.

So tree form is probably easier to visualize instead of writing repeated derivations. And

sometimes this is helpful because sometimes you have multiple variables. So in all these

constructions that we had here, we just had one variable each time. Sometimes when you

have multiple variables, this is easier to visualize.

And you have to replace one after the another in the case of derivation but in the case of a

tree, you can just visualize them better. So this is what, this is the context-free language or

this is the context-free grammar and how you derive strings from the context-free grammar.

(Refer Slide Time: 12:49)

So let us try to see why this is interesting. Like what can you do in context-free grammar that

for instance, we could not do in regular languages. So for instance, if you have written any

kind of program or even something like using MATLAB or some kind of thing like that you

need let us say when you have writing mathematical expressions, you need properly nested

parentheses, parentheses or brackets, let us say.

So we meaning let us say so here I have written a language of brackets, brackets meaning the

[. So set of all strings that are formed just using open square bracket ([) and close square

bracket (]) such that it is properly nested.

So what are some examples? So I am just using square brackets instead of this parenthesis

because this is easier to draw and visualize. So there is no curves there. So this is for instance,

a string that is properly nested. Here is another one.

So in the first case, the starting bracket ended here, matched here, and then further there is

two nested parentheses one inside the other. The second case is starting bracket closed here

and within that there is one nested bracket and then outside that there is another nested

bracket.

Here is another example. So I will just match. This matches with this. So you can see why

they match. The maybe I will just note it down. This 1 matches with this 1; 2 matches with

this 2; 3 matches with this 3; and then 4 four matches with this 4.

And you can see, what do I mean by properly nested. Properly nested means that the opening

and closing should be in the right order. It should not be that so for instance this is not

properly nested, because the closing comes.

So even this for instance let us say, this is not a properly nested language not a properly

nested string because it does not even match. So for being properly nested, we need more

than just matching, the number being matching because so here the number matches.

There are 3 open brackets, 3 closed brackets but this is not a properly nested one because you

cannot, there is one closing off and then there is something opening. So that is the definition

of properly nested.

(Refer Slide Time: 16:04)

And this we know it is not a regular language. Why is it not a regular language? Let us see

why. For instance, let us consider this language that is just open bracket star and close bracket

star. So just two, it is just a alphabet of using two symbols that is the open bracket and the

close bracket.

So the alphabet here is this, these two symbols and the language A that I am writing here, I

am writing here. This is a regular expression over the alphabet and clearly, because it is a

regular expression, it is a regular language. So some open brackets followed by some closed

brackets.

So now, we had L here. And we have A here. What is L ∩ A? In other words, what is the set

of all properly nested brackets which have the structure of A. So if you think about it, you

will see that the only way to be properly nested within the structure of A is to have some

number of opening brackets followed by the same number of closing brackets.

In other words, it has to be some number of opening brackets followed by the same number

of closing brackets. So it is like open bracket n times followed by close bracket n times. This

is L intersection A.

If L was regular, we know A is regular by the regular expression and hence if L was regular,

L intersection A also would have been regular. But we know this L intersection A is not

regular. We know this because we saw 0ⁿ1ⁿ when we studied regular languages and we know

0ⁿ1ⁿ for the same n is not regular.

So L ∩ A is; this is the same as 0ⁿ1ⁿ. It is just that instead of the symbol 0 we have open

bracket and instead of the symbol 1 we have closed bracket.

So L intersection A is not regular. So this is clearly not regular. Hence, L is not regular. If L

was regular, then L intersection A also would have been regular. But we can show that L is

context-free. For instance, we will see a, we will soon see a context-free grammar that

generates all the bracket pairs which are properly nested.

So, just quickly, I wanted to show L intersection A, similar to L ∩ A, a language. So let us

say B. B is just 0ⁿ1ⁿ. It is the same as L ∩ A but instead of 0, instead of open bracket we have

0 and instead of closed bracket we have 1.

