Theory of Computation
Professor Subrahmanyam Kalyanasundaram
Department of Computer Science and Engineering
Indian Institute of Technology Hyderabad
Proving the Myhill-Nerode Theorem
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Hello and welcome to lecture 15 of the course Theory of Computation. In lecture 14 we stated

Myhill-Nerode theorem which was a necessary and sufficient condition to show for languages

being regular. We set up definitions and then we stated the theorem.
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The theorem states that a language L is regular if and only if it has a finite index and also this
index is also the size of the smallest DFA that recognizes that language, if it is finite of course.
We said that the proof boils down into two lemmas, basically either direction of the implication
of the proof. We quickly saw how these two lemmas imply the theorem which was fairly
straightforward.
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And now what remains is to show these lemmas. So, now let us proceed to the proofs of the
lemmas 1 and 2. So, before stating the lemmas, | will just set up a brief notation. So, we have
the definition of the transition function (g, a). Suppose this is equal to r. This means that from

state g, if you see the symbol a you reach state r. If you see the symbol a where a is a symbol
of the alphabet.

Now here | am defining sort of a shorthand notation 6*(q, x) is exactly like this but instead of
a symbol from the alphabet | am defining it for a string, not a symbol. For instance, x could be
ab so suppose now if you reach if you read ab you get to state s. So, if you read ab from q you

go to r and then go to s so then you will say 6*(q,ab) = s.

The 6" means that the number of steps could be more than one then or the length of the string
is equal to the number of steps in a DFA which could be more than one. So, when you start
from g and read the string where you end up this is §*. This will be used in our proof so that is

why | am stating this notation up front.
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So, what is lemma 1, lemma 1 says that if n is recognized by a DFA with k states then the index
is at most k. So let us see, so what is index, index is the number of equivalence classes, another
way to see it is the size of the largest pairwise distinguishable set. Suppose L has a DFA with
k states, so, what we will do is that we will show that any two strings that end in the same state

are indistinguishable.

Suppose there are k states. So, now we are saying that anything that ends in the same state, any
strings that end in the same state are indistinguishable. So, suppose there are infinite strings
that end in a certain state all of them are indistinguishable, meaning from the strings that end
in that state | can only pick one string in the pairwise distinguishable set. So let us see. Suppose
L is recognized by a DFA M with k states and suppose for the sake of contradiction the index

is more than k.

Now we will show that we will show a contradiction to this assumption. This means that there
is a set X that is of size more than k. That is what index means. There is a set X that is of size
bigger than k which is pairwise distinguishable, meaning any two string that you take from X

will be distinguishable by the language.

Now let g, be the starting state of the DFA. We assume there is a DFA and k is the number of
states. Let us say k is 10 and suppose X has 11 strings. Now, for each of these strings in X you
see where the DFA ends after reading them. There are 11 strings and there are only 10 states

so at least two of these strings must end in the same state.

Same thing | am saying here, by pigeonhole principle there exist two distinct strings x, y € X,

distinct so x is not equal to y, such that they end at the same state, so 6" (qq, x) = 6"(qo,y).



This of course will happen because there are more than k strings in capital X and there are only

k states so at least two of them should kind of coincide as to where they end.

So now, x and y end in the same state. By assumption, x and y are distinguishable by the
language but now we will contradict that by showing that they are actually indistinguishable
by the language. As far as the DFA is concerned both of them ended in the same state, now
whatever z you append to the to the x or to the y, we will show that wherever the DFA goes
with when it sees xz, let us say where it goes for any z € £*. Where does the DFA end? That
is exactly what is given by the notation here 6*(q,, xz). This is the state where xz ends up

being.

So, another way to see this is you first see where x takes the DFA followed by where does z
take it from there. So, suppose x takes it to, suppose the state r and y also takes it to r. Now
from r, where does z take it to, but what is r? r is also 6*(q,, ¥) and this is nothing but where

the DFA ends up when it sees yz.

