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Hello and welcome to lecture 12 of the course theory of computation. This is also the first 

lecture of week 3. So, in the previous weeks, we saw regular languages and we saw three 

characterizations for regular languages using DFAs, NFAs and regular expressions.  

So, there are three models and interestingly all these models, even though they are different in 

their own ways, turn out to have the same capability, meaning all of them recognize the same 

class of languages, which are regular languages. So, now, the question is how powerful are 

regular languages, how powerful are these models?  

Are there languages that cannot be captured using these models? So, we know that all of them 

have the same power, but are there languages that cannot be captured by these models? Or is it 

the case that almost every language can be captured by these. So, we want to understand what 

is the computational power of these?  

So, pumping lemma gives us one way to understand, one way to answer this question. Pumping 

lemma is a necessary condition for languages to be regular. Meaning, if a language is regular, 

certain conditions have to be satisfied. It is necessary that certain conditions have to be 

satisfied.  
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In other words, if A is regular, then it says that A can be “pumped”. So, I put pumped in quotes, 

because when I say it can be pumped it means it can satisfy the conditions, the necessary 

conditions that I meant. However, this is only in the forward direction, it is not a necessary and 

sufficient condition. What I mean by that is the converse is not true. Just because a language A 

satisfies these conditions, we cannot infer that the language is regular.  

So, it is only necessary condition. If A is regular, it means A has to satisfy these conditions or 

A has to be pumped. Just because A satisfies this condition does not necessarily imply that A 

is regular. However, what does the contrapositive give us? The converse is not true. But what 

is the contrapositive of the above.  

So, what is the contrapositive? The contrapositive is that, if A cannot be pumped, then A must 

necessarily be not regular. So, for 𝑃 ⟶ 𝑄 the contrapositive is ¬ 𝑄 ⟶ ¬ 𝑃. So, the 

contrapositive here is if A cannot be pumped, then A is not regular. So, this means that if A 

cannot be pumped A is not regular. So, we will highlight that.  

This is a way to show that certain languages are not regular. If we show that a language cannot 

be pumped, then it implies that the language is not regular. Once again it is only the 

contrapositive that is true. For any statement the contrapositive is and the converse is not true. 

So, just because it can be pumped, we cannot infer that a language is regular. It is only a 

necessary condition which means, if it does not meet this condition, then you can infer the 

language is not regular. The converse is not true. So, just because it satisfies this condition, we 

cannot infer the language is regular.  
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So, before we get on to the formal statement of the lemma, pumping lemma, let us just see an 

example of a language that is not regular. The language is the language 𝐵 = { 0𝑛1𝑛 |  𝑛 ≥ 0}. 

So, when n is 0, it is just the empty string. When n is 1 it is the string 01 when n is 2 it is 0011 

then 000111, where n is 3 and so on.  

So, there are infinite strings here. For each value of n, there is a string here. We have n number 

of 0s followed by n number of 1s. It is a very clearly defined language. So, it is very easy to 

understand what this language is. Interestingly, this language is not regular. It is a simple 

enough language. But interestingly, it is not regular. The reason is that, if it is regular, then we 

know there is a DFA that recognizes this language.  

So now the DFA has to, in some very vague sense, check how many 0s are there, followed by 

how many 1s are there. And they have to be equal. So first of all, the string has to be of the 

form some 0s followed by some 1s. And then it also has to be checked that the number of 0s 

and the number of 1s are the same. We know a DFA can only scan the string once. So, it means 

that we have to count the number of 0s. And then we count the number of 1s and then we have 

to check that they are the same.  

But what can n be? So, this is an infinite language, n could be an arbitrary large. n could be 

1000, n could be a million. So, if you give me a DFA with, let us say, 100 states, it cannot keep 

track of a huge count, of a count of million with 100 states. If you give me a DFA with a fixed 

number of states, I will give you a string where n is really, really large. It will be kind of clear 

that this relatively small sized DFA cannot keep track of such a big count.  



So, that is the reason. That is kind of an intuition, why this language is not regular. So, this is 

still not a formal proof. Perhaps it does not need to count, it can do some other thing. Perhaps, 

somehow without counting itself, it is able to do something using some strange modular 

arithmetic or something like that. So, how do we know that we indeed have to count, so that is 

another valid question.  

