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Hello and welcome to lecture 8 of the course Theory of Computation. In the past lecture, lecture 

7, we saw the formal definition of NFAs. So NFAs seem to have more flexibility and power 

than DFAs. Because they have the capability of having multiple options from the same state 

and if they see the same symbol. There is also the 𝜖 transition available to the NFAs. So, the 

question is, can NFAs do something more than what DFAs can do? So that is a natural question 

because they seem to be more powerful. For instance, can they recognize languages the DFAs 

cannot recognize? 

In this lecture we try to address this question. And we show that NFAs and DFAs actually have 

the same power at least in terms of the class of languages recognized, which means that 

anything that an NFA can do there is also a DFA that can do the same thing. Meaning if there 

is a language that is recognized by an NFA then you can also write a DFA for the same 

language. So, there is no language that an NFA can recognize but a DFA cannot. 
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So, towards this end, we need some basic definitions, and then we will proceed to the proof. 

We first define what we mean by equivalence. So, two machines, so when I say machines, I 

mean computation devices like NFA, DFA automata. We say that they are equivalent if they 

recognize the same language. And the main theorem that we will see in this lecture is that every 

NFA has an equivalent DFA. This means that, even in the last lecture I mentioned this, it is 

clear that a DFA can be viewed as an NFA. A DFA is already an NFA, where we do not make 

use of the multiple outgoing, multiple arrows with the same symbol, we do not make use of the 

𝜖 transitions. So, a DFA is automatically an NFA. 

But then this statement shows that for anything that an NFA can do, there is an equivalent DFA 

for it. This means that DFAs and NFAs have the same power at least in terms of what languages 

they can recognize. It is possible that a language recognized by an NFA, if you write the 

equivalent DFA, will have way more states than what the NFA has. And maybe the DFA is 

more complex than the NFA, but that is not the point here. The point is that anything that an 

NFA can do a DFA can also do. But the resulting DFA may be more involved which is not 

what we want to focus on, but this is something that I am just stating over here. 

And the corollary is that since any NFA has an equivalent DFA, what it means is that the class 

of languages that is recognized by NFAs is the same as the class of languages recognized by 

DFAs and we already have a name for the class of languages recognized by the DFAs. The 

name is regular languages. The thing that I want to say is that a language is regular if and only 

if there is some NFA that recognizes it. So, this is a new characterization and alternate 



characterization for regular languages. So far, we have been saying the language is regular, if 

there is a DFA for it. Now we are saying that a language is regular if and only if there is some 

NFA that recognizes it. So, notice both the directions of the statement if and only if. 

If an NFA recognizes it, we can make a DFA that recognizes it so it is regular. If a language is 

regular, there is a DFA that recognizes by the definition that we have already seen. And if there 

is a DFA recognizing it, the DFA is automatically an NFA. So, if there is a language that is 

regular there is an NFA for it and if there is a language that has an NFA by virtue of this 

theorem, theorem 1.39 there is an equivalent DFA and hence it is regular. Notice how both 

directions are taken care of by this. Now what remains which is not it is a bit long is a proof of 

the theorem. 
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So, what is the idea? We sort of saw the idea in the previous lecture, so the way we define the 

transition function of an NFA was something like this. The definition of the transition function 

was δ: 𝑄 × Σɛ → 𝑃(𝑄). So here itself, the mapping goes to the power set of Q. So this is itself 

a hint and we also try to keep track of the transitions of let us say of this particular NFA. So 

we try to see which states it can go to. So maybe let us try to see what happens here when this 

NFA sees the string, which is 0101. 

So it starts with q1 when it sees 0 it can only remain in q1, there is no other option. When it sees 

1, there are three possibilities, it can take the self-loop to q1 or it can go to q2 or it can go to q2 

and then take the ɛ. And then let us say the next symbol is 0. So, if it was at q1, 0 gives you the 

option to remain at q1 and that is all. If it was at q2 there is this option of going to q3. If it is at 

q3, there is no next step available, so this path kind of ends here. 

