
Theory of Computation 

Professor Subrahmanyam Kalyanasundaram 

Department of Computer Science and Engineering 

Indian Institute of Technology, Hyderabad 

Lecture 12 

Proving Equivalence of Regular  

Expression and DFA Through a GNFA 

(Refer Slide Time: 00:17) 

 

 



 

 

 

c 



 

 

 



Now, the next part. So, this was the first part of the proof, which is, I am not going into details, 

but it is fairly clear. The second part is how we go from a k state GNFA to a k-1 state GNFA, 

how do we reduce one state of the GNFA. This is what I want to describe next. This, I will do 

it in a bit of detail. So, this is the key or main idea of the proof where we reduce the number of 

states in GNFA by 1. 

Basically, what we do is we identify one stage that we want to remove from the GNFA. Let us 

say it is this highlighted state. I am calling it 𝑞𝑟𝑖𝑝. So, I wanted to slip that off, rip off that 

straight from the GNFA. So, now how does it impact the GNFA? So, basically you can, earlier, 

we can go from 𝑞𝑖 to 𝑞𝑗 by seeing a symbol or a string from 𝑅4. 

You could also go from 𝑞𝑖 to 𝑞𝑗 by seeing a string that is from 𝑅1 concatenation 𝑅3. 𝑅1 

concatenation 𝑅3 means a string from 𝑅1 will take it to 𝑞𝑟𝑖𝑝, and a string from 𝑅3 will take you 

to 𝑞𝑗. So, you could go from 𝑞𝑖 to 𝑞𝑗 through 𝑅1 𝑅3 also. You could also go from 𝑞𝑖 to 𝑞𝑗 by 

processing a string 𝑅1𝑅2𝑅3 because you could go from 𝑞𝑖 to 𝑞𝑟𝑖𝑝. 𝑅2 will keep it at 𝑞𝑟𝑖𝑝 and 

then 𝑅3 will take it to 𝑞𝑗. So, you could also go from 𝑞𝑖 to 𝑞𝑗 by seeing a string from 𝑅1𝑅2𝑅3, 

concatenation of three regular expressions. 

It could even be 𝑅1𝑅2𝑅2𝑅3. So, the first string from 𝑅2 keeps it at 𝑞𝑟𝑖𝑝, the second string from 

𝑅2 also keeps it to 𝑞𝑟𝑖𝑝, and then you go from 𝑞𝑟𝑖𝑝 to 𝑞𝑗. So, it could be multiple times. So, we 

may not use any instance of 𝑅2, we may use one instance, two instances or many more 

instances. So, the key thing to note here is that, in summary any string that is from this particular 

regular expression, so basically 𝑅1𝑅2
∗𝑅3 will take you from 𝑞𝑖 to 𝑞𝑗 through 𝑞𝑟𝑖𝑝. 

And now that 𝑞𝑟𝑖𝑝 is removed, we need to, we need to preserve this information. So, we will 

include that in the arrow from 𝑞𝑖 to 𝑞𝑗. So, in the arrow from 𝑞𝑖 to 𝑞𝑗 we want to add this 

information that 𝑅1𝑅2
∗𝑅3 but then whatever was already there we are not going to lose that. So, 

we want to keep, retain that as well. So, what was earlier there, 𝑅4 was an existing label of 𝑞𝑖 

to 𝑞𝑗, that we will preserve. 

So, now any string from 𝑅1𝑅2
∗𝑅3⋃𝑅4 will take you from 𝑞𝑖 to 𝑞𝑗  in the old, in the red GNFA. 

But now in the green GNFA, we do not have the state 𝑞𝑟𝑖𝑝. So, we will include that in the label 

from 𝑞𝑖 to 𝑞𝑗. So, this is the main idea. So, this basically indicates if a state is removed, so the 

removed state being q rip, what should be the change in the labels of the other states. So, how 

to relabel the other states if a certain state is removed. 



So, this is how you re-label. So, basically if you want to remove 𝑞𝑟𝑖𝑝 you look at, for any pair 

𝑞𝑖 𝑞𝑗, you see what is, what is the arrow from 𝑞𝑖 to 𝑞𝑟𝑖𝑝, 𝑞𝑟𝑖𝑝 to itself, 𝑞𝑟𝑖𝑝 to 𝑞𝑗 and then notice 

what is 𝑅1, 𝑅2, 𝑅3, 𝑅4 et cetera, and then use that to label the new arrow from 𝑞𝑖 to 𝑞𝑗. We need 

to do that for all the pairs 𝑞𝑖 𝑞𝑗, in both directions. So, if, for 𝑞𝑖 𝑞𝑗, we identified the labels, for 

𝑞𝑗 𝑞𝑖 also, we will have to identify the appropriate labels. 