This the following the grammar in the box, this works. This generates, this grammar

generates B. So you can see why it generates B for instance. So you start with S because that

is the only variable here.

And then you can reuse, for instance, you can there are two things that you can do. You can

do you can replace S with empty string in which case you have a string or you can replace S

with let say 0S1 maybe this S again with 0S1 and then maybe with empty string.

So you can see the strings that you generate are of the form 0ⁿ1ⁿ. So this B is context-free

whereas meaning this is a context-free language meaning there is a context-free grammar that

generates this language whereas we know it is not regular. So already we have seen an

example, this is an example of a language that is not regular but is a context-free language.

And this is not the first time you are hearing the word grammar. So the word grammar you

might have heard by learning languages in school English or any other like Hindi or any other

local language that you might have heard or learned.

So we have grammar. So basically what is grammar? Grammar are just, grammar is just a

bunch of rules as to how you structure your sentences, how you put together words to form

meanings.

There are certain rules of what, what should go with what and how they should connect

together etcetera, how to form sentences. The grammar in English is not the same as the

grammar in the Indian language. So every language has its own specific set of rules and that

is the grammar.

(Refer Slide Time: 21:33)

So even for natural languages such as English, we have the grammar. So in fact there is in the

book there is an example of how you construct sentences, simple sentences using things like

noun, verb, preposition, adjective, etcetera. I think in my copy of the book, it is in page 101.

It is in the, it is towards the beginning of the Chapter 2. Please have a look at this. So I am not

recreating, rewriting same example of how you can construct a sentence using these things

like noun, verb, adjective, etcetera.

Now, let us see some more examples. So here we have context-free grammar. So let me just

explain. So there are two there are two variables. One is that S, the other one is A and in the

second row, second line, we have, we see these vertical lines. So I am talking about, I am

talking about these vertical lines.

So this means that A can generate, this means that A can generate, this is actually 3 rules.

One is that A can generate epsilon or it can generate small a capital A, or it can generate

capital A S capital A.

So this is 3 rules. We are just, these vertical lines denote OR. All it is saying is that it is

there are 3 rules. We are just writing them together. A can generate this or that or that. The

first one, the first line says S generates open bracket, open parenthesis A closed parenthesis.

(Refer Slide Time: 23:27)

So what is the, what are the variables here? So the variables here are S and capital A. And

terminals here are small a, that is a terminal. Empty string is an empty string. So that is, that

is not a terminal. Then open parenthesis and close parenthesis. There are 3 terminals here,

because they are also terminals.

So let us see some strings. So S generates, this is the first. The first rule has to be like this.

Now A, let us see what it can do. Let us say A generates small a, maybe another small a and

maybe let us say A generates ASA and maybe the first A generates an empty string, let us say

and let us say S generates a, a, this.

Now let us say, I think we are running out of space. So I will just say both of the As, let them

generate empty strings. We will do step by steps still. So this is a string that is generated. So I

am just successively, every time I am replacing one of the variables here with, with using a

rule with whatever is coming out of that. So I got this string open parenthesis aa open

parenthesis again, close parenthesis, close parenthesis.

So this just one example of a language and here let us say this. Maybe I will just erase it and

use a different colour for this. So here variables are there is only one variable S and terminals

are small a, small b. Empty string is just empty string. It is not a terminal.

So here let us see S gives aSb. Maybe once more aSb and maybe once more aSb and maybe

then we replace it with an empty string. So you have aaabbb. Another possibility is a Sb and

then ab. Like this, we use the rule S equals the empty string. So here we can see this gives

you aⁿ Bⁿ.

So you can check that this gives you aⁿ Bⁿ. So derive a power n and B power n, n greater than

0. So this you can check. I am sorry, I am bit cramped here for space but you can see what I

am doing here. So hopefully by now, it is clear how you can play around with the

context-free grammar and the kinds of strings that you can generate.