Now, let us say the next symbol was 0, let us say the next symbol was 1 again. So q1 1 there 

are three options, we saw that in the second step q1, q2, and q3. And q3 1, there is only one 

option which is to go to q4. This is where all the strings can be or where all the NFA can be 

after reading the string 0, then the string 01, then the string 010 and then the string 0101. 

So, this we tried in the previous lecture as well. So now, the point here is what are we doing 

here we are trying to see if the string can be accepted. And towards that end, we are trying to 

see where all it can possibly go. And then we see that the string is indeed accepted because the 

accepting state is q4. After reading 0101, there is one way. There is one way to reach this, the 

accepting state, after reading this, which is like this. The highlighted path is an accepting path. 

The first 0 you remain at q1, the next 1, you do go to q2, the next 0, you go to q3, and then the 

last one you go to q4. So, this is an accepting computation path. 0101, is accepted by the NFA. 

So, this is the idea that we try to do. Let us see how we will try to do this. What we will try to 

do we will try to keep track of sets or the set of states where it could be. What we, I will try to 

draw the same thing in a different way. So, upon starting, it can only be in q1 and so now I am 

writing it as collections. So, when you see a 0 from q1, you can only be at q1, 0 will actually 

take you to keep you at q1. If you see a 1 for instance, however you could go to q1, q2 or q3, 

because 1 can take you to keep at q1 or you can take you to q2 or you can take you to you can 

go to q2 and then take the 𝜖 transition. 

Now from q1, q2, q3 if you have 0. There are three states here so for each of them we have to 

see. If you are at q1, if you see a 0 you can go to q1. From q2 if you see a 0 you can go to q3, 



from q3 if you see a 0 there is nowhere to go. So, there are only two next destinations possible. 

If you see a 0, which means this arrow leads you to {𝑞1, 𝑞3}, the set containing q1 and q3. 

Suppose you see a 1 from q1, q2, q3, so q1 itself, if you see a 1, you can go to q1, q2 or q3 . q2, if 

you see a 1, there is no next step, q3 if you see a 1, you can go to q4. So, if you see a 1 from 

here, you could be in any of these four states. 

So, the point I want to make here is that if you were in any of these three states, and if you see 

a 0 the next time, you can only be in these two states, q1, q2, sorry, q1, q3. And if you are in q1, 

q2, q3, and then you see a 1, the next time you could be in any of these four states, q1, q2, q3 q4. 

Like that, we can keep track of where all we can possibly be after that step. This is how we will 

convert the non-deterministic computation into a deterministic computation. So, you try to keep 

track, the set of all states that we can be at a after reading some part of the input, that is what 

we try to do here. 

And so, the starting state will be the set containing the starting state of the NFA, q1. Now, if 

you see a 0 here, there is no other state you could go to. If you see a 1, the next state, you could 

be at any of the three states q1, q2, or q3, which is what we have here. And like that, I could 

write other states as well, so this is not a complete diagram. And then you accept if there is 

some one of these, at least one of these states is an accepting state. So now you would accept 

the string 11, because 11 takes you from the starting state. Maybe I will just denote it separately, 

so this is the starting state q1. And 11 takes you to q1, q2, q3, q4, out of which q4 is an accepting 

state of the NFA. This means there is a way to reach q4 from q1 upon seeing 11 in the NFA. 

So, you would make this as an accepting state. 

So maybe I will make it a double. The point is, you want to reach the accepting state of the 

NFA at some point. This is the rough outline of the proof. Now what remains is to make this 

more formal. 
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So, what we want to do, let us break this down in two parts. First, we assume that the NFA has 

no 𝜖 transitions. So, the NFA only has one of the flexibilities which is that there could be 

multiple outgoing arrows, for the same state. So, some state is there, which has, let us say, one, 

two outgoing arrows or three outgoing arrows with the same symbol. Now, this is only 

flexibility, there is no 𝜖 transitions. Now this is the NFA, 𝑁 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹). For that, we want 

to show that there is an equivalent DFA, so we will construct a DFA, we will call it M. So 𝑀 =

(𝑄′, Σ, 𝛿′, 𝑞0′, 𝐹′). The alphabet is the same Σ, for everything else I am just adding prime or 

dash to the to 𝑄, 𝛿, 𝑞0 𝑎𝑛𝑑 𝐹. 

