Theory of Computation
Professor Subramanyam Kalyanasundaram
Department of Computer Science and Engineering
Indian Institute of Technology, Hyderabad
Equivalence of NFA and DFA

(Refer Slide Time: 0:16)

e s DFKs, bt b it Hlachi ity
Hor DPha. Bk o OFAy wtc ot 7 D b

ek T ‘\, %W Mux\w@, OFky w DFA

hart e S poots.

%_ﬁ Tov vadin ’m&m&hm ypshoded

lagom 1297 Buusiy PR Ly . yuanidid DFA.

fig wm ik AL o MM [y Pﬂ«XkHL)y

Hello and welcome to lecture 8 of the course Theory of Computation. In the past lecture, lecture
7, we saw the formal definition of NFAs. So NFAs seem to have more flexibility and power
than DFAs. Because they have the capability of having multiple options from the same state
and if they see the same symbol. There is also the € transition available to the NFAs. So, the
question is, can NFAs do something more than what DFAs can do? So that is a natural question
because they seem to be more powerful. For instance, can they recognize languages the DFAs

cannot recognize?

In this lecture we try to address this question. And we show that NFAs and DFAs actually have
the same power at least in terms of the class of languages recognized, which means that
anything that an NFA can do there is also a DFA that can do the same thing. Meaning if there
is a language that is recognized by an NFA then you can also write a DFA for the same

language. So, there is no language that an NFA can recognize but a DFA cannot.

(Refer Slide Time: 01:42)

’%Lw @‘z L Pois -

,D’L%_\l: Tor vadins \QMN WML,& i} NPTEL
By tecopie Yo Gug buspag.

Thagoe 02T Buasg NEA Loy o spunnidund DFA.

ﬂM Mm thok (29 NMQ%M DNUJQAM
DPAs

1t weddminolie kidt adsnstmn (NFA)
huspigs &

Puanl [N Nagen 1.29)
So, towards this end, we need some basic definitions, and then we will proceed to the proof.
We first define what we mean by equivalence. So, two machines, so when | say machines, |
mean computation devices like NFA, DFA automata. We say that they are equivalent if they
recognize the same language. And the main theorem that we will see in this lecture is that every
NFA has an equivalent DFA. This means that, even in the last lecture | mentioned this, it is
clear that a DFA can be viewed as an NFA. A DFA is already an NFA, where we do not make
use of the multiple outgoing, multiple arrows with the same symbol, we do not make use of the
€ transitions. So, a DFA is automatically an NFA.

But then this statement shows that for anything that an NFA can do, there is an equivalent DFA
for it. This means that DFAs and NFAs have the same power at least in terms of what languages
they can recognize. It is possible that a language recognized by an NFA, if you write the
equivalent DFA, will have way more states than what the NFA has. And maybe the DFA is
more complex than the NFA, but that is not the point here. The point is that anything that an
NFA can do a DFA can also do. But the resulting DFA may be more involved which is not

what we want to focus on, but this is something that | am just stating over here.

And the corollary is that since any NFA has an equivalent DFA, what it means is that the class
of languages that is recognized by NFAs is the same as the class of languages recognized by
DFAs and we already have a name for the class of languages recognized by the DFAs. The
name is regular languages. The thing that | want to say is that a language is regular if and only

if there is some NFA that recognizes it. So, this is a new characterization and alternate

characterization for regular languages. So far, we have been saying the language is regular, if
there is a DFA for it. Now we are saying that a language is regular if and only if there is some

NFA that recognizes it. So, notice both the directions of the statement if and only if.

If an NFA recognizes it, we can make a DFA that recognizes it so it is regular. If a language is
regular, there is a DFA that recognizes by the definition that we have already seen. And if there
is a DFA recognizing it, the DFA is automatically an NFA. So, if there is a language that is
regular there is an NFA for it and if there is a language that has an NFA by virtue of this
theorem, theorem 1.39 there is an equivalent DFA and hence it is regular. Notice how both
directions are taken care of by this. Now what remains which is not it is a bit long is a proof of

the theorem.

(Refer Slide Time: 05:03)

(il 140 K. s vl ol al

e kil bide adimaton (NFA) {%
= \k NPTEL
Pen (4 Magen 1.29)

o0k Rusp ik) sk | S paibe
sidky 0 PR eoll poully b

o G~ PRy

"’@7@73

S TR T\

NPTEL

So, what is the idea? We sort of saw the idea in the previous lecture, so the way we define the
transition function of an NFA was something like this. The definition of the transition function
was 6: Q X X, — P(Q). So here itself, the mapping goes to the power set of Q. So this is itself
a hint and we also try to keep track of the transitions of let us say of this particular NFA. So
we try to see which states it can go to. So maybe let us try to see what happens here when this
NFA sees the string, which is 0101.