But then this is just an intuition. Let us see pumping lemma which will give us a clear proof 

that this is not regular. So, we will not see the proof in this lecture, we will see the proof in the 

next lecture. But in this lecture, we will see the pumping lemma itself. So, this is still an 

intuition. One has to remember this is still an intuition. So, we cannot say that it has to count.  
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Pupping lemma gives us a way to formalize this. And this is pumping lemma for regular 

languages. We will also see another version of pumping lemma for context free languages a 

few weeks from now. It is not the same, but it is something similar. What we have seen now is 

pumping lemma for regular languages. It gives us a necessary condition for regular languages, 

it was discovered by Michael Rabin and then Dana Scott in ’59, followed by Yehoshua Bar-

Hillel, Perles and Shamir, in ’61.  

In those days, the science used to travel slow, like we did not have electronic communication. 

It was very common that somebody discovers this and somebody else also discovers the same 

thing. Independently, because things have to be studied published and printed. And then 

journals, books have to travel across the globe and so on.  
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So now let us get to what the pumping lemma is. For pumping lemma, there is a statement in 

the book, it is theorem 1.70. If 𝐴 is a regular language, then there is a number 𝑝, which is called 

the pumping length, such that for any string 𝑠 in 𝐴 that has length at least 𝑝, by at least I mean, 

greater than or equal to 𝑝, then we can split 𝑠 into three pieces 𝑥 𝑦 𝑧, or 𝑠 can be written in this 

manner 𝑥𝑦𝑧 such that the following three conditions are satisfied. What are the three 

conditions?  

Consider the string 𝑥𝑦𝑖𝑧. For each 𝑖 consider this string, then all of these strings are in 𝐴. With 

𝑖 as 0, this gives us a string 𝑥𝑧. So, 𝑥𝑧 is what we get when 𝑖 is 0. When 𝑖 is 1, it gives us 𝑥𝑦𝑧. 

When 𝑖 is 2 it gives us 𝑥𝑦𝑦𝑧 when 𝑖 is 3 it gives us 𝑥𝑦𝑦𝑦𝑧 and so on.  

So, this is an infinite family of strings. What it is saying is that all the members of this family 

must be in 𝐴. If 𝐴 is a regular language, there is a pumping length such that if you give me a 

string of length at least as much as the pumping length, then there should be a way to divide it 

into 𝑥 𝑦 𝑧, such that, now you repeat 𝑦 twice, so in 𝑥𝑦𝑧, 𝑦 comes once, you repeat it twice, 

thrice, four times, even 0 times, all of these strings 𝑥𝑧, 𝑥𝑦𝑧, 𝑥𝑦𝑦𝑧, are in 𝐴.  

So, we know that 𝑥𝑦𝑧 is in A because 𝑥𝑦𝑧 is equal to 𝑠, and by the statement itself, we chose 

𝑠 to be a string in 𝐴. But what we are saying is that all the other strings, in fact, an infinite 

number of strings, all of them have to be in 𝐴. And further, two more conditions. The length of 

𝑦 is strictly greater than 0.  

There is only one string of length 0, which is the empty string. So, in other words, it is saying 

that 𝑦 is not the empty string. So, it cannot be the empty string, it could be any other string, 



that has length at least 1. The third condition says that length of 𝑥 and 𝑦 put together has to be 

at most 𝑝, less than or equal to 𝑝.  

So, once again, if 𝐴 is a regular language, there is a pumping length 𝑝 such that for any string 

that you take in the language, of length at least 𝑝, there is some way to divide this string into 

three pieces 𝑥 𝑦 𝑧, such that these three conditions are satisfied. So, condition 2 and 3 are length 

conditions on the length of 𝑦 and 𝑥. Condition 3 says that 𝑥𝑦 has to be of length at most 𝑝, 

condition 2 says that 𝑦 has to be non-empty. And condition 1 says that 𝑥𝑦𝑖𝑧 is in 𝐴, meaning 

𝑥𝑧 is in A, 𝑥𝑦𝑧 is in A, 𝑥𝑦𝑦𝑧 is in A, 𝑥𝑦𝑦𝑦𝑧 is in A and so on.  

So, any string of length that is at least the pumping length can be split in a manner that satisfies 

these three conditions. That is the pumping lemma. Now, the way to show that a certain 

language is not regular is that, for that language we will have to come up with a string, which 

we cannot split in a way that meets these conditions.  

Informally, we say that string cannot be pumped. So, let us see why this is true. Why is it the 

case that there is some length beyond which any string can be split in this manner? So that is 

the proof. Let us see the proof.  
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So, what I will be describing here is kind of an informal proof or somewhat more developed 

sketch of the proof, because I think that is much easier to communicate. There is a formal proof 

in the Sipser book. So, in the Sipser book, the formal proof has more notations and formalisms. 