So now let us try to see what each of them is. We have already kind of seen the idea. Let us try 

to formally write it down. 1) 𝑄′ is the set of states of the DFA. At each time we want to keep 



track of where all you can possibly be. We have already seen that in the set of states in the 

DFA, each state is a subset, a set of possible states of the NFA. So, the set of states of the DFA 

is actually the 𝑃(𝑄), which is the set of all possible sets of states. In other words, it is called 

the power set of Q. So, each state of the DFA is a subset of the states of the NFA. So, if the 

NFA has, let us say 3 states, the resulting DFA will have 2 power 3 states because that is the 

number of elements the power set contains. 

Σ is the same, so there is nothing to say there. So, I will start with the simpler things. So q0, the 

starting state of the DFA, is basically the set containing only the starting state of the NFA. You 

may be tempted to say that  q0
′  is actually equal to q0, but this is not correct, because q0 is not 

a state of the DFA. The states of the DFA are subsets of the set of all the NFA states. So, it is 

the singleton set containing only the starting state of the NFA, so that is the starting state of 

DFA. So q0
′ , the starting set of the DFA is the set containing only q0. 

Now, the next thing is the set of accepting states of the DFA. So, you want to accept a certain 

string. You do some computation, let us say out of q1, q2, q3, q4, like the example about q4 is 

only accepting state. So now, if after reading a string, you can end at q1 or q2, will you accept 

that string? The answer is no, because neither of them is an accepting state. Suppose instead of 

q1, q2, you also had q4, which means after reading that string you can end at three states, either 

q1 or q2 or q4, meaning there are valid computation paths that let you end at q1 let you end at q2 

and let you end at q4. 

Now, will you accept this string? Of course, yes, because this means that there is a way to 

compute/process the string ending at q4, which is an accepting state of the NFA. Since there is 

one state which is an accepting state of the NFA, which is q4, you would consider this set to be 

an accepting state. What I want to say here is that 𝐹′ is a collection of states of the DFA, but 

each state of the DFA is a subset of the states of the NFA. So let us consider one state, let us 

say 𝑅 ⊆ 𝑄 is a state of the DFA or is a subset of states of the NFA. Now, is this an accepting 

state? So, it will be an accepting state of the DFA. 

So let us say R is { 𝑞1, 𝑞2, 𝑞4}. Is it an accepting state? Yes, because it contains an accepting 

state of the NFA. So, the way to say it is, ∃ 𝑟 ∈ 𝑅  such that 𝑟 ∈ 𝐹  , where F is a set of accepting 

states of the NFA. Another way to say the same thing is R is an accepting state of the DFA, so 

R is a subset of the states of the NFA. We are saying that R contains an accepting state of the 

NFA. Another way of saying this is with the intersection of R with the set of accepting states. 



So, if you look at R and you look at F, there has to be at least one common state, or there has 

to be some intersection between them. So 𝑅 ∩ F ≠ ϕ. So, this is another way to say it. 𝑅 ⊆ 𝑄 

is the same as saying 𝑅 ∈ 𝑄′, because the members of 𝑄′ are the subsets of 𝑄. So this is another 

way of writing the set of accepting states, 𝐹′. 
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The next thing is the it is probably the most involved of them all is a transition function 𝛿′. So 

𝛿′, we have to define for a state of the DFA. We are considering R as a state of the DFA, so R 

is a subset of the set of all states of the NFA and the symbol a in the alphabet. This is what we 

have to define, 𝛿′(𝑅, 𝑎). Where 𝑅 ⊆ 𝑄, where Q is the set of all states of the NFA and 𝑎 ∈ Σ. 

