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Hello and welcome to lecture 15 of the course Theory of Computation. In lecture 14 we stated 

Myhill-Nerode theorem which was a necessary and sufficient condition to show for languages 

being regular. We set up definitions and then we stated the theorem.  
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The theorem states that a language L is regular if and only if it has a finite index and also this 

index is also the size of the smallest DFA that recognizes that language, if it is finite of course. 

We said that the proof boils down into two lemmas, basically either direction of the implication 

of the proof. We quickly saw how these two lemmas imply the theorem which was fairly 

straightforward.  
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And now what remains is to show these lemmas. So, now let us proceed to the proofs of the 

lemmas 1 and 2. So, before stating the lemmas, I will just set up a brief notation. So, we have 

the definition of the transition function δ(𝑞, 𝑎). Suppose this is equal to r. This means that from 

state q, if you see the symbol a you reach state r. If you see the symbol a where a is a symbol 

of the alphabet.  

Now here I am defining sort of a shorthand notation δ∗(𝑞, 𝑥) is exactly like this but instead of 

a symbol from the alphabet I am defining it for a string, not a symbol. For instance, x could be 

ab so suppose now if you reach if you read ab you get to state s. So, if you read ab from q you 

go to r and then go to s so then you will say  δ∗(𝑞, 𝑎𝑏) = s.  

The δ∗ means that the number of steps could be more than one then or the length of the string 

is equal to the number of steps in a DFA which could be more than one. So, when you start 

from q and read the string where you end up this is δ∗. This will be used in our proof so that is 

why I am stating this notation up front.  
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So, what is lemma 1, lemma 1 says that if n is recognized by a DFA with k states then the index 

is at most k. So let us see, so what is index, index is the number of equivalence classes, another 

way to see it is the size of the largest pairwise distinguishable set. Suppose L has a DFA with 

k states, so, what we will do is that we will show that any two strings that end in the same state 

are indistinguishable.  

Suppose there are k states. So, now we are saying that anything that ends in the same state, any 

strings that end in the same state are indistinguishable. So, suppose there are infinite strings 

that end in a certain state all of them are indistinguishable, meaning from the strings that end 

in that state I can only pick one string in the pairwise distinguishable set. So let us see. Suppose 

L is recognized by a DFA M with k states and suppose for the sake of contradiction the index 

is more than k. 

Now we will show that we will show a contradiction to this assumption. This means that there 

is a set X that is of size more than k. That is what index means. There is a set X that is of size 

bigger than k which is pairwise distinguishable, meaning any two string that you take from X 

will be distinguishable by the language.  

Now let 𝑞0 be the starting state of the DFA. We assume there is a DFA and k is the number of 

states. Let us say k is 10 and suppose X has 11 strings. Now, for each of these strings in X you 

see where the DFA ends after reading them. There are 11 strings and there are only 10 states 

so at least two of these strings must end in the same state.  

Same thing I am saying here, by pigeonhole principle there exist two distinct strings x,  y  ∈ 𝑋, 

distinct so x is not equal to y, such that they end at the same state, so δ∗(𝑞0, 𝑥) =  δ∗(𝑞0, 𝑦). 



This of course will happen because there are more than k strings in capital X and there are only 

k states so at least two of them should kind of coincide as to where they end.  

So now, x and y end in the same state. By assumption, x and y are distinguishable by the 

language but now we will contradict that by showing that they are actually indistinguishable 

by the language. As far as the DFA is concerned both of them ended in the same state, now 

whatever z you append to the to the x or to the y, we will show that wherever the DFA goes 

with when it sees xz, let us say where it goes for any z ∈ Σ∗. Where does the DFA end? That 

is exactly what is given by the notation here δ∗(𝑞0, 𝑥𝑧). This is the state where xz ends up 

being.  

So, another way to see this is you first see where x takes the DFA followed by where does z 

take it from there. So, suppose x takes it to, suppose the state r and y also takes it to r. Now 

from r, where does z take it to, but what is r? r is also δ∗(𝑞0, 𝑦) and this is nothing but where 

the DFA ends up when it sees yz. 