What I am going to explain is somewhat more informal, but it is pretty much the entire proof. 

I think for instructive purposes, this is better.  

So, we have a regular language A and then we have to show that there is a pumping length such 

that the following conditions are satisfied. Because the language is regular, we can assume that 

there is a DFA 𝑀 = (𝑄, Σ, 𝛿, 𝑞1, 𝐹).  Let 𝑄 be the set of states and 𝑞1, is the starting state.  

Now, the pumping length will be the number of states. So, I am upfront telling you the pumping 

length. We know that DFA means it is a finite set of states. So, 𝑄 is finite. So, pumping length 



𝑝 is the size of 𝑄, cardinality of 𝑄, in other words, the number of states. So, let me ask you a 

simple question, which is like a basic question on logic, what if all the strings are of length at 

most 𝑝. So, pumping lemma talks about strings greater than or equal to 𝑝. 

So, what if all the strings are of length strictly less than 𝑝. So, if all the strings are of length 

less than or strictly less than 𝑝 then let us read this statement. If 𝐴 is a regular language then 

there is a number 𝑝 such that if any string is of length greater than or equal to 𝑝, then this has 

to be satisfied. So, let us say we take an 𝑠 that does not meet this condition, that is of length 

less than p, then nothing has to be satisfied. So, this is a situation where we say, the statement 

is vacuously true. 

So, if P then Q. Let us say this there is a statement of the form if A then B. Now, suppose the 

condition A itself is not satisfied then trivially the statement is true, because A itself is not 

satisfied. It is like saying, if it rains today, I will give you 1000 rupees. Suppose it does not rain 

today, then the statement is true even if I do not give you 1000 rupees, because it is a conditional 

statement and the condition itself was not met.  

Similarly, if all the strings that in the language are of length strictly less than 𝑝, then this 

statement is true in a vacuous sense or in an empty sense, because the condition itself is not 

met. So, then pumping lemma holds vacuously. So, suppose there are strings of length at least 

𝑝, suppose 𝐴 contains strings of length at least 𝑝, greater than or equal to 𝑝. Then let us see 

how to deal with it.  
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So, let us consider some string 𝑠. So, let us say 𝑠 has length 𝑛. And here I have written 𝑠 as  𝑠1, 

𝑠2 up to 𝑠𝑛, I am writing each symbol, symbol by symbol, so length of 𝑠 is equal to 𝑛. I am 

writing 𝑠1 as a first symbol, second symbol, and so on. Now, let us see how the machine 

processes this. So before reading any symbol, the machine, let us say is in state 𝑞1. It has to be 

in state 𝑞1 because 𝑞1 is the starting state of the machine.  

Before reading any part of the string 𝑠, let us say the machine is in 𝑞1. After reading 𝑠, let us 

say it transitions to 𝑞3, and then it goes to 𝑞9, after reading 𝑠1, 𝑠2. Then let us say 𝑞16, 𝑞12, and 

so on. And finally, after reading all the 𝑛 symbols, it ends at 𝑞13. So, this is just some numbers 

that I am taking. So the first state has to be 𝑞1, because it is a starting state.  

And let us say it ends at some state, let us say  𝑞13. What do we know about  𝑞13? One point is 

that 𝑠 is a string that we assumed to be in the language. So, which means the DFA will accept 

the string because it is in the language and the DFA is for that language. So, this has to be an 

accepting state. So this has to be an accept state of M. Because the string is in the language. 

So, we know  𝑞1 Is the starting state, we know 𝑞13 is one of the accept states.  

Now, let us see how many such states are there. So, how many states are there? There are 𝑛 

symbols here. You start with something and after each symbol is processed, there is one 

transition. You would get one more state, so there are 𝑛 + 1 such states listed here. And out of 

these 𝑛 + 1, I am not claiming that all the states are distinct. So, there could be I am just saying 

that the 𝑛 + 1 states appear and some of them could be repetition.  
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So, I will highlight that “with some possible repetitions”. Now, the point is, if the length of 𝑠 

which is equal to 𝑛 is at least the pumping length, at least p. Suppose 𝑛 is at least 𝑝, which is 

that 𝑛 is greater than or equal to 𝑝. Then there at least 𝑝 + 1 states listed here. But you 

remember, we chose pumping length as the number of states. 

