Theory of Computation
Professor Subrahmanyam Kalyanasundaram
Department of Computer Science and Engineering
Indian Institute of Technology, Hyderabad
Lecture 12
Proving Equivalence of Regular
Expression and DFA Through a GNFA

(Refer Slide Time: 00:17)

Drpindince |, saq gt aull sigdin lonsyos

O
fhagun 150 b Aowgont. s mgpdin df tone ?@
s wephoram dusidey ik 'FM&“&(’(

T o ok wthon dosadinigin (4 segds

bguaga- W po. & ooyl

() 15 (&) wd @Yo F (=)
155" 1 st eapporcon dusides

A g, Hon & sl

Loty et wo il o i fh At

e Hiy Lo, woull proe o B Asedkim .
o, 1607 1t bamogasy ‘& sizpdas, tim
T
Pt Ot
ol g 2 L Vg DFA
2 largugdl by GOEK
= Yoaidel by & o g,

GREA NEA o} oy tigoldon Lappariony o0
oty | Wt juk M(MMAMSA&.

o\
GREK NEK o} buy sigoldon tagrarions o0 @
MlMMW&QAMiA& NPTEL
ndondken, (GNFRY s & 5-tde

6 P

(8,18 s Aaueg) , short
b KQ‘ Lot) X [Q'?‘vmb >R

@ o*0 7@

§(n.9-01*0

RJ’\»-UL g AP

MRS .

t uﬁli,‘i'q>” b do R '\Aﬁmméw.,

I ot g0)= &, \&Auka'wﬁmw&w./ @
o s ot e GNFL o Wanaibin b WPTEL
i % Gy den X Sl e WER.

hOOFA ouerlt 0 6s® & e b dhdlin
0wy Ve whoe 068" and B uuks
O e 1\ s 0%, A S e

(l\ Wo'— qlui,k

® Vi Gauagk
@) Fatdh LCitl, wiel[2) due

Ri = k4, 40)

BV SLY T) T WA N\ STWL TR WP

i v ol e OO o anadim e @
it Gy don & ey e W ER. =

K BRFA oy west ‘\bwwk@m
0y O w068 o Bin wwks
(LWMLJ\,M 0%, - A Suh ik

Y %> Gk _ﬁ_,

® O * Yoyt
©) Fatdh LCitl, wiel[e) due

B ¢ Mﬂ—\,“vi}

([PR T R RN T
e s | Ay 1 Y thm.

Ly

) W 0,0, V%
& T
U
193

ook (8 Wione 2 Aummuﬁv(&% Ji/.”q
|k sl didy 44

/
oo () v & sy olly iy

ke ol diby |4

LW ksl en diow K-

| W4 TR 1 QT A R
bt i € QN Wt | Vgt -
Pl pine 4, 5 odn o W iy,
Jo Yo ot Houslpundtin
6= (66, ¥ Yk)
Q= QN Sy
Flarad s R0 & VR

Lo ksl o sdiow R

30 172, ton 1A o ik G
fuck Gy € QN St Foua]
Pl pine 47, 5 o o Wk iy,
Yo Yo obot, Hawslpuadion.
=18, €, % Y Fauagt)
Q- QN S = Q- Samd
E o) = BB R VU Ry

£ G Lok (8.

—

NPTEL

NPTEL

NPTEL

Now, the next part. So, this was the first part of the proof, which is, I am not going into details,
but it is fairly clear. The second part is how we go from a k state GNFA to a k-1 state GNFA,
how do we reduce one state of the GNFA. This is what | want to describe next. This, | will do
it in a bit of detail. So, this is the key or main idea of the proof where we reduce the number of
states in GNFA by 1.

Basically, what we do is we identify one stage that we want to remove from the GNFA. Let us

say it is this highlighted state. | am calling it g,;,. So, | wanted to slip that off, rip off that
straight from the GNFA. So, now how does it impact the GNFA? So, basically you can, earlier,

we can go from g; to g; by seeing a symbol or a string from R,.

You could also go from g; to g; by seeing a string that is from R; concatenation R;. R,
concatenation R; means a string from R, will take it to g,.;,, and a string from R will take you
to q;. So, you could go from g; to q; through R; R; also. You could also go from g; to q; by
processing a string R, R,R3 because you could go from g; to q,;;,. R, will keep it at q,,, and
then R; will take it to g;. So, you could also go from g; to g; by seeing a string from R, R, R,

concatenation of three regular expressions.