δ∗(𝑞0, 𝑥𝑧) = δ∗(δ∗(𝑞0, 𝑥) , 𝑧) 

= δ∗(r , 𝑧) 

= δ∗(δ∗(𝑞0, 𝑦) , 𝑧) 

= δ∗(𝑞0, 𝑥𝑧) 

So, what it means is that starting from the starting state, xz takes it to some state, let us say t 

and yz also goes to the same state t. Meaning, if t is an accepting state both xz and yz are 

accepted, if t is not an accepting state neither xz is accepted nor yz is accepted.  

So, either both of them are in L or neither of them are in L, that is what I have written here. So, 

xz  ∈ 𝐿  ⟺ 𝑦z  ∈ 𝐿. If xz is in L then yz is in L, if xz is not in L then yz is not in L. That is 

what I have written here, it is if and only if. So, which means that whatever z you put at the 

end of x and y it is not going to distinguish because as far as the DFA is concerned, where did 

x take the DFA to and where did y take the DFA to, that is all that matters.   

Now from there it sees the same string z so it follows the same trajectory and ends in the same 

state. But we know that x and y took it to the same state r hence they are indistinguishable. 

This means x is, so not pairwise indistinguishable that is an error, so x and y are 

indistinguishable by L, that is what the definition was. I will just erase it and write not 

distinguishable, indistinguishable because whatever z you put it is not going to distinguish 

them. 



So, this is a contradiction because capital X was supposed to be a pairwise distinguishable set 

but here, we have two distinct members of capital X which are indistinguishable. So, that is a 

contradiction. The assumption that it contradicts was that the index of L was strictly greater 

than k, hence the assumption is wrong and hence the index is less than or equal to k. So, we 

showed that if L has a DFA with k states the index is at most k which is the statement of lemma 

1.  
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The next statement or next lemma that we have to show is lemma 2 which is opposite. In lemma 

1 we said that if there is a DFA that recognizes L with k states, then the index is at most k. In 

lemma 2 we say the opposite. If index is at most k or index is equal to k then there is a DFA 

with k states that recognizes L. So, if the index is 10 then we can construct a DFA with 10 

states.  

So, what we do here is we actually construct a DFA of using the index. So, suppose the index 

is k which is a finite number, now we are going to construct a DFA. So let X = {𝑥1, 𝑥2, … 𝑥𝑘} 

be a set of pairwise distinguishable strings. So, this is the largest set of pairwise distinguishable 

strings, so that is the definition of index. Index is the size of the largest pairwise distinguishable 

set X by L. Index is k so we can make a set of size k which is {𝑥1, 𝑥2, … 𝑥𝑘}. 

So now what we will do is we will use this set X to construct the DFA. Let us construct the 

DFA. So let M = (𝑄, Σ, δ, 𝑞0, 𝐹) be the DFA. So, we already know what Σ is and Q is the set 

of states and the set of states is going to be {𝑞1𝑞2 … 𝑞𝑘}. There are going to be k states, which 

is what we want to show. If the index is k, there is a DFA with k states.  

Now 𝑞1 to 𝑞𝑘, each of these states, so 𝑞1 will correspond to 𝑥1, 𝑞2 will correspond to 𝑥2 and so 

on 𝑞𝑘 corresponds to 𝑥𝑘, so each 𝑞𝑖 corresponds to the respective 𝑥𝑖, let us see how in a moment. 

So now the next thing we need to define is how the arrows are defined. So let us take 𝑞𝑖 and 

then it sees a symbol a. Where do you end up? This is the question. So, this transition needs to 

be defined. Notice this that 𝑞𝑖 corresponds to 𝑥𝑖 so let us take 𝑥𝑖.  

Now let us append a to 𝑥𝑖. So 𝑥𝑖 is some string. When you append it, you get a bigger string. 

Now this string 𝑥𝑖a which I am underlining over here, it is equivalent to some other string in 



capital X. So capital X is the largest set of strings that are pairwise distinguishable so 𝑥𝑖a will 

be equivalent to some string in that set X because if it is not equivalent to some string in that 

set then you can add 𝑥𝑖a to the set and get a bigger pairwise distinguishable set but then that is 

not possible because we assumed or by definition this is the biggest pairwise distinguishable 

set.  

