
Theory of Computation
Professor Subrahmanyam Kalyanasundaram

Department of Computer Science and Engineering
Indian Institute of Technology, Hyderabad

Closure of Regular Languages
Under Regular Operations (Using NFA)

(Refer Slide Time: 0:17)

Hello and welcome to lecture 9 of the course Theory of Computation. In the previous lecture,

we saw NFAs and that NFAs are equal to DFAs as far as computability is concerned.

Whenever there is a NFA that recognizes a certain language, there is also a DFA that

recognizes a certain language. So it is almost immediately clear that NFAs are at least as

powerful as DFAs. Now, with the observation that every NFA has an equivalent DFA it

implies that the class of languages recognized by NFAs are the same as the class of languages

recognized by DFAs and this is what we already know as the class of regular languages. So

this gives us another definition or another characterization for the class of regular languages.

So if a language is regular or a language is regular if and only if there is some NFA that

recognizes it.

So now, if you recall we showed that regular languages are closed under complement we

showed the regular language the code close under the union operation. So now, we will use

this to show closure under other operations as well, namely the regular operations. So the

regular operations were 3 union, concatenation and star. We already saw closure under union

using a cartesian product DFA. Now, we will see a simpler proof which uses NFAs and

followed by quite straightforward proofs for the closure under concatenation and the closure

under star operation. So let us first see the proof that regular languages are closed under

union that use NFAs, so we already saw the through using DFAs. So let us see.

(Refer Slide Time: 02:23)

So to begin with, we say that So we have to show that let us say if and are two regular𝐴
1

𝐴
2

languages, that union is also regular. So that and , be two regular languages. So we may𝐴
1

𝐴
2

assume that the NFA is recognizing it. So we may assume that and respectively are𝑁
1

𝑁
2

NFAs that recognize , . And so now the goal is to build an NFA that recognizes the𝐴
1

𝐴
2

union. So let us say and , the ones just drawn them at the top and at the bottom.𝑁
1

𝑁
2

𝑁
1

𝑁
2

So now on the left, we have the and . So I am not going to do a full proof in terms of𝑁
1

𝑁
2

the extent of details, it will be more the proof will be more depicted pictorially, one reason

being we have already see one proof, but even the pictorial representation will be fairly clear

is what I feel. So suppose and are this and this , these are the NFAs that𝑁
1

𝑁
2

𝑁
1

𝑁
2

recognize , . So notice that there is one starting state for , one strategy for has𝐴
1

𝐴
2

𝑁
1

𝑁
2

, 𝑁
1

one accepting state has 3 accepting state and then depicted some extra states, of course,𝑁
2

they are not dripped represented there could be many more states, I am not bothered about

them, that could be all the transitions there will be on the transitions, which I am not writing

down just think of them, the only things that we will require are the start state and accepting

states. So that is the extent to which we will operate on this.

So what we will do is, we will build an NFA that which actually combines these two NFAs,

such that the combined NFA will accept a string if and only if either one of the NFAs accepts

a state. So what we want to do is we want a structure by which either NFA accepts or NFA𝑁
1

accepts. If either one of them accepts, the combined NFA should accept. The simplest way𝑁
2

is to do the following, we want some kind of a redirect, so you want the capability to choose,

do you want to try N1 acceptance in or ?𝑁
1

𝑁
2

So you want to try acceptance in either an i of them. So the simplest way is to add a new𝑁
1

start state, you add a new start state, just one second, so I will erase this labeling from here,

maybe I will write it below it, I will add a new start state. And then what I will do is I will

add transitions to the existing start states of and existing starts states . So this is a new𝑁
1

𝑁
2

start state, let me call this start state, let us say I will call this . And from I am adding a𝑞
0

𝑞
0

transitions to the start state of and to the start state of , but what symbol should this𝑁
1

𝑁
2

transition speak? It should be an empty string.