It could even be Ry R,R,R3. So, the first string from R, keeps it at q,;,,, the second string from
R, also keeps it to q,,,, and then you go from g,.;;, to q;. So, it could be multiple times. So, we
may not use any instance of R,, we may use one instance, two instances or many more
instances. So, the key thing to note here is that, in summary any string that is from this particular

regular expression, so basically R;R;R5 will take you from g; to g; through q,,,.

And now that g, is removed, we need to, we need to preserve this information. So, we will
include that in the arrow from g; to g;. So, in the arrow from g; to q; we want to add this

information that R; R; R but then whatever was already there we are not going to lose that. So,
we want to keep, retain that as well. So, what was earlier there, R, was an existing label of g;

to gq;, that we will preserve.

So, now any string from R;R;R3; UR, will take you from g; to g; in the old, in the red GNFA.
But now in the green GNFA, we do not have the state q,.;,,. So, we will include that in the label
from g; to g;. So, this is the main idea. So, this basically indicates if a state is removed, so the

removed state being q rip, what should be the change in the labels of the other states. So, how

to relabel the other states if a certain state is removed.

So, this is how you re-label. So, basically if you want to remove q,.;, you look at, for any pair
q; q;, you see what is, what is the arrow from g; to g, qrip, o0 itself, g5 to q; and then notice
what is Ry, R;, R3, R, €t cetera, and then use that to label the new arrow from g; to q;. We need
to do that for all the pairs g; q;, in both directions. So, if, for q; q;, we identified the labels, for

q; q; also, we will have to identify the appropriate labels.

And even in the states the g; to itself also, we will have to identify the appropriate labels
because from q; there would have been a self loop but then you could go from g; to q,;, and
then g, 10 g;. So, in general, let me just say g; to q;. This yields the following procedure. It

is a recursive procedure, which talks about how to convert G. Let us say G is a GNFA and we

want to convert G from k states to k-1 states.

And we want to keep doing that till we get to two states. So, if k is 2 then we know there is
only one transition and that the label of the transition will be the regular expression that is
desired. If k is more than 2, what we will do is reduce 1 state. So, what do we do? Then we
identify a state called g,.;, it could be any state except for the start or accept and what we do
is for all the pairs of, all the other pairs g;, q;, we do the transformation that we just described

here. So, basically you remove q,;,, you relabel the arrow g; to q; with R;R;R3UR,.

G = (Q’, %, 6", Qstarts Qaccept)
Q'=Q\ {Qrip}
6’(%' q]) = R1R§R3 UR4

So, what we do here, this is just described very briefly. We move from G to G’. So, G’ is a new
GNFA. It operates on the same alphabet sigma. It contains the same starting and accepting state

as G. Two things change. One is the set of states. From Q you remove g,;. SO,
Q" =Q\{qrip}, this is set difference. So, this is the same as Q@ minus q,p,.
So, it is all the states that were in G except g,,. So, this is this backslash is another way to

denote said difference.

And the other thing is delta prime from the transition function changes. So, if for any g;, g;
which are in the new machine, as long as g; and q; are not the q,;,, we identify what are

R1, R, R3, R, based on the connection with g,.;, and then the, we relabel it with R;R;R;UR,.

So, the earlier label would have been R,. So, now we add using union R, R;R; where R;is the

label from g; to q,p, R, is the label from gq,, to itself and Rj is the label from g, to q;.

So, this will ensure that we get an equivalent GNFA. So, meaning G’ will be equivalent to G.
Any string that is accepted by G will continue to be accepted by G’ and nothing more. So,
basically, we have reduced one state, we have removed g,.;,. Now we can do the same thing

again. So, now we check. Basically, what we do is we make a recursive call of convert G’.
Meaning for G’ we do the same thing.

So, we check whether it is two states, if so, return R, otherwise we do the whole thing again.
You identify a new state you remove and, so at some point you run out of states and we are,
we end up with a 2-state GNFA in which case it is clear what is the regular expression. So,
hopefully the outline is clear. We move from a DFA to a GNFA with two more states. And
then we successfully reduce the number of states one by one, till you get a 2-state GNFA. And
in a 2-state GNFA there is only one transition arrow. And that transition arrow contains some
regular expression. And that regular expression is the equivalent regular expression for the
current GNFA and for the previous GNFA and finally to the DFA that we started with.

(Refer Slide Time: 32:10)

T T W N
O V-6 & g &, wwed (6) & 3?@
§ ! .&("' NPTEL

Ml 16 o2, i e b Yo Ak)|

GNFPR L2, o ol Bk 6 et
o &

S a0 6 b gp Bomodn B
M "chql.“/zw %’W-‘P‘h

= ¢ Q/m\u&m{hmw,‘&w
0wy @ beaause, all, Wi o Sawann

b

Pl 16 ke, i B, by B Ao),

GNFAh 72, ool e ik N el
% 0.