So, 𝑥𝑖a must be equivalent to some string in capital X. Let that string be 𝑥𝑗. Now 𝑥𝑖a is 

equivalent to or is indistinguishable with some string in capital X. Now that string, let us say it 

is 𝑥𝑗. Now, what we do is we ask the question where does this arrow go to from 𝑞𝑖 upon reading, 

this is symbol a. The answer is it goes to 𝑞𝑗. How did we get 𝑞𝑗? We saw what is equivalent to 

𝑥𝑖 followed by a that is how we get the transitions. 

So, now for all the states 𝑞1 to 𝑞𝑘 and for all the symbols in the alphabet a, b, c whatever 0, 1, 

whatever be the alphabet we do this to find out where the arrow points to. So that gives you the 

transition so I have defined the states 𝑞𝑖, I have defined the transitions δ, Σ is already known. 

Now what remains to be shown is define this starting state 𝑞0 and the accepting states F.  

Just like I said before, the empty string ϵ is equivalent or is indistinguishable from some string 

in the set X. The empty string epsilon is equivalent to some string in the set X, let us call that 

string  . Why does it have to be equivalent? Because if it is not equivalent it is distinguishable 

from all the other strings in X, you can add the empty string to X and get a bigger pairwise 

distinguishable set which is not possible.  

So empty string better be equivalent to some string already there, equivalent meaning 

indistinguishable with some string that is already there in X and suppose it is 𝑥𝑚. Suppose the 

empty string is equivalent to 𝑥𝑚 then the corresponding state 𝑞𝑚 is to be set at the starting state. 

So empty string will be equivalent to some state, some string 𝑥𝑚 and the corresponding state 

is the starting state of the DFA. Finally, the last thing needs to be defined. We have defined a 

set of states, the alphabet is already known, transition is known, starting state is defined. The 

only thing left is the accepting states. Accepting states is fairly straightforward.  

We have 𝑥1 to 𝑥𝑘 strings and correspondingly we have 𝑞1 to 𝑞𝑘 states. Some of these 𝑥1 to 𝑥𝑘 

are in the language L. Suppose 𝑥1 is in L. If 𝑥1 is in L then you make 𝑞1 accepting state. If 𝑥2 

is not in L you make 𝑞2 not an accepting state. If 𝑥3 is not in L you make 𝑞3 not an accepting 

state. If 𝑥𝑘 is in L you make 𝑞𝑘 an accepting state. 



So, whichever 𝑥𝑖 is in the language that 𝑞𝑖 will be an accepting state. Whichever 𝑥𝑖 is not in 

the language that 𝑞𝑖 is not in the accepting states. Now all that we need to do, so we have 

defined the DFA we have told what is Q, what is δ, what is Σ ,what is 𝑞0, what is F. All that 

we need to do is to show that this DFA recognizes our language.  

We will first state this following claim which is kind of what we are building towards. The 

claim is that suppose upon reading the string w from the state 𝑞𝑖 you move to q𝑗
    . So 

δ∗(𝑞𝑖, 𝑤) = 𝑞𝑗. When you are in 𝑞𝑖 and then you read w and then you get to 𝑞𝑗.  I am reading 

squiggly lines because it may not be one transition. It could be multiple transitions,  

δ∗(𝑞𝑖, 𝑤) = 𝑞𝑗   ⟺  𝑥𝑖w ≡𝐿 𝑥𝑗  for all i, j  and  w ∈ Σ∗ 

This means that if this happens, this happens if and only if 𝑥𝑖  w is equivalent to 𝑥𝑗. So, these 

two things are equivalent or these two things happen together or do not happen together. If one 

of them happens, the other one also happens. Let us see what do we want to do now. We assume 

that by the assumption the index is k. We wanted to show that there is a DFA with k states, we 

actually constructed a DFA with k states. We want to show that this DFA recognizes the 

language L.  

So, what we will do now is to assume that this claim is true. Okay, we will assume that this 

claim is true and then we will prove that this DFA recognizes L. After which, we will prove 

the claim. The claim is fairly straightforward, fairly inductive, standard inductive proof. So let 

us just forget the proof of the claim for a moment and we will prove that the DFA constructed 

recognizes the language. Let us see how.  