So these are both epsilon transitions. So this NFA is like this. So initially, that is which is𝑞
0

a start state and from which you could make epsilon transitions to either the NFA or the𝑁
1

NFA . The transitions inside , whatever they were, they will remain intact. And𝑁
2

𝑁
1

𝑁
2

once you make the epsilon transition you are now let us say you move to using the𝑁
1

epsilon transition, you move to . And now you will just get stuck or you will just operate𝑁
1

inside after which there is no going to and then you get accepted if after reading the𝑁
1

𝑁
2

string, you are at the accepting state of .𝑁
2

So which is a way the only way to get acceptance inside is if you entered the accepting𝑁
1

state, so that is when the string is a is a member of . And similarly, the only way to get𝐴
1

accepted through an accepting state of is if the string is a member of . So the𝑁
2

𝐴
2

accepting, so the start state is the new state , the accepting states of the new NFA will be𝑞
0

all these accepting states. So the accepting state of , and the accepting states of , all of𝑁
1

𝑁
2

them. So they have multiple acceptances all of the multiple acceptances. So now, here there is

one accept set of and 3 of . So now the joint machine has four accepts overall,𝑁
1

𝑁
2

whatever was inside and wanted to remain as it is.

So just to note, if was let us say , sigma, delt , small , F1 and is , sigma,𝑁
1

𝑄
1

𝐴
1

𝑄
1

𝑁
2

𝑄
2

delt , small , and F 2. The new one let us say the new machine let us call it N, let us call𝐴
2

𝑄
2

this machine N. Let us say if N is (Q, , , ,F) then we can actually write down all of thisΣ δ 𝑞
0

what is Q, what is sigma, what is delta, etcetera. is the same for everything but let us say QΣ

for instance is you have the states of , together with the states of , together with𝑄
1

𝑁
1

𝑁
2

𝑄
2

the new state which is .𝑞
0

And F is the is a union of accept states of and so it is F is the F1 union F2 so nothing𝑁
1

𝑁
2

new is added. And similarly you can, so is near the start series, so almost everything said𝑞
0

the only thing that is a bit more involved is the new transition function that requires a bit of

detail. You may have a look at the book on how they explain this. So just have a look at the

book where the details are provided there. So please go through this and try to understand.

(Refer Slide Time: 10:07)

So the next result of the next closure property is the closure under the concatenation

operation. So we just saw the unit operation. In fact, we had already seen a proof that this is a

new proof using NFAs. So let us see the proof for the conclusion of the concatenation. So let

similar to what we just saw that and be the 2 regular languages and so because they𝐴
1

𝐴
2

are regular and because we have the new characterization using NFAs we can assume that 𝑁
1

and are the two NFAs are two NFAs recognize and respectively.𝑁
2

𝐴
1

𝐴
2

So now, let us say is the one on the left side. So this is and is the one on the side.𝑁
1

𝑁
1

𝑁
2

So both of them have one start state. So obviously, there is a unique start set for each NFA.

has two accept states and has 3 except states. And now, we want to combine these𝑁
1

𝑁
2

𝑁
1

and in such a way that the new we want to somehow build an NFA using and𝑁
2

𝑁
1

𝑁
2

together so that the combine NFA accepts the concatenation language. So what we will make

use of so I have ever again drawn them so maybe I will just move it a bit more below. So this

will be our working copy. So now we want to somehow add things to this so that we𝑁
1

𝑁
2

want to make it into one machine and such that this one machine accepts the concatenation

operation.

So what is concatenation? Concatenation language means w will be in the concatenation

language if the string w can be written as , as a concatenation of two strings. There,𝑤
1

𝑤
2

the first thing is an and the second string is an . So the what we are trying to do here is𝐴
1

𝐴
2

we first pass the string through and then we want to pass through . If you recall, after𝑁
1

𝑁
2

we proved a closure under union using DFAs, we discussed this possibility. The issue was

that if you have just one string, the string itself a string consisting of symbols, but we do not

know where to split into and That was the issue with the proof using DFAs.𝑤
1

𝑤
2

But in the case of NFAs this can be handled because NFAs have the capability of

non-determinism. So the NFAs itself we can have the capability inbuilt or inbuilt in the

construction such that there is an accepting computation if there is some way to split this

string w into and , such that w is in and is in . So that is our goal.𝑤
1

𝑤
2

𝐴
1

𝑤
2

𝐴
2

So we want to accept w if there is any way of splitting it could be the first symbol of w and

last N minus 1 symbols of w or it could be the first N minus 1 symbols of w in and the𝐴
1

last lone symbol accepted by . So it could be any of these four possibilities, but whatever𝐴
2

be the possibilities w will be accepted if there is a possibility. So this non-determinism comes

in handy here. That is why it did not work in the case of DFAs and that is why it will work in

the case of NFAs.