Quble & manfi 0. K G g Yoo the

= 1E tiy ek o show segponat Han
0 aos @ besmuse)t fomdon o
w
= W fup © pond bdigen %"““Mliﬂ;
Bt sy Ay v Y

w -

= W qaip O pond bdigen %'\“‘A[\/]ﬂ)

5 %_1 A Ay B Vi
5 LRER U0, by i el

Thy o k4= Gtk () 'y wpuneik

B 6 By ustngg o, W o wason ik
(1 et 540 bl 2tk GOPK.

ot ik 6l b 8
AV W TR A i g

? T KoKy K VK, Aoy Ty Aa il
1

Ty oot k€= Gtk () wpivaid

6 By waing iwdedin, @ taa neanan ik
A s wpimaled B bl 2o iy GNPA.

ot k6l b 1
L-da GOFA 0k e T Ry Wl

Ty gl Y] B sappl Lapang
o watbo g Y0 dusadiig s, oo

NPTEL

a2

®

NPTEL

NPTEL

Main s ¥ |-
{[FRLTOR P TR) TR o
e ube |ty A e GOFA by

Ly
& W 0,25% V2,
& TR
U
193
e Uan\ 4123

e

Soha & b o Bodide DFK Ty e
ot B an 8- Gl GRTK. Tl we

bt thiy oy & T- k0 AOPK, G ilide
EPTEN BT | BV R P A

GRFA.
1 -stido GNPk me

e e M A
— 7

Tl wtod LIRY < k.

i |, saq gt oull vigdin loneyoy
fhasun 190 b Aoyt s madin df tme
R VI 1 153

M o ot ouathon dosadlvigion b g
bnquagn- Ve pot & wop oy

) 1F (&) wd @Y E (D)
w1557 1 sty wapporion duy

N gy, 1 Hon &0 sl

T T e | | | PO ot o

NPTEL

NPTEL

NPTEL

So, now, one very small proof since we did not do much in detail. This is a claim in the
textbook, it is presented as the claim as part of the, one of the proofs. So, what it is claiming is
that convert(G) is equivalent to G, meaning convert(G) is the result of this process. So, it is a
regular expression given a k-state GNFA.

It claims that convert(G) gives you a regular expression which is equivalent to the GNFA G,
meaning whatever string is accepted by the GNFA G is described by the regular expression

and vice versa. So, the proof is fairly just an inductive argument.

If G has just two states, this is true by the definition of the GNFA, because there is only one
arrow. If G has more than two states, so if k is greater than 2, then what we have to show is
that, we will just show that G will be transformed to G’ by reducing 1 state. We will just show
that G’ is equivalent to G, and then inductively, it follows G’ is equivalent to the next one G’
or something and so on so on so on till we get a state of a GNFA of two states, at which case it

is true by the base case of two states.

So, for now, we will just focus on this claim that G’ is equivalent to G. This is what we want
to show, meaning the exercise of removing one state preserves the language recognized by G.
So, we will do something very simple. Suppose G accepts some string w, we will show the G’
also accepts the same string. So, suppose G accepts w. Now let us say the in the process of

accepting the string, it goes from the start state to g, to g, and so on till g4ccepe. And what we

want to say is that G’ also accepts the same string.

S0, suppose g, is not in the above sequeNnce gs¢qr¢, 41, g2, this does not contain g, in which
case it is fine because for any pair, let us say q4, q,, there was some transition. The new q4, q,
also contains the existing transitions because this is the transformation. g;, q; remains q;, q; but
the label R, was replaced by R;R;R3UR,. So, any string that could take you from g; to g;
earlier can still take you from q; to q; because any string that could take you from g; to g;

earlier was described by R,.

Still R, is part of this regular expression. So, all the strings that are part of R, can still take you

from g; to q;. So, if q,;;, is not in the above sequence, all the transitions remain in G and are
valid transitions. Hence G’ also accepts w. Suppose this sequence contains q.;, somewhere.
Just for sake of simplicity, let me say that q,.;;, appears between some two states in the sequence.

Let us say the two states were g; and g;., these two states.

And let us say, q,, appears more than once. Let us say q; then gq,,, then q,.;;, again then q,.;;,
once again before q;,,. So, now if you notice the arrow from q; to q;,; would have been
replaced by R;R;R;UR,. So, where what is, maybe | will just use a different color. Let us say

this is g;, this is g4, this is g,;,. S0, this is Ry, this is Ry, this is R; and this is R,.