8"(qo, xz) = 8"(8"(q0, %) , 2)
=6"(r,2)
= 8"(8"(q0,¥) ,2)
= 8"(qo, x2)

So, what it means is that starting from the starting state, xz takes it to some state, let us say t
and yz also goes to the same state t. Meaning, if t is an accepting state both xz and yz are

accepted, if t is not an accepting state neither xz is accepted nor yz is accepted.

So, either both of them are in L or neither of them are in L, that is what | have written here. So,
Xz €EL & yz € L. Ifxzisin LthenyzisinL, if xzisnotin L then yz is not in L. That is
what | have written here, it is if and only if. So, which means that whatever z you put at the
end of x and y it is not going to distinguish because as far as the DFA is concerned, where did

x take the DFA to and where did y take the DFA to, that is all that matters.

Now from there it sees the same string z so it follows the same trajectory and ends in the same
state. But we know that x and y took it to the same state r hence they are indistinguishable.
This means x is, so not pairwise indistinguishable that is an error, so x and y are
indistinguishable by L, that is what the definition was. | will just erase it and write not
distinguishable, indistinguishable because whatever z you put it is not going to distinguish

them.



So, this is a contradiction because capital X was supposed to be a pairwise distinguishable set
but here, we have two distinct members of capital X which are indistinguishable. So, that is a
contradiction. The assumption that it contradicts was that the index of L was strictly greater
than k, hence the assumption is wrong and hence the index is less than or equal to k. So, we

showed that if L has a DFA with k states the index is at most k which is the statement of lemma
1.
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The next statement or next lemma that we have to show is lemma 2 which is opposite. In lemma

1 we said that if there is a DFA that recognizes L with k states, then the index is at most k. In
lemma 2 we say the opposite. If index is at most k or index is equal to k then there is a DFA
with k states that recognizes L. So, if the index is 10 then we can construct a DFA with 10

states.

So, what we do here is we actually construct a DFA of using the index. So, suppose the index
is k which is a finite number, now we are going to construct a DFA. So let X = {x;, x3, ... X3 }
be a set of pairwise distinguishable strings. So, this is the largest set of pairwise distinguishable
strings, so that is the definition of index. Index is the size of the largest pairwise distinguishable

set X by L. Index is k so we can make a set of size k which is {x;, x5, ... x; }.

So now what we will do is we will use this set X to construct the DFA. Let us construct the
DFA. Solet M = (Q, %, 6, qo, F) be the DFA. So, we already know what X is and Q is the set
of states and the set of states is going to be {gq,q, ... qx}. There are going to be k states, which

is what we want to show. If the index is k, there is a DFA with k states.

Now g, to gy, each of these states, so g, will correspond to x;, g, will correspond to x, and so
on q,, corresponds to x;, So each g; corresponds to the respective x;, let us see how in a moment.
So now the next thing we need to define is how the arrows are defined. So let us take g; and
then it sees a symbol a. Where do you end up? This is the question. So, this transition needs to

be defined. Notice this that g; corresponds to x; so let us take x;.

Now let us append a to x;. So x; is some string. When you append it, you get a bigger string.

Now this string x;a which | am underlining over here, it is equivalent to some other string in



capital X. So capital X is the largest set of strings that are pairwise distinguishable so x;a will
be equivalent to some string in that set X because if it is not equivalent to some string in that
set then you can add x;a to the set and get a bigger pairwise distinguishable set but then that is
not possible because we assumed or by definition this is the biggest pairwise distinguishable

set.

So, x;a must be equivalent to some string in capital X. Let that string be x;. Now x;a is
equivalent to or is indistinguishable with some string in capital X. Now that string, let us say it
is x;. Now, what we do is we ask the question where does this arrow go to from g; upon reading,
this is symbol a. The answer is it goes to g;. How did we get g;? We saw what is equivalent to

x; followed by a that is how we get the transitions.

So, now for all the states g, to g, and for all the symbols in the alphabet a, b, c whatever 0, 1,
whatever be the alphabet we do this to find out where the arrow points to. So that gives you the
transition so | have defined the states g;, | have defined the transitions §, X is already known.

Now what remains to be shown is define this starting state g, and the accepting states F.