So, if we write 𝑝 + 1 or more states, we know that the machine itself has p states, so something 

has to repeat. Let us say you write an eleven digit number. At least some digit has to repeat 

because we only know ten digits 0 1 2 3 up to 9. So, like that, there has to be at least 1 repeated 

state because 𝑠 is long enough.  

And in the manner I wrote this particular string, the repetition happens with 𝑞9. Repetition 

happens with 𝑞9. It is seen after 𝑠2 and it is seen again after 𝑠5. So, now, let us do the following. 

Now, I will call the string till the first occurrence of 𝑞9 as 𝑥. From the first occurrence till the 

second occurrence, I will call it 𝑦.  

And from the second occurrence till the end of the string, I will call it 𝑧. So, here in this figure, 

𝑥 is 𝑠1 𝑠2, 𝑦 is 𝑠3 𝑠4 𝑠5 and 𝑧 is 𝑠6 𝑠7 up to 𝑠𝑛. So, the rest of the string. Again, 𝑥 is the string 

till the first time 𝑞9 occurs, 𝑦 is the string from the first till the second occurrence of 𝑞9. And z 

is the rest of the string. So, now let us see what 𝑥 𝑦 and 𝑧 are doing.  
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So, upon reading 𝑥, the machine transition from 𝑞1 to 𝑞9. So, it went from 𝑞1 to something, 

then to 𝑞9. Upon reading 𝑦, it started from 𝑞9. So, before reading 𝑦, it was at 𝑞9, then it went 

to 𝑞16, 𝑞12, finally, it came back to 𝑞9.  

So, 𝑥 moved the machine from the start state to 𝑞9, 𝑦 started from 𝑞9 and took it through some 

states and brought it back to 𝑞9. And 𝑧 took the machine from 𝑞9 to 𝑞13 which is an accept 

state.  

So, let us try to maybe draw it, depict it pictorially. So let us say 𝑥 does this, 𝑞3, 𝑞9. And then 

let us say some states, 𝑞9 does something. And so, 𝑥 takes it from 𝑞1 to 𝑞9, 𝑦 takes it through 

the circle. So, through some states and then comes back to 𝑞9. And 𝑧 takes it from 𝑞9 to 𝑞13. 

Notice that 𝑞13 is an accept state so I have drawn the double circle. This is what happens, this 



is what each of these sub strings does. And together 𝑥 followed by 𝑦 followed by 𝑧 is equal to 

the string.  

So, 𝑠 is equal to 𝑥𝑦𝑧. So, what did we do? We this first of all claimed that if the string is of 

length that is at least the pumping length, some symbol has to appear repeated, meaning two 

times at least. Now, you look at the first occurrence of that symbol and the second occurrence 

of that symbol. And then you consider start to the string to the first occurrence is 𝑥.  

First occurrence to the second occurrence is 𝑦 and second occurrence to the end of the string is 

𝑧. The, the claim is that this 𝑥 this split 𝑥 𝑦 𝑧 satisfies the conditions of the pumping lemma. 

So, all we used was that there is a DFA for the language. And then we set the pumping length 

to be the number of states. And that in turn gave us everything. So, again same thing that I said 

earlier, 𝑥 takes M from 𝑞1 to 𝑞9, 𝑦 takes M from 𝑞9 to itself and 𝑧 takes M from 𝑞9 to 𝑞13, 

which is an accept state. So, we will put double circle here as well.  

Now, let us see what if instead of 𝑥𝑦𝑧 what would have happened if I had 𝑥𝑦𝑦𝑧. So, 𝑥 would 

have taken from 𝑞1 to 𝑞9, 𝑦 would have taken from 𝑞9 to itself. Again, we would have taken 

one more round to the same path. So, two 𝑦’s and then that would take you to accepting state.  

Again, if I had 𝑥𝑦𝑦𝑦𝑧, it is the same story. Instead of two rounds of 𝑦, we will have three 

rounds of 𝑦. Even if 𝑥𝑧, 𝑥 would take from 𝑞1 to 𝑞9 and 𝑧 will take from 𝑞9 to 𝑞13. So, all these 

strings 𝑥𝑧, 𝑥𝑦𝑦𝑧, 𝑥𝑦𝑦𝑦𝑧 all of these will be accepted by the DFA. Which means that all of 

them are in the language. Which means all of these strings that I wrote 𝑥𝑧, 𝑥𝑦𝑦𝑧, 𝑥𝑦𝑦𝑦𝑧, they 

are in the language. Because the DFA is a DFA for the language. So, anything that is accepted 

by the DFA is in 𝐴.  
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Hence, we get that all the strings 𝑥𝑦𝑖𝑧 are in the language. So, whatever I wrote are the strings 

in 𝑥𝑦𝑖𝑧, they are all in the language. So, this is the condition one of pumping lemma. Now, we 

have to show that 𝑦 is not empty and length of 𝑥𝑦 is at most 𝑝 which is not that hard. And we 

know that there are two occurrences of some state.  