So it starts with q: when it sees 0 it can only remain in gz, there is no other option. When it sees
1, there are three possibilities, it can take the self-loop to gz or it can go to g2 or it can go to g
and then take the e. And then let us say the next symbol is 0. So, if it was at qz, O gives you the
option to remain at q: and that is all. If it was at g2 there is this option of going to gs. If it is at

s, there is no next step available, so this path kind of ends here.

Now, let us say the next symbol was 0, let us say the next symbol was 1 again. So q: 1 there
are three options, we saw that in the second step g1, gz, and gs. And gs 1, there is only one
option which is to go to gs. This is where all the strings can be or where all the NFA can be

after reading the string 0O, then the string 01, then the string 010 and then the string 0101.

So, this we tried in the previous lecture as well. So now, the point here is what are we doing
here we are trying to see if the string can be accepted. And towards that end, we are trying to
see where all it can possibly go. And then we see that the string is indeed accepted because the
accepting state is gs. After reading 0101, there is one way. There is one way to reach this, the
accepting state, after reading this, which is like this. The highlighted path is an accepting path.
The first 0 you remain at gz, the next 1, you do go to gz, the next 0, you go to gz, and then the

last one you go to ga. So, this is an accepting computation path. 0101, is accepted by the NFA.

So, this is the idea that we try to do. Let us see how we will try to do this. What we will try to
do we will try to keep track of sets or the set of states where it could be. What we, | will try to
draw the same thing in a different way. So, upon starting, it can only be in g1 and so now | am
writing it as collections. So, when you see a 0 from @1, you can only be at g1, 0 will actually
take you to keep you at q:. If you see a 1 for instance, however you could go to qi, g2 or gz,
because 1 can take you to keep at q: or you can take you to gz or you can take you to you can

go to g2 and then take the € transition.

Now from qz, g2, g3 if you have 0. There are three states here so for each of them we have to

see. If you are at qu, if you see a 0 you can go to g:. From g2 if you see a 0 you can go to gz,

from gz if you see a O there is nowhere to go. So, there are only two next destinations possible.
If you see a 0, which means this arrow leads you to {q, qs}, the set containing g: and ga.
Suppose you see a 1 from gz, g2, g3, SO qq itself, if you see a 1, you can go to s, 2 Or g3 . O, if
you see a 1, there is no next step, gs if you see a 1, you can go to gs. So, if you see a 1 from
here, you could be in any of these four states.

So, the point | want to make here is that if you were in any of these three states, and if you see
a 0 the next time, you can only be in these two states, g1, g2, sorry, gz, gs. And if you are in qz,
02, g3, and then you see a 1, the next time you could be in any of these four states, q1, g2, g3 qa.
Like that, we can keep track of where all we can possibly be after that step. This is how we will
convert the non-deterministic computation into a deterministic computation. So, you try to keep
track, the set of all states that we can be at a after reading some part of the input, that is what

we try to do here.

And so, the starting state will be the set containing the starting state of the NFA, qi. Now, if
you see a 0 here, there is no other state you could go to. If you see a 1, the next state, you could
be at any of the three states qi, g2, or gz, which is what we have here. And like that, I could
write other states as well, so this is not a complete diagram. And then you accept if there is
some one of these, at least one of these states is an accepting state. So now you would accept
the string 11, because 11 takes you from the starting state. Maybe | will just denote it separately,
so this is the starting state g:. And 11 takes you to s, 02, g3, g4, out of which g4 is an accepting
state of the NFA. This means there is a way to reach g4 from g: upon seeing 11 in the NFA.

So, you would make this as an accepting state.

So maybe | will make it a double. The point is, you want to reach the accepting state of the
NFA at some point. This is the rough outline of the proof. Now what remains is to make this

more formal.

(Refer Slide Time: 13:39)

F O,

Purt Sl ot e v € Fauiding LK i%}

NPTEL

W=(@,2 850, 0) b B Ok, Seompuiying
Qe Wk QLMJ@ CW\M a DEN
hetagigung e tomt lunspant. oK notisggk
DEA he Me (812,000 7). !