Just like | said before, the empty string € is equivalent or is indistinguishable from some string
in the set X. The empty string epsilon is equivalent to some string in the set X, let us call that
string . Why does it have to be equivalent? Because if it is not equivalent it is distinguishable
from all the other strings in X, you can add the empty string to X and get a bigger pairwise

distinguishable set which is not possible.

So empty string better be equivalent to some string already there, equivalent meaning
indistinguishable with some string that is already there in X and suppose it is x,,,. Suppose the
empty string is equivalent to x,,, then the corresponding state q,, is to be set at the starting state.
So empty string will be equivalent to some state, some string x,,, and the corresponding state
is the starting state of the DFA. Finally, the last thing needs to be defined. We have defined a
set of states, the alphabet is already known, transition is known, starting state is defined. The

only thing left is the accepting states. Accepting states is fairly straightforward.

We have x; to x;, strings and correspondingly we have g, to g, states. Some of these x; to x;
are in the language L. Suppose x; is in L. If x; is in L then you make g, accepting state. If x,
is not in L you make g, not an accepting state. If x5 is not in L you make g5 not an accepting

state. If x; is in L you make g, an accepting state.



So, whichever x; is in the language that g; will be an accepting state. Whichever x; is not in
the language that g; is not in the accepting states. Now all that we need to do, so we have
defined the DFA we have told what is Q, what is §, what is £ ,what is g,, what is F. All that

we need to do is to show that this DFA recognizes our language.

We will first state this following claim which is kind of what we are building towards. The

claim is that suppose upon reading the string w from the state g; you move to q;. So
8"(q;, w) = q;. When you are in g; and then you read w and then you get to g;. | am reading

squiggly lines because it may not be one transition. It could be multiple transitions,
§*(q,w) =q; © x;w =, x; foralli,j and w € T*

This means that if this happens, this happens if and only if x; w is equivalent to x;. So, these
two things are equivalent or these two things happen together or do not happen together. If one
of them happens, the other one also happens. Let us see what do we want to do now. We assume
that by the assumption the index is k. We wanted to show that there is a DFA with k states, we
actually constructed a DFA with k states. We want to show that this DFA recognizes the

language L.

So, what we will do now is to assume that this claim is true. Okay, we will assume that this
claim is true and then we will prove that this DFA recognizes L. After which, we will prove
the claim. The claim is fairly straightforward, fairly inductive, standard inductive proof. So let
us just forget the proof of the claim for a moment and we will prove that the DFA constructed

recognizes the language. Let us see how.

So, how do we show that the DFA recognizes language? We will show that every string in the
language is accepted and every string that is not in the language is not accepted. Suppose x is
in the language. Then it follows that it is equivalent to some string that is in the language, some

string that is in the set X.

Because x is equivalent to some string in the language and some string in the set X, because X
is the largest pairwise distinguishable set and whatever it is equivalent with will have to be a
string in the language. So, x is equal to some x; that is both in X as well as in the language.
Which means that x can be viewed as empty string followed by x and we know that this is

equivalent to x;.

X =€X = Xj



So ex is equal to x;. By the claim that we just said, this means that empty string followed by x
is equal to x;, this means that 6*(q,,x) =, q; € F because g, is a state corresponding to € the
empty string that is how we constructed, x is the same, q; is the state corresponding to x;. So,
8*(q0, x) =, q; meaning from the starting state upon reading the symbol x or upon reading the
string x the machine ends at or the DFA ends at q;. And by the definition of the accepting states
F.

So, what were the accepting states? All the x;’s that were in the language correspond to all the
q; that are accepting states. So, since by assumption x; is a string in the language, g; is in the
language. Therefore, upon reading the string x the DFA ends at g;, which is an accepting state.
So, x is accepted. The next part is fairly similar. We have to show that any string that is not in
the language is rejected. Suppose x & L. This means x =, x; that is in X. This x; must be in X

but it is not a member of the language because otherwise they will not be equivalent.