So, how do we show that the DFA recognizes language? We will show that every string in the 

language is accepted and every string that is not in the language is not accepted. Suppose x is 

in the language. Then it follows that it is equivalent to some string that is in the language, some 

string that is in the set X. 

Because x is equivalent to some string in the language and some string in the set X, because X 

is the largest pairwise distinguishable set and whatever it is equivalent with will have to be a 

string in the language. So, x is equal to some 𝑥𝑖 that is both in X as well as in the language. 

Which means that x can be viewed as empty string followed by x and we know that this is 

equivalent to 𝑥𝑖.  

x = ϵx  ≡𝐿 xi 



So ϵx is equal to 𝑥𝑖. By the claim that we just said, this means that empty string followed by x 

is equal to 𝑥𝑖, this means that δ∗(𝑞0, 𝑥) ≡𝐿 𝑞𝑖  ∈ 𝐹 because 𝑞0 is a state corresponding to ϵ the 

empty string that is how we constructed, x is the same, 𝑞𝑖 is the state corresponding to 𝑥𝑖. So,  

δ∗(𝑞0, 𝑥) ≡𝐿 𝑞𝑖 meaning from the starting state upon reading the symbol x or upon reading the 

string x the machine ends at or the DFA ends at 𝑞𝑖. And by the definition of the accepting states 

F.  

So, what were the accepting states? All the 𝑥𝑖’s that were in the language correspond to all the 

𝑞𝑖 that are accepting states. So, since by assumption 𝑥𝑖 is a string in the language, 𝑞𝑖 is in the 

language. Therefore, upon reading the string x the DFA ends at 𝑞𝑖, which is an accepting state. 

So, x is accepted. The next part is fairly similar. We have to show that any string that is not in 

the language is rejected. Suppose x  ∉ 𝐿. This means x ≡𝐿 𝑥𝑗  that is in X. This xj must be in X 

but it is not a member of the language because otherwise they will not be equivalent.  

Similar to above we can do the exact same thing, x is equal to ϵx etcetera. We will get using 

the claim that δ∗(𝑞0, 𝑥) ≡𝐿 𝑞𝑗 meaning upon reading the string x from the starting state the 

DFA ends at 𝑞𝑗.   Like before, since 𝑥𝑗 is not in the language, 𝑞𝑗 is not an accepting state. 𝑞𝑗 is 

not an accepting state which means the string X takes the DFA to a state 𝑞𝑗 which is not an 

accepting state and hence it means that the DFA does not accept the string x.  

We considered an x that is not in the language, we showed that M is not accepting. M does not 

accept this string. So whenever x is in the language M accepts whenever x is not in the language 

M does not accept. This means that M recognizes the language. So fairly straightforward proofs 

once we assume the claim. The claim is also sort of technical so let me just recap the lemma 

very quickly, before moving to the proof of the claim.  

The lemma statement is that if the index is equal to k there is a DFA with k states that recognizes 

the language. The proof is constructive. We actually construct a DFA with k states. So, the 

index is k means that there is a set of k pairwise distinguishable strings. We make a DFA where 

each state corresponds to each of these k strings and we define the transitions, accept state, start 

state, everything correspondingly. Start state is the state that corresponds to the string 

equivalent to the empty string, accept states are the states that correspond to the strings that are 

in the language. And then we use that to show that any strings in the language L are accepted, 

any strings that are not in the language are not accepted. (Refer Slide Time: 25:55)  



 

 

 



 

And what remains to be shown is the following claim. The claim is something like this. So, 

suppose the string w takes the DFA from 𝑞𝑖 to 𝑞𝑗 then 𝑥𝑖w is equivalent to 𝑥𝑗 and vice versa. 

If 𝑥𝑖 w is equivalent to 𝑥𝑗 then w takes the string from 𝑞𝑖 to 𝑞𝑗 and this is fairly straightforward 

this is done by induction on the length of w.  

The base cases are simple so I will do two base cases 0 and 1. The induction is on the length 

of w so the first base case is when the length of w is 0. There is only one string that is of zero 

length which is the empty string ϵ. So, what is δ∗(𝑞𝑖, 𝜖), meaning where does empty string take 

the DFA from 𝑞𝑖? It takes it to itself and trivially xiϵ ≡𝐿 𝑥𝑖. This is what we have to show, if ϵ 

takes it to some other state then xi also is equivalent to the corresponding state.  