—)

1

A I 1 R | —

L s wk 4R,
e i e it _
D ke W62, 148, 7). i {%}g}
)@ - Py -feleed

L Poas ik 4R,

G U tug

D) % = fad &

9 ¢ fecal Fnek . nerd
- {eeql rne 9]
A~
e K@ij

So, what we want to do, let us break this down in two parts. First, we assume that the NFA has
no e transitions. So, the NFA only has one of the flexibilities which is that there could be
multiple outgoing arrows, for the same state. So, some state is there, which has, let us say, one,
two outgoing arrows or three outgoing arrows with the same symbol. Now, this is only
flexibility, there is no e transitions. Now this isthe NFA, N = (Q, %, 8, q,, F). For that, we want
to show that there is an equivalent DFA, so we will construct a DFA, we will call it M. So M =
(Q',%,8,q,', F"). The alphabet is the same X, for everything else | am just adding prime or
dash totheto Q, 6, q, and F.

So now let us try to see what each of them is. We have already kind of seen the idea. Let us try

to formally write it down. 1) Q' is the set of states of the DFA. At each time we want to keep

track of where all you can possibly be. We have already seen that in the set of states in the
DFA, each state is a subset, a set of possible states of the NFA. So, the set of states of the DFA
is actually the P(Q), which is the set of all possible sets of states. In other words, it is called
the power set of Q. So, each state of the DFA is a subset of the states of the NFA. So, if the
NFA has, let us say 3 states, the resulting DFA will have 2 power 3 states because that is the

number of elements the power set contains.

¥ is the same, so there is nothing to say there. So, | will start with the simpler things. So qo, the
starting state of the DFA, is basically the set containing only the starting state of the NFA. You
may be tempted to say that q is actually equal to qo, but this is not correct, because qo is not
a state of the DFA. The states of the DFA are subsets of the set of all the NFA states. So, it is
the singleton set containing only the starting state of the NFA, so that is the starting state of

DFA. So qp, the starting set of the DFA is the set containing only qo.

Now, the next thing is the set of accepting states of the DFA. So, you want to accept a certain
string. You do some computation, let us say out of g1, g2, gs, g4, like the example about ga is
only accepting state. So now, if after reading a string, you can end at q: or g2, will you accept
that string? The answer is no, because neither of them is an accepting state. Suppose instead of
g1, g2, you also had g4, which means after reading that string you can end at three states, either
g1 Or g2 or g4, meaning there are valid computation paths that let you end at gz let you end at g2
and let you end at qa.

Now, will you accept this string? Of course, yes, because this means that there is a way to
compute/process the string ending at g4, which is an accepting state of the NFA. Since there is
one state which is an accepting state of the NFA, which is gs, you would consider this set to be
an accepting state. What | want to say here is that F' is a collection of states of the DFA, but
each state of the DFA is a subset of the states of the NFA. So let us consider one state, let us
say R € Q is a state of the DFA or is a subset of states of the NFA. Now, is this an accepting

state? So, it will be an accepting state of the DFA.

So let us say R is { q1,q2,q4}. IS it an accepting state? Yes, because it contains an accepting
state of the NFA. So, the way to say itis, 3 r € R suchthatr € F , where F is a set of accepting
states of the NFA. Another way to say the same thing is R is an accepting state of the DFA, so
R is a subset of the states of the NFA. We are saying that R contains an accepting state of the
NFA. Another way of saying this is with the intersection of R with the set of accepting states.

So, if you look at R and you look at F, there has to be at least one common state, or there has
to be some intersection between them. So R N F # ¢. So, this is another way to say it. R € Q
is the same as saying R € Q', because the members of Q' are the subsets of Q. So this is another

way of writing the set of accepting states, F'.

(Refer Slide Time: 20:45)
9 ¢ fecal ek pu nerd -~
- ng;z\ Rﬂiwﬁ S
\/\/\) NPTEL
ke ‘@

4,) g(r a) v KCQ sl
gy - faeal et | |

l
ef\w %ev. l
\
\
————|

b &
t($x.5],0)

e T TP ‘\3.%3
s el (—sg%a) \g(iq w%\)

Thiy Whay tor) o g Harsdinn tocests
& Wiz - To baudlt & Samnding | ot Akt

= 1) S

heR

The next thing is the it is probably the most involved of them all is a transition function §’. So
&', we have to define for a state of the DFA. We are considering R as a state of the DFA, so R
IS a subset of the set of all states of the NFA and the symbol a in the alphabet. This is what we
have to define, 6’ (R, a). Where R € Q, where Q is the set of all states of the NFA and a € X.
So maybe I will just give a brief example. So let us say | have g1, g2, 93 g4, 0, 1, 0, 0, let us say

for good measure there is another 0 here, now consider R to be this set containing q4, q,.