So let us try to see what we need to do. So we first have in the left side which is the NFA𝑁
1

for and in the right side. So like before, we are not going to bother about states𝐴
1

𝑁
2

internal states of and internal states of and all the internal transmissions there is no𝑁
1

𝑁
2

change for any of that. The only operation that we will do will involve messing with the start

state and the accept states of both and .𝑁
1

𝑁
2

So what we will do is we at any point, if we want to see if w if this string can be split into 𝑤
1

, where is is in a string in which means ends in an accepting state of and𝑤
2

𝑤
1

𝐴
1

𝑤
1

𝑁
1

then starts. Meaning there should be a way to go from the accept states of to the start𝑤
2

𝑁
1

state of . So what we will do is we will have epsilon transitions from the accept states of𝑁
2

to the start state of .𝑁
1

𝑁
2

And now, the rest the like, so now the only strings if you see the only strings that will get

accepted in this combined machine are now notice that in my figure, the accept states of 𝑁
1

are still listed and are still drawn as an accept state, so that should not be the case. So now let

me see if, so I will just draw them as these are not accept states so this, maybe I will just put

some this well accepting states of , but now they are not. So I am just indicating that by𝑁
1

this dotted line, so do not think of them as accept states. So these two are not accepting states

of the combined machine.

So this is our combined machine and let us call it N. And the accept states of N would be just

the accept states of , these 3 will be accepts states of N. So the only way to if you see what𝑁
2

is happening, if there is any way to split the string into , , such that w one accepted by𝑤
1

𝑤
2

and accepted by that way we can accept after when you are done processing ,𝑁
1

𝑤
2

𝑁
2

𝑤
1

you will be at an accepting state of , and then you can take the epsilon transition to the𝑁
1

start state of , which is no longer the start state of N. And then you can complete𝑁
2

processing which will take you to an accepting state of , so that is.𝑤
2

𝑁
2

So just couple of details, start state of N is the start state of and accept states of N will be𝑁
1

the accept states of . So and the rest of the details you can see in the book. But pretty𝑁
2

much this is the proof, it is quite simple. We do not tamper with the internal states or the

internal transitions, we just make the start state of the the start state of N, accepts states of𝑁
1

the accept states of N. And we just add epsilon transitions from the accept states of to𝑁
2

𝑁
1

the start state of and that is it. This is our NFA that accepts the concatenation language.𝑁
2

So now, you can see it is very-very simple, much more simpler than the Cartesian product

idea for the union that we had using DFA. So this must give you some idea of why NFAs are

useful, why we are harnessing the power of non-determinism to be able to prove quite easily

what we want. So that is the next closure under the concatenation operation. The final regular

operation is a star operation.

(Refer Slide Time: 18:30)

So now we want to show closure under the star operation. So the claim is that a class of

regular languages is close to the star operation. So like before, we may assume that let you

can see. Maybe I will just move this a bit down. So we want to so let A be regular and be𝑁
1

the I think a may be seeing it below. So it is already written here so I do not want to repeat it.

I will just erase it, move this back up. So let A be regular.

So A will be recognized by some NFA let us call which is given by is (Q1, , ,𝑁
1

𝑁
1

Σ δ 𝑞
0

,F1). And our goal is to construct N where N is has a states Q the alphabet is the same sigma

and delta as a transition is a starting and F is an accepting function. Now we want to𝑞
0

construct N such that the language recognized by N is the concatenation start of A, which

means it should be a concatenation of some number of strings, each of those strings should be

in A. The sum number is not specified, it could be 1, like it could vary also. So it could be 0,

1, 2, 3, any numbers. So when you have zero strings from A, it gives you the empty string,

when you take one string from it is just the language A itself. If you take 2 strings from A it is

like A concatenation with itself so it is the union of all this gives us a star.