Similar to above we can do the exact same thing, x is equal to ex etcetera. We will get using
the claim that §*(qo, x) =, q; meaning upon reading the string x from the starting state the
DFAends at g;. Like before, since x; is not in the language, q; is not an accepting state. q; is
not an accepting state which means the string X takes the DFA to a state g; which is not an

accepting state and hence it means that the DFA does not accept the string x.

We considered an x that is not in the language, we showed that M is not accepting. M does not
accept this string. So whenever x is in the language M accepts whenever x is not in the language
M does not accept. This means that M recognizes the language. So fairly straightforward proofs
once we assume the claim. The claim is also sort of technical so let me just recap the lemma

very quickly, before moving to the proof of the claim.

The lemma statement is that if the index is equal to k there is a DFA with k states that recognizes
the language. The proof is constructive. We actually construct a DFA with k states. So, the
index is k means that there is a set of k pairwise distinguishable strings. We make a DFA where
each state corresponds to each of these k strings and we define the transitions, accept state, start
state, everything correspondingly. Start state is the state that corresponds to the string
equivalent to the empty string, accept states are the states that correspond to the strings that are
in the language. And then we use that to show that any strings in the language L are accepted,

any strings that are not in the language are not accepted. (Refer Slide Time: 25:55)
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And what remains to be shown is the following claim. The claim is something like this. So,

suppose the string w takes the DFA from g; to g; then x;w is equivalent to x; and vice versa.
If x; w is equivalent to x; then w takes the string from g; to g; and this is fairly straightforward

this is done by induction on the length of w.

The base cases are simple so | will do two base cases 0 and 1. The induction is on the length
of w so the first base case is when the length of w is 0. There is only one string that is of zero
length which is the empty string e. So, what is §*(q;, €), meaning where does empty string take
the DFA from g;? It takes it to itself and trivially x;e =; x;. This is what we have to show, if €

takes it to some other state then x; also is equivalent to the corresponding state.

So € takes it to g; because e cannot move the states in a DFA. But then x; followed by € is
equivalent to x; itself, so hence this is true in the case of w equal to e. When |w| is equal to 1
which means the length of the string is 1, which means w is a symbol from the alphabet. w is
some symbol a from the alphabet. Now 6*(q;,a), meaning where does a take the DFA starting
from g;. This is just a transition function because it is a single symbol, not a string. So, it is the

same as 6(q;,a), because we can remove the star.
8(gi,a) =L, qj

If you remember the way we define 8(q;,a) =, q; was by checking what is the equivalence
of x; a. What is x; a equivalent to? We set it to be q; because x; a was equivalent to x;. So, by

the definition of the transition function x; a =, x;, so the claim is true here as well. So, this is



just by the definition of the transition function. Now, the main thing is the induction. So, we

showed it for the length |w| =0 and |w| = 1.

Now the next thing is the induction step. Suppose |[w| =1 > 1 and let us say w is of the form
v a where v is a string and a is a symbol. So |w| = |v| + 1. So v could be some string. The
length [v| =1 -1 and a is a single symbol from the alphabet. So, where does w take the DFA
starting from q;. First, we will see where does v take the DFA and then we will see where does
a take the DFA.

We can break down w as v and followed by a. Suppose v takes the DFA to g;; and then a takes
itto qj,. So, qj; , as | said before is where v takes the DFA to and g, is where a takes it from
qj1- By induction, q;; = 8"(q;, v). By induction it follows that x;; =, x;v and by definition of

§ we have x;, =, x;;a. Because, by the definition of 8, we have §(g;1,a) = qjs.

So now x;, is equivalent to x;; a. This follows by what I have written here, the first equivalence.
The second equivalence is that x;; =, x;v. Maybe I will mark it with green colour. This is the
green equivalence, x;; is equivalent to x;v. But then, x;va is simply x; as it is and va is the

same as w. Maybe, | will use another colour, this red colour. This is equal to x;w, not

equivalence.
Xj2 = Xj1a =l Xjva = X;w

So now we have shown that x;, is equivalent to x;w where q;, was a state reached from g;,

starting at q; upon reading the string w, which is what we wanted to show. We wanted to show

that if the DFA goes to q; starting from g; by reading the string w then x;w is equivalent to x;.
Here, the state that it went to was q;, and here we are saying that x;w is equivalent to x;,. So,

this means the claim holds for the inductive step as well and that completes the proof.