And even in the states the 𝑞𝑖 to itself also, we will have to identify the appropriate labels 

because from 𝑞𝑖 there would have been a self loop but then you could go from 𝑞𝑖 to 𝑞𝑟𝑖𝑝 and 

then 𝑞𝑟𝑖𝑝 to 𝑞𝑖. So, in general, let me just say 𝑞𝑖 to 𝑞𝑗. This yields the following procedure. It 

is a recursive procedure, which talks about how to convert G. Let us say G is a GNFA and we 

want to convert G from k states to k-1 states. 

And we want to keep doing that till we get to two states. So, if k is 2 then we know there is 

only one transition and that the label of the transition will be the regular expression that is 

desired. If k is more than 2, what we will do is reduce 1 state. So, what do we do? Then we 

identify a state called 𝑞𝑟𝑖𝑝, it could be any state except for the start or accept and what we do 

is for all the pairs of, all the other pairs 𝑞𝑖, 𝑞𝑗, we do the transformation that we just described 

here. So, basically you remove 𝑞𝑟𝑖𝑝, you relabel the arrow 𝑞𝑖 to 𝑞𝑗 with 𝑅1𝑅2
∗𝑅3⋃𝑅4. 

𝐺′ = (𝑄′, Σ, 𝛿′, 𝑞𝑠𝑡𝑎𝑟𝑡, 𝑞𝑎𝑐𝑐𝑒𝑝𝑡) 

𝑄′ = 𝑄 ∖ {𝑞𝑟𝑖𝑝} 

𝛿′(𝑞𝑖, 𝑞𝑗) = 𝑅1𝑅2
∗𝑅3⋃𝑅4 

So, what we do here, this is just described very briefly. We move from G to G’. So, G’ is a new 

GNFA. It operates on the same alphabet sigma. It contains the same starting and accepting state 

as G. Two things change. One is the set of states. From Q you remove 𝑞𝑟𝑖𝑝. So,  

𝑄′ = 𝑄 ∖ {𝑞𝑟𝑖𝑝}, this is set difference. So, this is the same as 𝑄 minus 𝑞𝑟𝑖𝑝. 

So, it is all the states that were in G except 𝑞𝑟𝑖𝑝. So, this is this backslash is another way to 

denote said difference. 

And the other thing is delta prime from the transition function changes. So, if for any 𝑞𝑖, 𝑞𝑗 

which are in the new machine, as long as 𝑞𝑖 and 𝑞𝑗 are not the 𝑞𝑟𝑖𝑝, we identify what are 

𝑅1, 𝑅2, 𝑅3, 𝑅4 based on the connection with 𝑞𝑟𝑖𝑝 and then the, we relabel it with 𝑅1𝑅2
∗𝑅3⋃𝑅4. 



So, the earlier label would have been 𝑅4. So, now we add using union 𝑅1𝑅2
∗𝑅3 where 𝑅1is the 

label from 𝑞𝑖 to 𝑞𝑟𝑖𝑝, 𝑅2 is the label from 𝑞𝑟𝑖𝑝 to itself and 𝑅3 is the label from 𝑞𝑟𝑖𝑝 to 𝑞𝑗. 

So, this will ensure that we get an equivalent GNFA. So, meaning G’ will be equivalent to G. 

Any string that is accepted by G will continue to be accepted by G’ and nothing more. So, 

basically, we have reduced one state, we have removed 𝑞𝑟𝑖𝑝. Now we can do the same thing 

again. So, now we check. Basically, what we do is we make a recursive call of convert G’. 

Meaning for G’ we do the same thing. 

So, we check whether it is two states, if so, return R, otherwise we do the whole thing again. 

You identify a new state you remove and, so at some point you run out of states and we are, 

we end up with a 2-state GNFA in which case it is clear what is the regular expression. So, 

hopefully the outline is clear. We move from a DFA to a GNFA with two more states. And 

then we successfully reduce the number of states one by one, till you get a 2-state GNFA. And 

in a 2-state GNFA there is only one transition arrow. And that transition arrow contains some 

regular expression. And that regular expression is the equivalent regular expression for the 

current GNFA and for the previous GNFA and finally to the DFA that we started with. 
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So, now, one very small proof since we did not do much in detail. This is a claim in the 

textbook, it is presented as the claim as part of the, one of the proofs. So, what it is claiming is 

that convert(G) is equivalent to G, meaning convert(G) is the result of this process. So, it is a 

regular expression given a k-state GNFA. 