(Refer Slide Time: 20:36)

So now what we have is the let us say this is So this is the NFA for , let us say this is𝑁
1

𝑁
1

the start state of . Now how do we modify this in such a way that we accept all the star𝑁
1

operation language? So now, so the idea is kind of similar to what we saw here. So here in

concatenation, after reading, going through , we want to go to . But here there are no𝑁
1

𝑁
2

two languages there is only A, so now we want to accept A star, which means we want to be

able to come back to the we want to be able to like say if one string breaks into two pieces, let

us say w breaks into and , where both of them are in A and , so basically, we𝑤
1

𝑤
2

𝑤
1

𝑤
2

want to pass through the NFA twice. Or it will be 3 pieces , , w3. So we want to an𝑤
1

𝑤
2

each of them are in A, so we want to go to the NFA thrice.

So after getting to the accept state, we again want to come back to the start state and again

should be able to go. So the simple idea that we have to execute here is to add epsilon

transitions from the accept state of the machine to the start state of the same machine to start

state of the same machine so that is what I am doing here. So I am adding epsilon transitions

from the accept states to the start state.

So now, this will accept now and the start state remains the same and the accept states also

remain the same, but his will accept all strings of the form , , etcetera. where each x i is𝑥
1

𝑥
2

in the language A. But there is one small issue here, the one small issue is that the star

operation so any language A star, this usually contains the empty string because in this

definition with a star, we can in this definition over here we can have k equal to 0, which

means there is no strings, like there is nothing and that gives us that empty string.

So for any language A, A star contains empty string, for any language A. But here, if the

empty string has to has to be accepted there is only one way you have to have the start state

as an accepting state. Or maybe you should have an epsilon transition from the start state to

either state which should be an accepting state. But we do not know whether we just took a

general language A and the NFA corresponding to it , we do not know if these properties𝑁
1

are satisfied in this NFA. So for instance, A may not have epsilon in this, A may not contain

epsilon. So the start state of A may not be an accepting state, if the start state is an accept

state then A contains epsilon.

So we cannot insist that the start state will be an accepting state. And if we modify the start

state to be an accepting state, that can cause other problems, because if you modify the start

state, if you make the start state to be an accepting state, whenever in between computation

you reach the start state, you may end up there is a possibility of accepting and this will result

in extraneous strings getting accepted. So we cannot just convert the start state in our

accepting state.

So we want another way to accept the empty strings not by modifying the start state because

that can cause like suppose there is some computation where you go this, this, this, something

and this ends up being accepted if you make the start state being accepted, at being an

accepting state, so we do not want to do this. So we have to have some other way of

accepting the empty string.

So what is the other simplest way? The other simplest way is to just add a new start state

which is an accepting state. So you add a new start state which is an accepting state, let us

called this . So this this old one was say and we have an epsilon transition from to𝑞
0

𝑄
1

𝑞
0

. So now, the start state will be the empty string and will be accepted because the start state𝑄
1

is an accepting state. So the empty string is automatically accepted.

And now, so now what is N? So the N is this maybe I will just again I will just pull it down a

bit so that I can draw a box around this it, N is this, this is our N. And the accept states of N

are and origin accepting states of So which is this? And the start state of N is small𝑞
0

𝑁
1

and that is it. So now, we are accepting both the empty string as well as , , or ,𝑞
0

𝑥
1

𝑥
2

𝑥
3

𝑥
1

, , x4, where each of these excise are in .𝑥
2

𝑥
3

𝐴
1

(Refer Slide Time: 27:08)

So let me just list down what all we did it. So one is that we added epsilon transitions from

accept states of to the start state of and second thing to ensure that empty string is in𝑁
1

𝑁
1

the language. So unless which is the start state of , so this is let the start state of𝑄
1

𝑁
1

𝑄
1

is . So unless which is the start state of unless this is an accepting state of𝑁
1

𝑄
1

𝑄
1

𝑁
1

𝑁
1

let F1 is the accepting state of we need to maybe I am kind of running out of space maybe𝑁
1

let me see what I can do, maybe what I will do is I will just push this back up a bit. So unless

q in F1. Epsilon string is not accepted. So then we add a new start state , we add a new𝑞
0

start set and have epsilon transition from to . So that is the extent of the𝑞
0

𝑞
0

𝑄
1

construction.

So, you added these loops, epsilon loops from the accept state to the start state, and then you

add a new start state and have an epsilon transition from the new start state to the old existing

start state. And so, since we did not write down the details of the earlier one, we will write

down the details, but before that, I hope the idea is clear that this indeed accepts all the strings

that are in A star and does not accept any other string.