So maybe I will just give a brief example. So let us say I have q1, q2, q3 q4, 0, 1, 0, 0, let us say 

for good measure there is another 0 here, now consider R to be this set containing 𝑞1, 𝑞2. 

Now, in this case, what is 𝛿′({q1, q2}, 0) ? Upon seeing the input 0, if you are at q1, one option 

is that you remain at q1, one option is you go to q2, another option is you go to q3. So you could 

be at q1, q2 or q3. But if you are at q2, another option is to go to q4. So, 𝛿′({q1, q2}, 0) =

{𝑞1, 𝑞2, 𝑞3, 𝑞4}. There are four options available, one is to remain at q1, another is to go to q2, 

another is to go to q3, another is to go to q4. What about 𝛿′({q1, q2}, 1) ? If you are at q1, 1 does 

not take you anywhere, if you are q2, 1 only takes you to q1. So, it is just a singleton set 

containing q1. 𝛿′({q1, q2}, 1) = {𝑞1}.  This is how you define transitions. 

So let us see how to more formally define it. 𝛿′(𝑅, 𝑎). For each element of R, let us say 𝑟 ∈ 𝑅. 

Now, you want to see where all can you go from r if you see the symbol a. In the NFA that is 



given by δ(𝑟, 𝑎). So δ(𝑟, 𝑎) is the transition function of the NFA tells you where all you can 

reach from r upon seeing a. 

And then you have to do this for each 𝑟 ∈ 𝑅. In other words, I want to do the following, 

𝛿′(𝑅, 𝑎) = { 𝑞 ∈ 𝑄 | 𝑞 ∈ δ(𝑟, 𝑎) for some 𝑟 ∈ 𝑅}.  It is a set of all states of the NFA, which 

can be reached from r, upon seeing 𝑎 for some 𝑟 ∈ 𝑅. So, for some member of R, if 𝑎 takes 

you somewhere you include that. Another way to say the same thing is ⋃ δ(𝑟, 𝑎)𝑟∈𝑅 . Consider 

all δ(𝑟, 𝑎) for some r, then you take the union over all the 𝑟 ∈ 𝑅. 

So, this is the definition of 𝛿′. For each element of capital R, you see where all you can go 

upon seeing 𝑎, and you take the union. This completes the definition of the DFA that is 

equivalent to the NFA that we started with. So, we are not explaining or we are not formally 

writing down the proof the construction itself is fairly explicit and it is fairly straightforward 

to see that the construction takes you to an equivalent DFA. 
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Now, notice that we made this assumption that suppose there were no 𝜖 transitions. So now, 

we have to somehow incorporate this into the proof. So let us see how to incorporate this. So, 

one of the places where this has to be incorporated is the transition function. So here we said 

that we go to all the states q which can be reached from any 𝑟 ∈ 𝑅, upon seeing a symbol 𝑎. 
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But suppose, you reach a certain q. So 𝑟 and then you see an 𝑎 and you see you reach a 𝑞. Now, 

suppose this is an 𝜖 transition from 𝑞 that is that 𝑠, now you can reach 𝑠 also because from 𝑟 

you see an 𝑎 then you go to 𝑞, then you take the 𝜖 transition and then you reach 𝑠. And suppose 

there is another 𝜖 transition from 𝑠 and then you reach 𝑡, then we have to include that as well. 

So basically, they are all states you can reach from 𝑞 by just using 𝜖 transitions. Suppose, there 



is another 𝜖 transition that is some other state even this has to be included. So, consider all the 

states that you can reach just by using 𝜖 transitions, all of this has to be included. 
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So, towards this end, we define what is called 𝐸(𝑅). That is a notational definition. If you asked 

me to name it something, I will call it the 𝜖 closure of R, because this is the set of all the states 

that you can reach from R by just using 𝜖 transitions. You may not use 𝜖 transition by using 0 

or more 𝜖 transitions. So, I am allowed to use 0 𝜖 transitions which means the states that are in 

R are included by default. 