Now, in this case, what is §'({q1, q2}, 0) ? Upon seeing the input 0, if you are at qi, one option
is that you remain at g1, one option is you go to gz, another option is you go to gs. So you could
be at g1, g2 or gz. But if you are at gz, another option is to go to gs. So, §'({q4,9,},0) =
{41, 92, q3,q4}- There are four options available, one is to remain at gz, another is to go to gy,
another is to go to gg, another is to go to qs. What about 6’ ({q4, q.}, 1) ? If you are at g1, 1 does
not take you anywhere, if you are gz, 1 only takes you to gi. So, it is just a singleton set

containing q1. 6'({q1,92}, 1) = {q,}. This is how you define transitions.

So let us see how to more formally define it. 6’ (R, a). For each element of R, let us say r € R.

Now, you want to see where all can you go from r if you see the symbol a. In the NFA that is

given by 8(r, a). So 6(r, a) is the transition function of the NFA tells you where all you can

reach from r upon seeing a.

And then you have to do this for each r € R. In other words, | want to do the following,
6'(R,a) ={q €Q|q €6(r,a) forsomer € R}. Itisa setof all states of the NFA, which
can be reached from r, upon seeing a for some r € R. So, for some member of R, if a takes
you somewhere you include that. Another way to say the same thing is U,z 6(r, a). Consider

all 8(r, a) for some r, then you take the union over all the r € R.

So, this is the definition of §'. For each element of capital R, you see where all you can go
upon seeing a, and you take the union. This completes the definition of the DFA that is
equivalent to the NFA that we started with. So, we are not explaining or we are not formally
writing down the proof the construction itself is fairly explicit and it is fairly straightforward
to see that the construction takes you to an equivalent DFA.

(Refer Slide Time: 26:21)
e R
Sl

NPTEL

P Lol o o0 0 € Faiding L&
N- O\Iéu gﬁlo,‘:} "‘&m kax WM
e Vansguang. k- We ok % aeitiud < DFA
Moo B0 Gt Tt &kmw
DEA be M=(85, 808 F).
~

Q- P -$efeedd

- {eeq) R0 40] o
= @ 9

&) 107, vho R SR sdats.
ey =fyeal vt

bsont 4‘%9‘3 o -
= U Q[‘h,m\ @
LS g(g‘hv'ﬁlyo‘)

S . =— ';"g,o‘nﬁt.,%lfcvl;ﬂ
et = M) ()

- {4,
Thia Ty tor 1\ S 8 Ty tieept
& Wannding - T laudlt € Fanndions | b bkt

PLRY 1 o RER A winalidly ReC)

Now, notice that we made this assumption that suppose there were no € transitions. So now,

we have to somehow incorporate this into the proof. So let us see how to incorporate this. So,
one of the places where this has to be incorporated is the transition function. So here we said

that we go to all the states g which can be reached from any r € R, upon seeing a symbol a.

(Refer Slide Time: 27:20)
BRY I wo RER [iy ReQ)

&)
PO - (41§ un b seadal b X by wr
WMOV\W
b Yl | —

Nt Mk RCElRY.

3
©
¢
Boveed © slibins & ol g, 1 wéﬁ
M kg -

=2 Q‘(P\,w\—, QLA,,G Q\ 3 e

o el

But suppose, you reach a certain g. So r and then you see an a and you see you reach a q. Now,
suppose this is an e transition from q that is that s, now you can reach s also because from r
you see an a then you go to g, then you take the e transition and then you reach s. And suppose
there is another € transition from s and then you reach t, then we have to include that as well.

So basically, they are all states you can reach from g by just using € transitions. Suppose, there

is another e transition that is some other state even this has to be included. So, consider all the

states that you can reach just by using e transitions, all of this has to be included.

(Refer Slide Time: 28:17)

TN A R TR AL NG VAT YRR Y T

€ Hawbing T budll © Sansding, wt ikt %)
PLRY 1Aty RER [quinalinly 26) b4
PO - 414 o b seadad b X by
WMOV\W
b tauibin |
S
Ot ok RCEWD, 4
A .
Mol sdifon ¥ ol 40 ¥ oud 0

W kg - %

So, towards this end, we define what is called E (R). That is a notational definition. If you asked
me to name it something, | will call it the e closure of R, because this is the set of all the states
that you can reach from R by just using e transitions. You may not use € transition by using 0
or more e transitions. So, | am allowed to use 0 € transitions which means the states that are in

R are included by default.