So if you can see the only string that it accepts through is empty string, because you can𝑞
0

never come back to . And only strings that accept through the original accepting states,𝑞
0

whichever ones they are you do some transitions you come to the accept state and then you

again go back to start state and again come back to the accepting state. So it must have gone

from start to accept some k number of times, which is exactly the start operation and nothing

else is accepted.

(Refer Slide Time: 31:30)

So let me just in this particular closure proof, I want to just write down the what is q, what is

F, what is transition function, etcetera. So, as already mentioned, is this NFA that𝑁
1

recognizes A or is one of the NFAs that recognizes A and our goal is to construct N𝑁
1

which recognizes the A star and (, , (,), , F1)are the five tuple corresponding to𝑄
1

 Σ δ 𝐴
1

𝑞
1

𝑞
0

. And for N the things corresponding things are Q, sigma, delta, and F. So, what is Q𝑁
1

𝑞
0

here? Let us try to write down what is Q, Q is nothing but the only new state that is added is

, q is nothing but q union , where is the new start state. And what is F? If you see all𝑞
0

𝑞
0

𝑞
0

the old start states or all the old accepting states are still accepting states. In addition is𝑞
0

also an accepting state. So, F is also, so q is union , F is F1 union too. So in the𝑄
1

𝑞
0

𝑞
0

case of F is also the newly added start state is an accepting state in addition to the existing

accept states.

Now, let us consider the transition function. So, the sigma is the same, start state is already

done, the only thing that is remaining is the transition function. So, now, let us consider all

the transitions. So what is delta in terms of the existing transition function? So, let us first

consider q, a, the pair where q is some state and a is some symbol which is not the empty

state. So in the existing transitions will be the same as the existing transition delt {q, }𝑎
1

𝑎

when q is in , where it is an existing state, not the newly added state and A is not epsilon.𝑄
1

Because whatever is not epsilon the only new transitions that we added are the epsilon

transitions. And what if, what would (q,) for the existing states q?ϵ

So, if you were in an accepting state you are adding this new epsilon transitions if you are not

accepting states, you do not have to do anything. So this is also delt , q, a, when q is not in𝐴
1

F 1 and a is not epsilon, this is also the same. But when q is in F1, q is in an accepting state.

When q is in F1, what is it? So, when q is in F1, what is q, epsilon? So whatever. So, it is

possible that from this accept state, there were already some epsilon transitions to some other

states, so some other epsilon transitions may have existed. So now we are adding a new

epsilon transition. So, what we have to say is, whatever was already there delt {q, } ,𝑎
1

ϵ ∪ 𝑄
1

where is the start state, old start state. And so this completes all the transitions of the𝑄
1

existing states.

So we first wrote all the transitions for all the states except epsilon transitions, then epsilon

transitions of all the states except accept states, and then the epsilon transition of the accepts

states that is the three ways we split the thing. The first one is all states, but not epsilon

transitions. Second is non accepting state of origin of machine, but not epsilon transitions,

then accept states and epsilon sorry I did not need this is an error. First is all states, but not

epsilon transitions, then epsilon transitions of non-accepting states and then epsilon

transitions of accept states.

Now, what remains is the only the transitions of the new state , so that is also very simple.𝑞
0

So, when what is delta{q, a} ? This is actually the empty set when a is not epsilon, because

the only transition that is there is the epsilon transition and when a is epsilon, it is nothing but

the set , there is only one outgoing arrow and that is it, this completes the construction and𝑄
1

hopefully, the correctness is evident in this case and as it was in the other three cases, other

two cases and that completes the proof that regular languages are closed into the star

operation.

So, now you see, we saw that regular languages are closed under union, concatenation and

star and both are all the three groups are fairly simple and fairly intuitive. And you could

understand the proof and even the correctness by just looking at the figures of the pictures of

the proofs. So of course, we can formally define it and I urge you to go through the formal

proof which is there in the book, which we gave for the third case, but not we did not give for

the first two cases.

So using the power of NFAs we are able to show that regular language the closure union

concatenation and start, we also saw closure under complement earlier. So, that completes

lecture 9. In next lecture, we will see yet another characterization of regular languages using

expressions. Thank you.