So just to give a pictorial. Suppose, these are the states in R, these three other states in R. Now, 

this is an 𝜖 transition, this is a non 𝜖 transition and suppose this is an 𝜖 transition, so this is 

something else, suppose this has no 𝜖 transitions. Now, suppose this is R, maybe I would use 

the same color again.  

Suppose, this is R, then the set of states that you can reach from R by using 𝜖 transitions R this 

included, this included, this included, this included, so these are the states that you can reach. 

Notice that this state over here, the one that I marked 𝑥 cannot be reached from the top state in 

R which I have marked as let us say 𝑦 using 𝜖 transitions, but however it can be reached from, 

let us say, this one, the one that I am working 𝑧 using 𝜖 transitions. 

Hence, hence 𝑥 will be in the set 𝐸(𝑅). So 𝐸(𝑅) is the one that I have drawn with the red 

outline. So, anything that you can reach from R using 𝜖 transitions, when I say 𝜖 transitions, it 

could be no 𝜖 transitions also. Because of which the set 𝐸(𝑅) contains R by default, because I 



have defined it as the set of all states that can be reached from capital R, using 0 or more 𝜖 

transitions. So if I use 0, if I am only allowed 0 𝜖 transitions, I can only remain at R, if I want 

to use one step of 𝜖 or more steps, then I will include other things that you can reach. In this 

figure, whatever I can reach 𝜖 I have marked it. So, it depends on the case. 

So now, this is the way to incorporate 𝜖 transitions into the proof. Suppose there are 𝜖 

transitions. So we have to include 𝜖 transitions. One way to do it is to include them after each 

transition. So, you try to see where all you can possibly go upon seeing a symbol, let us say 𝑎, 

now if you see a symbol 𝑎 where all can you possibly go? Let us say you got a collection of 

states, which is given by 𝛿′(𝑅, 𝑎). This is a set of states. Now from this set of states, perhaps 

there are 𝜖 transitions that take you to some other places now, we want to include that as well. 
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So how do we include that? One way to include is by, so 𝛿′(𝑅, 𝑎). So for each 𝑟 ∈ 𝑅, earlier 

we took all the states that are in δ(𝑟, 𝑎). which is the set of states reachable from 𝑟 ∈ 𝑅 using 

the transition 𝑎. Now instead of δ(𝑟, 𝑎), now we are saying maybe I will use a different color 

here. I am saying 𝐸(δ(𝑟, 𝑎)), similarly in the union definition, earlier, I just had ⋃ δ(𝑟, 𝑎)𝑟∈𝑅 . 

Now, from whichever states that you can reach from r using the transition 𝑎, we want to add 

the other states that you can reach after the transition by just using 𝜖.  

So if this is a set of states, let us say δ(𝑟, 𝑎), now let us see where all you can reach by just 

using 𝜖’s. So we want to include this as well. So now, we draw a bigger circle, which is 

basically the circle is 𝐸(δ(𝑟, 𝑎)) the set of states that you can reach from δ(𝑟, 𝑎) by using 𝜖 

transitions. 𝛿′(𝑅, 𝑎) = ⋃ E(δ(𝑟, 𝑎)𝑟∈𝑅 ). This takes care of all the transitions. After each 

transition, we are seeing where all you can possibly be by using 𝜖 transitions. So, this is the 

transition function we have to modify, so instead of the four defined as the transition function 

being defined as this, this is the actual definition. 

And the other thing that we have to change is the starting state, because in the transition 

function, we are accounting for the 𝜖 transitions after we make the transition. So what if the 

starting state had 𝜖 transitions? If q0 had let us say, one 𝜖 transition, say q1, how to include that? 

One way to include that is to instead of defining the starting state as just the set containing q0, 

we can define the starting state as the 𝜖 closure of the set containing q0. So again, this is a new 

thing, it is 𝐸({𝑞0}). So these are the two changes that we need to make for taking the 𝜖 

transitions into account. 