So, if you find the induction too technical my suggestion is to probably forget the induction for
a moment and just try to understand the rest of the proof. The rest of the proof is fairly nice and
easy to follow. Try to just believe the claim. Forget about worrying about the proof of the claim.
Try to believe this claim that is in the red box and try to see how the construction of the DFA
works. The construction mainly works by, for each string that is in the pairwise distinguishable
set capital X we make a state and we make the transitions accordingly and that somehow

magically works together. It is not magical but it is somewnhat sensible as well.



So, try to follow this proof without worrying about the proof of this claim and once you
understand that proof then you can come to understanding the proof of the claim. So, the proof
of the claim is also fairly standard but try to separate the two so that if together it becomes too

hard to follow, that is one suggestion. What we showed is the proof of lemma 1 and lemma 2.
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So, lemma 1 said that if L is recognized by a DFA with k states then the index is at most k, this
was shown by assuming that this is not the case and then by showing a contradiction. If the
index was greater than k then we showed that two strings from the pairwise distinguishable set
must end at the same state. Then we said that anything that ends at the same state must be

pairwise indistinguishable which contradicts what we said earlier.
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Then we said lemma 2. Lemma 2 said that if the index is k then there is a DFA with k states

which we proved in a constructive fashion and that together imply the Myhill-Nerode theorem.
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Finally, just a brief example. In fact, part of this example we touched upon in the lecture 14.
So, consider the language is A = {0™1™ | n > 0}. This is a language. So, this as we saw in
lecture 13 thisis {e, 01, 0011, ...}, and we know this is not a regular language. Let us see why

Myhill-Nerode theorem implies that this is not a regular language.

So basically, to show that this is not a regular language, we need to show that the index is not
finite. So, consider this following set X = {x;| i = 0} where x; = 0. X is basically 0* for all i.
So, it is just consisting of strings {¢, 0,00, 000, ... }. This is an infinite set. The claim is that this

is a pairwise distinguishable set.

So, why is it a pairwise distinguishable set? We kind of saw the proof already in lecture 14.

Consider these four strings 0, 00, 000, 0000, so for anything, if you try to append 1, 01 is in the



language but 001 is not in the language, 0001 is not in the language and 00001 is also not in

the language. So, the first string 0 is distinguishable from any other string in the set.

And similarly, if you consider appending 11, so 011 is not in the language but 0011 is in the
language, hence the second string 00 is pairwise distinguishable from all the other strings. It is
the same argument again. If you see this set X here it is an infinite set it contains €, 0, 00, 000, ...
. The string 1¢ will ensure that just x; alone is in the language. x;1° will be in the language but
x; 1 will not be in the language whenever i # j. x;1° is not in the language. Hence, 1°

distinguishes x; and x;.

So, if you take any x; and x; the 1% will distinguish them. Hence all the strings in the set capital
X are pairwise distinguishable. Hence this is an infinite set that is pairwise distinguishable

which means the index of the language A is infinite.

And that is kind of is consistent with what we know, which is that A is not a regular language.
The index is infinite, hence A is not regular. This is something that we have already said in
lecture 14. Anyway, this concludes the part on Myhill-Nerode theorem which is a necessary
and sufficient condition to show that a language is regular. This is a necessary and sufficient
condition. We defined this equivalence relation and the condition is that A is regular if and only

if the equivalence relation defined by A results in a finite number of equivalence classes.

And with that, we come to the end of the part on regular languages. This is the last topic in the
first chapter which is a chapter on regular languages. In fact, this part, this Myhill-Nerode
theorem is in fact not there in the textbook per se. It is listed as an exercise but this completes
the part on regular languages. So, the next thing that we will see are context-free languages
which are slightly more sophisticated or more intricate or more involved than regular

languages.

So regular languages are fairly simple, regular expressions and DFAs and NFAs. Context-free
languages involve another dimension. There are more things that you can do with context-free

languages. So, we will see that in the next lecture.