So, between the two occurrences to say 𝑞9 the closest that these two occurrences can come is 

just before a symbol and after a symbol. And this length, the string 𝑦 is from the first occurrence 

to the second occurrence. So, the first and second occurrence are at least one symbol apart. 

Because, at least one symbol is needed.  

Hence, there exists at least one symbol for 𝑦. So, the length of 𝑦 cannot be 0, it has to be strictly 

greater than 0. In other words, 𝑦 cannot be the empty string. And finally, we want to show that 



the length of 𝑥𝑦 is at most 𝑝. So, to ensure that what we do is we look at the first 𝑝 + 1, we 

look at the first 𝑝 + 1 states here. We look at the first 𝑝 + 1 states. In other words, we look at  

the first 𝑝 symbols of the string.  

The first 𝑝 symbols of the string itself take it to 𝑝 + 1 state starting from the starting state, 

second state, third state. After reading the 𝑝th symbol it will be in the 𝑝 + 1 state. So already 

there are 𝑝 + 1 states. But in the 𝑝 + 1 states that the DFA traversed, we know that the DFA 

has only p states. So, we know for sure that even after reading the first 𝑝 symbols, some state 

has to repeat.  

This means that by pigeonhole principle, there must be some repetition occurring before the 

𝑝th symbol of the string. Pigeonhole principle is something like saying, if there are ten objects 

and nine holes, you put the objects into holes. Then at least one hole has two objects. So, here 

we have 𝑝 + 1 states, but we know that the actual number of states are only 𝑝, so some state 

has to come twice.  

So, before we reach this 𝑝th symbol or at the time we reach 𝑝th symbol there has to be a 

repetition. So, we know that. What is 𝑥 and what is 𝑦? 𝑥 is the part from the beginning to the 

first time the symbol repeats, the state repeats and 𝑦 is it from the first time to the second time. 

So, 𝑥𝑦 is at most 𝑝 symbols.  

So, which is what the third condition is, length of 𝑥𝑦 is at most 𝑝. And that is all. So, because 

that is the third condition. And that first part which is 𝑥𝑦𝑖𝑧 is in 𝐴. Second is 𝑦 is non empty 

and third is the length of 𝑥𝑦 is at most 𝑝. These three conditions together form the pumping 

lemma. So, this is fairly rigorous, though I present it in a somewhat informal way. You may 

read and have a look at the formal proof in the book, which is quite notation heavy but very 

terse like just two short paragraphs.  

But it conveys the same message. So, just to understand the formalism involved, I suggest that 

you go through this, go to the proof. And once you have the informal idea it should be much 

easier to understand what is going on. If you read the terse proof in the book after listening to 

this presentation.  

So, just to summarize, pumping lemma for regular languages is a necessary condition for the 

languages to be regular. It is not a sufficient condition. If a certain language does not meet the 

conditions of pumping lemma or it cannot be pumped, then we can infer that the language is 

not regular. It is not a sufficient condition. Because it meets the conditions, we cannot infer 



that a language is regular. It is only a necessary condition. We can only use this to show that 

languages are not regular. We cannot use this to show that languages are regular.  

(Refer Slide Time: 30:53) 

 

So, it says that, if 𝐴 is a regular language, then there is a pumping length and any string that is 

of length greater than pumping length can be split into three pieces 𝑥 𝑦 𝑧, such that these three 

conditions are satisfied. And the main idea of the proof was that first of all, if the language is 

regular then there has to be DFA. So, suppose a DFA has ten states, now, you consider a string 

of length at least ten.  

We know that when processing the first ten symbols, the DFA traverses through at least eleven 

states. So, some state has to repeat. This repetition has to occur when the first ten symbols are 

processed. Using this repetition, we have figured out the splits 𝑥 𝑦 and 𝑧. And it is quite easy 

to see that it meets these conditions. That is the summary of the proof and of the pumping 

lemma. In the next lecture, we will see some illustrations, some examples of the how pumping 

lemma can be used. Thank you. 
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