So 𝑄′ is a set of all subsets of Q or 𝑃(𝑄). The starting state 𝑞0
′  is 𝐸({𝑞0}). The set of accepting 

states of the of the DFA, 𝐹′is any subset of Q, which is the set of all states of the NFA, which 

has an intersection with the set of accepting states of the NFA. The set of all R which have a 

non-empty intersection with F, so 𝑅 ∩ F ≠ ϕ. And finally, the transition function is given by 

this, 𝛿′(𝑅, 𝑎) = { 𝑞 ∈ 𝑄 | 𝑞 ∈ E(δ(𝑟, 𝑎)) for some 𝑟 ∈ 𝑅}. For each transition function from 

a set R upon seeing a symbol a. So, you look at each 𝑟 ∈ 𝑅 where all can you go upon seeing 

a, so that is given by δ(𝑟, 𝑎), it is a set of states. 

Now, you take the 𝜖 closure of it, meaning where all can you go after this by just using 𝜖 

transitions. Now, you take the union over all the possible 𝑟 ∈ 𝑅, that is the transition function. 

So, this completes the construction of the DFA that is equivalent to the NFA. The correctness 

is fairly straightforward.  
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If you read any string and the DFA reaches the states r1, r3, r10, so the DFA reaches a state r10. 

This means that the NFA after reading the same string can reach exactly these three possible 

states it could reach r1 in the NFA or r3 in NFA or r10 in the NFA, these three states are the 

exact states possible and this is an accepting state if either three of them or if any one of them 

or some subset of them is an accepting state of the NFA. It is fairly clear by the construction 

that if the non-deterministic finite automata, the NFA can reach three states r1, r3, r10, then the 

DFA by construction will reach the state containing exactly these three states. 

So that is the main theorem that I want to state in this lecture. The point is that the computation 

power of NFAs is equivalent to DFAs, meaning in terms of the languages that can be 

recognized by the NFA it is the same as what can be recognized by the DFA. This is proved 

by showing that every NFA has an equivalent DFA and that is the construction that we saw. 

And the main idea is to build a DFA where each state of the DFA is a subset of the set of all 

states of the NFA. One point is that this NFA has four states, the NFA in blue over here has 

four states. 

So, the equivalent DFA as per this construction will contain how many states? It will contain 

as many states as the power set of this contains. The power set of a set of four elements contains 

24 which is 16 states, 16 elements. The equivalent DFA will contain around 16 states, one for 

each subset of this. This set of states could be the empty set, it could be the singleton sets, the 

set containing two elements, it can be three elements and the set containing all the four states. 

So that could be 24, which is 16 states and it can get a bit involved. 
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Maybe one thing that you can do is an example in the book, which is example 1.41. So, the 

DFA that I have written below contains three states q1, q2, q3. q1 is the starting state as well as 

the lone accepting state and it is over the binary alphabet. If you see the alphabet is just a and 

b and there is an empty transition 𝜖 as well. For this state the in the Sipser book they construct 

an equivalent DFA, and the equivalent DFA as you would expect contains 23, which is equal 

to 8 states, but then the example of the book notices that some states are not really useful, so 

they finally reduce. 

So, the equivalent DFA contains 23 equal to 8 states this is what we can say without any actual 

construction, but when you construct actually there are some unreachable states, some states 

which are useless. So, as you can see in the example, they actually cut down two states because 



it is not serving any purpose in the DFA, so it ends up being 6 states. So please go through the 

example in the book. 

And so that is all I wanted to say in this lecture, where we saw the main theorem which is that 

every NFA has an equivalent DFA. Also, the implication is that this gives a new 

characterization for regular languages which is that the regular languages are the class of 

languages that have some NFA that recognizes it. So, the earlier definition was that a language 

is regular if there is some DFA that recognizes it. Now I have a new definition. A language is 

regular if there is some NFA that recognizes it. That is all I have for lecture 8. See you in lecture 

9. Thank you. 