So ϵ takes it to 𝑞𝑖 because ϵ cannot move the states in a DFA. But then 𝑥𝑖 followed by ϵ is 

equivalent to 𝑥𝑖  itself, so hence this is true in the case of w equal to ϵ. When |𝑤| is equal to 1 

which means the length of the string is 1, which means w is a symbol from the alphabet. w is 

some symbol a from the alphabet. Now δ∗(qi, a), meaning where does a take the DFA starting 

from 𝑞𝑖. This is just a transition function because it is a single symbol, not a string. So, it is the 

same as δ(qi, a),  because we can remove the star. 

δ(qi, a) ≡L qj 

If you remember the way we define  δ(qi, a) ≡𝐿 𝑞𝑗 was by checking what is the equivalence 

of 𝑥𝑖 a. What is 𝑥𝑖  a equivalent to? We set it to be 𝑞𝑗 because 𝑥𝑖  a was equivalent to 𝑥𝑗. So, by 

the definition of the transition function 𝑥𝑖  a ≡𝐿 𝑥𝑗, so the claim is true here as well. So, this is 



just by the definition of the transition function. Now, the main thing is the induction. So, we 

showed it for the length |w| = 0 and |w| = 1.  

Now the next thing is the induction step. Suppose |w| = l  >  1 and let us say w is of the form 

v a where v is a string and a is a symbol. So |w| = |v| + 1. So v could be some string. The 

length |v| = l - 1 and a is a single symbol from the alphabet. So, where does w take the DFA 

starting from 𝑞𝑖. First, we will see where does v take the DFA and then we will see where does 

a take the DFA.  

We can break down w as v and followed by a. Suppose v takes the DFA to 𝑞𝑗1 and then a takes 

it to 𝑞𝑗2. So, 𝑞𝑗1 , as I said before is where v takes the DFA to and 𝑞𝑗2 is where a takes it from 

𝑞𝑗1. By induction, 𝑞𝑗1 = δ∗(qi, v). By induction it follows that 𝑥𝑗1 ≡𝐿 𝑥𝑖v and by definition of  

δ we have 𝑥𝑗2 ≡𝐿 𝑥𝑗1a. Because, by the definition of δ, we have δ(𝑞𝑗1, 𝑎) = 𝑞𝑗2.  

So now 𝑥𝑗2 is equivalent to 𝑥𝑗1a. This follows by what I have written here, the first equivalence. 

The second equivalence is that 𝑥𝑗1 ≡𝐿 𝑥𝑖v. Maybe I will mark it with green colour. This is the 

green equivalence, 𝑥𝑗1 is equivalent to 𝑥𝑖v. But then, 𝑥𝑖va is simply 𝑥𝑖 as it is and va is the 

same as w. Maybe, I will use another colour, this red colour. This is equal to 𝑥𝑖w, not 

equivalence.  

𝑥𝑗2 ≡𝐿 𝑥𝑗1a ≡𝐿 𝑥𝑖va = xiw 

So now we have shown that 𝑥𝑗2 is equivalent to 𝑥𝑖w where 𝑞𝑗2 was a state reached from 𝑞𝑖, 

starting at 𝑞𝑖 upon reading the string w, which is what we wanted to show. We wanted to show 

that if the DFA goes to 𝑞𝑗 starting from 𝑞𝑖 by reading the string w then 𝑥𝑖w is equivalent to 𝑥𝑗. 

Here, the state that it went to was 𝑞𝑗2 and here we are saying that 𝑥𝑖w is equivalent to 𝑥𝑗2. So, 

this means the claim holds for the inductive step as well and that completes the proof.  

So, if you find the induction too technical my suggestion is to probably forget the induction for 

a moment and just try to understand the rest of the proof. The rest of the proof is fairly nice and 

easy to follow. Try to just believe the claim. Forget about worrying about the proof of the claim. 