Suppose this was the earlier sequence of states. Now, we used R; to go from g; to q,,, we
used R, to remain in q,;,, and R, again to remain in g,;, and then R; to move to q;,4. So,
R;R,R,R; was used to move from q; to g;,;. Then, now in the present GNFA, the g; to

qi+1 label is replaced by R{R3R5.

So, R{R,R,R; is still part of this regular expression. Hence the same string can be accepted

even though q,, is not there, no longer there in the GNFA, even then this string is accepted as

part of the transition from g; to q;,,. So, this shows that whatever be the situation, whether
qrip Teatures in the sequence or it does not, the converted GNFA G’ will still accept the string

w.

So, what we showed is that if G accepts the string w, G’ also accepts. And the same reasoning
can be used in the opposite way. If G* accepts then it has to be either using R, R;R5 or through
R,. In either case there is an equivalent transition in the G as well. So, G’ and G are both

recognizing the same set of strings.

So, this we showed that, this shows that G* and G are equivalent and you can use the same
argument again and again and use mathematical induction. So, G’ is equivalent to the let us say
G’” where one more state is reduced and so on and so on till we get to the final 2-state GNFA.
So, the final 2-state GNFA, let us call it G, or G, or something. So, G, has these two states,

and then it is immediately clear what the equivalent regular expression is.

So, at that stage, it is very clear what the regular expression is and that will allow us to tell what
the equivalent regular expression R is. So, that is how we move from a DFA to a GNFA and
then successively reducing the number of states while preserving the language recognized. And
finally, we reach a 2-state GNFA and then the two-stage GNFA will tell us the regular

expression that is equivalent.

So, I will just quickly summarize. The goal of this lecture was to complete the proof of this
theorem which was that a language is regular if and only if some regular expression describes

it. In the previous lecture, we already saw that if we have a regular expression describing some

language it is regular. So, now our goal is if a language is regular we should have a regular

expression describing it.

So, suppose the language is regular which means there is a DFA that recognizes that language,
we add two states, a new start state and a new accept state and we add empty set transitions to
all the other places to get a new GNFA which is clearly equivalent. So, this means we are not

adding anything.

Basically, if you had 6-state DFA, we will get an 8-state GNFA. And from that GNFA we
successively reduce the number of states. So, by doing this operation again and again. We pick
a state which is not a start or accept state, we remove it by relabeling the other arrows. So, for

all the pairs q;, q; we relabel it by seeing what is g; t0 g, grip t0 itself and g, 0 q;.

This needs to be done for all the pairs. Even the pairs g;, q; we have got in both order. And

also, the pair g;, q;, and this will give us an equivalent GNFA but with 1-state less. And we
keep doing that till we get a 2-state GNFA.. So, a 2-state GNFA will be of this form. It has just

a start state and accept state. And just one transition labeled by a regular expression.

So, for this 2-state GNFA, the equivalent regular expression is trivial. It is just the label of that
one transition. And that completes the procedure of how we can get the regular expression for
any regular language. So, from any regular language, you start with the DFA then move to the
GNFA and then successively reduce the number of states till we get 2-state GNFA, and that

tells us how to get the regular expression.

And with this, we have completed the proof that, so this completes the proof that regular
expressions are another way to characterize regular languages. So, now the proof is complete.
This shows that given any regular language, there is a regular expression. So, to show that the
language is regular, we have a third way now. So, the earlier two ways were that you provide
DFA or you provide NFA.

Now, one way to show, a new way to show a language is regular is to provide a regular
expression for it. So, and, so this can be quite useful. So, if you are asked to show that a certain
language is regular, instead of building a DFA or an NFA, we could just build a, or we could

just construct a regular expression that characterizes that language.

So, that, with that, we complete Week 2’s lectures. So, just to quickly summarize. What all did

we see? We saw Non-deterministic Finite Automaton, we saw that, we could prove these are

equivalent Deterministic Finite Automaton. We saw that we could use the NFAs to prove the
closure properties, that is regular languages are closed under union, concatenation, star. And
then we explained regular expressions. And we showed that the regular expressions are also
yet another equivalent representation for regular languages.

So, that completes Week 2. And, so we have regular languages that we have already seen and
three different characterizations for them. Now we will move on to languages that are not
regular. So, one may wonder, is everything regular? Can we represent all the languages using
a DFA or an NFA or a regular expression? The answer is no and you will have to wait till next
week's lectures to see some examples for that. Thank you.