It claims that convert(G) gives you a regular expression which is equivalent to the GNFA G, 

meaning whatever string is accepted by the GNFA G is described by the regular expression 

and vice versa. So, the proof is fairly just an inductive argument. 

If G has just two states, this is true by the definition of the GNFA, because there is only one 

arrow. If G has more than two states, so if k is greater than 2, then what we have to show is 

that, we will just show that G will be transformed to G’ by reducing 1 state. We will just show 

that G’ is equivalent to G, and then inductively, it follows G’ is equivalent to the next one G’’ 

or something and so on so on so on till we get a state of a GNFA of two states, at which case it 

is true by the base case of two states. 

So, for now, we will just focus on this claim that G’ is equivalent to G. This is what we want 

to show, meaning the exercise of removing one state preserves the language recognized by G. 

So, we will do something very simple. Suppose G accepts some string w, we will show the G’ 

also accepts the same string. So, suppose G accepts w. Now let us say the in the process of 

accepting the string, it goes from the start state to 𝑞1 to 𝑞2 and so on till 𝑞𝑎𝑐𝑐𝑒𝑝𝑡. And what we 

want to say is that G’ also accepts the same string. 

So, suppose 𝑞𝑟𝑖𝑝 is not in the above sequence 𝑞𝑠𝑡𝑎𝑟𝑡 , 𝑞1, 𝑞2, this does not contain 𝑞𝑟𝑖𝑝, in which 

case it is fine because for any pair, let us say 𝑞1, 𝑞2, there was some transition. The new 𝑞1, 𝑞2 

also contains the existing transitions because this is the transformation. 𝑞𝑖 , 𝑞𝑗 remains 𝑞𝑖, 𝑞𝑗 but 

the label 𝑅4 was replaced by 𝑅1𝑅2
∗𝑅3⋃𝑅4. So, any string that could take you from 𝑞𝑖 to 𝑞𝑗 

earlier can still take you from 𝑞𝑖 to 𝑞𝑗 because any string that could take you from 𝑞𝑖 to 𝑞𝑗 

earlier was described by 𝑅4. 

Still 𝑅4 is part of this regular expression. So, all the strings that are part of 𝑅4 can still take you 

from 𝑞𝑖  to 𝑞𝑗. So, if 𝑞𝑟𝑖𝑝 is not in the above sequence, all the transitions remain in G and are 

valid transitions. Hence G’ also accepts w. Suppose this sequence contains 𝑞𝑟𝑖𝑝 somewhere. 

Just for sake of simplicity, let me say that 𝑞𝑟𝑖𝑝 appears between some two states in the sequence. 

Let us say the two states were 𝑞𝑖 and 𝑞𝑖+1, these two states. 



And let us say, 𝑞𝑟𝑖𝑝 appears more than once. Let us say 𝑞𝑖 then 𝑞𝑟𝑖𝑝, then 𝑞𝑟𝑖𝑝 again then 𝑞𝑟𝑖𝑝 

once again before 𝑞𝑖+1. So, now if you notice the arrow from 𝑞𝑖 to 𝑞𝑖+1 would have been 

replaced by 𝑅1𝑅2
∗𝑅3⋃𝑅4. So, where what is, maybe I will just use a different color. Let us say 

this is 𝑞𝑖, this is 𝑞𝑖+1, this is 𝑞𝑟𝑖𝑝. So, this is 𝑅4, this is 𝑅1, this is 𝑅3 and this is 𝑅2. 

Suppose this was the earlier sequence of states. Now, we used 𝑅1 to go from 𝑞𝑖 to 𝑞𝑟𝑖𝑝, we 

used 𝑅2 to remain in 𝑞𝑟𝑖𝑝 and 𝑅2 again to remain in 𝑞𝑟𝑖𝑝 and then 𝑅3 to move to 𝑞𝑖+1. So, 

𝑅1𝑅2𝑅2𝑅3 was used to move from 𝑞𝑖 to 𝑞𝑖+1. Then, now in the present GNFA, the 𝑞𝑖 to 

𝑞𝑖+1 label is replaced by 𝑅1𝑅2
∗𝑅3. 