Try to believe this claim that is in the red box and try to see how the construction of the DFA 

works. The construction mainly works by, for each string that is in the pairwise distinguishable 

set capital X we make a state and we make the transitions accordingly and that somehow 

magically works together. It is not magical but it is somewhat sensible as well.  



So, try to follow this proof without worrying about the proof of this claim and once you 

understand that proof then you can come to understanding the proof of the claim. So, the proof 

of the claim is also fairly standard but try to separate the two so that if together it becomes too 

hard to follow, that is one suggestion. What we showed is the proof of lemma 1 and lemma 2.  
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So, lemma 1 said that if L is recognized by a DFA with k states then the index is at most k, this 

was shown by assuming that this is not the case and then by showing a contradiction. If the 

index was greater than k then we showed that two strings from the pairwise distinguishable set 

must end at the same state. Then we said that anything that ends at the same state must be 

pairwise indistinguishable which contradicts what we said earlier.  
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Then we said lemma 2. Lemma 2 said that if the index is k then there is a DFA with k states 

which we proved in a constructive fashion and that together imply the Myhill-Nerode theorem.  
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Finally, just a brief example. In fact, part of this example we touched upon in the lecture 14. 

So, consider the language is 𝐴 = {0𝑛1𝑛 | 𝑛 ≥ 0}. This is a language. So, this as we saw in 

lecture 13 this is {ϵ,  01,  0011, … } , and we know this is not a regular language. Let us see why 

Myhill-Nerode theorem implies that this is not a regular language.  

So basically, to show that this is not a regular language, we need to show that the index is not 

finite. So, consider this following set 𝑋 = {𝑥𝑖| 𝑖 ≥ 0} where 𝑥𝑖 = 0𝑖. X is basically 0𝑖  for all 𝑖. 

So, it is just consisting of strings {ϵ, 0, 00, 000, … }. This is an infinite set. The claim is that this 

is a pairwise distinguishable set.  

So, why is it a pairwise distinguishable set? We kind of saw the proof already in lecture 14. 

Consider these four strings 0, 00, 000, 0000, so for anything, if you try to append 1, 01 is in the 



language but 001 is not in the language, 0001 is not in the language and 00001 is also not in 

the language. So, the first string 0 is distinguishable from any other string in the set.  

And similarly, if you consider appending 11, so 011 is not in the language but 0011 is in the 

language, hence the second string 00 is pairwise distinguishable from all the other strings. It is 

the same argument again. If you see this set X here it is an infinite set it contains ϵ, 0, 00, 000, … 

. The string 1𝑖 will ensure that just 𝑥𝑖  alone is in the language. 𝑥𝑖1𝑖 will be in the language but 

𝑥𝑗1𝑖 will not be in the language whenever 𝑖 ≠ 𝑗.  𝑥𝑗1𝑖 is not in the language. Hence, 1𝑖 

distinguishes 𝑥𝑖  and 𝑥𝑗. 

So, if you take any 𝑥𝑖 and 𝑥𝑗 the 1𝑖 will distinguish them. Hence all the strings in the set capital 

X are pairwise distinguishable. Hence this is an infinite set that is pairwise distinguishable 

which means the index of the language 𝐴 is infinite.  

And that is kind of is consistent with what we know, which is that 𝐴 is not a regular language. 

The index is infinite, hence 𝐴 is not regular. This is something that we have already said in 

lecture 14. Anyway, this concludes the part on Myhill-Nerode theorem which is a necessary 

and sufficient condition to show that a language is regular. This is a necessary and sufficient 

condition. We defined this equivalence relation and the condition is that 𝐴 is regular if and only 

if the equivalence relation defined by 𝐴 results in a finite number of equivalence classes.  

And with that, we come to the end of the part on regular languages. This is the last topic in the 

first chapter which is a chapter on regular languages. In fact, this part, this Myhill-Nerode 

theorem is in fact not there in the textbook per se. It is listed as an exercise but this completes 

the part on regular languages. So, the next thing that we will see are context-free languages 

which are slightly more sophisticated or more intricate or more involved than regular 

languages.  

So regular languages are fairly simple, regular expressions and DFAs and NFAs. Context-free 

languages involve another dimension. There are more things that you can do with context-free 

languages. So, we will see that in the next lecture. 