So, 𝑅1𝑅2𝑅2𝑅3 is still part of this regular expression. Hence the same string can be accepted 

even though 𝑞𝑟𝑖𝑝 is not there, no longer there in the GNFA, even then this string is accepted as 

part of the transition from 𝑞𝑖 to 𝑞𝑖+1. So, this shows that whatever be the situation, whether 

𝑞𝑟𝑖𝑝 features in the sequence or it does not, the converted GNFA G’ will still accept the string 

𝑤. 

So, what we showed is that if G accepts the string 𝑤, G’ also accepts. And the same reasoning 

can be used in the opposite way. If G’ accepts then it has to be either using 𝑅1𝑅2
∗𝑅3 or through 

𝑅4. In either case there is an equivalent transition in the G as well. So, G’ and G are both 

recognizing the same set of strings. 

So, this we showed that, this shows that G’ and G are equivalent and you can use the same 

argument again and again and use mathematical induction. So, G’ is equivalent to the let us say 

G’’ where one more state is reduced and so on and so on till we get to the final 2-state GNFA. 

So, the final 2-state GNFA, let us call it 𝐺0 or 𝐺2 or something. So, 𝐺2 has these two states, 

and then it is immediately clear what the equivalent regular expression is. 

So, at that stage, it is very clear what the regular expression is and that will allow us to tell what 

the equivalent regular expression R is. So, that is how we move from a DFA to a GNFA and 

then successively reducing the number of states while preserving the language recognized. And 

finally, we reach a 2-state GNFA and then the two-stage GNFA will tell us the regular 

expression that is equivalent. 

So, I will just quickly summarize. The goal of this lecture was to complete the proof of this 

theorem which was that a language is regular if and only if some regular expression describes 

it. In the previous lecture, we already saw that if we have a regular expression describing some 



language it is regular. So, now our goal is if a language is regular we should have a regular 

expression describing it. 

So, suppose the language is regular which means there is a DFA that recognizes that language, 

we add two states, a new start state and a new accept state and we add empty set transitions to 

all the other places to get a new GNFA which is clearly equivalent. So, this means we are not 

adding anything. 

Basically, if you had 6-state DFA, we will get an 8-state GNFA. And from that GNFA we 

successively reduce the number of states. So, by doing this operation again and again. We pick 

a state which is not a start or accept state, we remove it by relabeling the other arrows. So, for 

all the pairs 𝑞𝑖, 𝑞𝑗 we relabel it by seeing what is 𝑞𝑖 to 𝑞𝑟𝑖𝑝, 𝑞𝑟𝑖𝑝 to itself and 𝑞𝑟𝑖𝑝 to 𝑞𝑗. 

This needs to be done for all the pairs. Even the pairs 𝑞𝑖, 𝑞𝑗 we have got in both order. And 

also, the pair 𝑞𝑖, 𝑞𝑖, and this will give us an equivalent GNFA but with 1-state less. And we 

keep doing that till we get a 2-state GNFA. So, a 2-state GNFA will be of this form. It has just 

a start state and accept state. And just one transition labeled by a regular expression. 

So, for this 2-state GNFA, the equivalent regular expression is trivial. It is just the label of that 

one transition. And that completes the procedure of how we can get the regular expression for 

any regular language. So, from any regular language, you start with the DFA then move to the 

GNFA and then successively reduce the number of states till we get 2-state GNFA, and that 

tells us how to get the regular expression. 

And with this, we have completed the proof that, so this completes the proof that regular 

expressions are another way to characterize regular languages. So, now the proof is complete. 

This shows that given any regular language, there is a regular expression. So, to show that the 

language is regular, we have a third way now. So, the earlier two ways were that you provide 

DFA or you provide NFA. 

Now, one way to show, a new way to show a language is regular is to provide a regular 

expression for it. So, and, so this can be quite useful. So, if you are asked to show that a certain 

language is regular, instead of building a DFA or an NFA, we could just build a, or we could 

just construct a regular expression that characterizes that language. 

So, that, with that, we complete Week 2’s lectures. So, just to quickly summarize. What all did 

we see? We saw Non-deterministic Finite Automaton, we saw that, we could prove these are 



equivalent Deterministic Finite Automaton. We saw that we could use the NFAs to prove the 

closure properties, that is regular languages are closed under union, concatenation, star. And 

then we explained regular expressions. And we showed that the regular expressions are also 

yet another equivalent representation for regular languages. 

So, that completes Week 2. And, so we have regular languages that we have already seen and 

three different characterizations for them. Now we will move on to languages that are not 

regular. So, one may wonder, is everything regular? Can we represent all the languages using 

a DFA or an NFA or a regular expression? The answer is no and you will have to wait till next 

week's lectures to see some examples for that. Thank you. 