So just to give a pictorial. Suppose, these are the states in R, these three other states in R. Now,
this is an e transition, this is a non e transition and suppose this is an € transition, so this is
something else, suppose this has no e transitions. Now, suppose this is R, maybe | would use

the same color again.

Suppose, this is R, then the set of states that you can reach from R by using e transitions R this
included, this included, this included, this included, so these are the states that you can reach.
Notice that this state over here, the one that | marked x cannot be reached from the top state in
R which | have marked as let us say y using e transitions, but however it can be reached from,

let us say, this one, the one that | am working z using € transitions.

Hence, hence x will be in the set E(R). So E(R) is the one that | have drawn with the red
outline. So, anything that you can reach from R using € transitions, when | say € transitions, it

could be no € transitions also. Because of which the set E(R) contains R by default, because I

have defined it as the set of all states that can be reached from capital R, using 0 or more e
transitions. So if I use 0, if I am only allowed 0 € transitions, | can only remain at R, if | want
to use one step of € or more steps, then I will include other things that you can reach. In this

figure, whatever | can reach e | have marked it. So, it depends on the case.

So now, this is the way to incorporate e transitions into the proof. Suppose there are €
transitions. So we have to include € transitions. One way to do it is to include them after each
transition. So, you try to see where all you can possibly go upon seeing a symbol, let us say a,
now if you see a symbol a where all can you possibly go? Let us say you got a collection of
states, which is given by §'(R, a). This is a set of states. Now from this set of states, perhaps

there are e transitions that take you to some other places now, we want to include that as well.

(Refer Slide Time: 32:16)

ReQ RO S4
g) (R whow R EQ wd n&e

ey - § 4e@ e bina) \

——

NPTEL

bsone, 02

= 1) $6w

heR Q(Q‘v--‘u@,o-)
= QLD..,%L,%E,%H

el > Q[‘H(m) %(iq,,@y,’%\)}

=19
T ik o I M e Bassinn et o
Em.% haud e Q/W,MLW

BIR) tA wo RER [ypinldly 2€Q)
PR - 4 § o b sendad bin X by ﬁ

LSS
TER R 1 P W S B, %
TSR O @ —

=

- Q‘R,w\'- Q»,e Q\ 3 E(&(nm\‘ & %D

me. et}
R @
hel
= 9 = &[fad). 6 (ene)

R0 tealng Qe g | b W posible
haach B iy 2@, fion Woall seads
Refwy.

£
¢
I X PR R W AT B,
ML tding -
S LR Sqe) ye BlEna)

. 2]

U G (8tsd)

hel

= Oy = E(ﬁ‘veﬂ £t

Y £ ARV VLY s VATV il \ 777

So how do we include that? One way to include is by, so §'(R, a). So for each r € R, earlier
we took all the states that are in 6(r, a). which is the set of states reachable from r € R using
the transition a. Now instead of §(r, a), now we are saying maybe | will use a different color
here. | am saying E(S(r, a)), similarly in the union definition, earlier, | just had U,¢g 8(r, @).
Now, from whichever states that you can reach from r using the transition a, we want to add

the other states that you can reach after the transition by just using e.

So if this is a set of states, let us say &(r, a), now let us see where all you can reach by just
using €’s. So we want to include this as well. So now, we draw a bigger circle, which is
basically the circle is E(8(r, a)) the set of states that you can reach from 8(r, a) by using e
transitions. §'(R,a) = U,eg E(8(r,a)). This takes care of all the transitions. After each
transition, we are seeing where all you can possibly be by using € transitions. So, this is the
transition function we have to modify, so instead of the four defined as the transition function

being defined as this, this is the actual definition.

And the other thing that we have to change is the starting state, because in the transition
function, we are accounting for the e transitions after we make the transition. So what if the
starting state had € transitions? If qo had let us say, one € transition, say g1, how to include that?
One way to include that is to instead of defining the starting state as just the set containing qo,
we can define the starting state as the e closure of the set containing go. So again, this is a new
thing, it is E({qy}). So these are the two changes that we need to make for taking the e

transitions into account.

So Q' is a set of all subsets of Q or P(Q). The starting state q; is E({q,}). The set of accepting
states of the of the DFA, F'is any subset of Q, which is the set of all states of the NFA, which
has an intersection with the set of accepting states of the NFA. The set of all R which have a
non-empty intersection with F, so R N F # ¢. And finally, the transition function is given by
this, 6'(R,a) = {q € Q| q € E(8(r,a)) for some r € R}. For each transition function from
a set R upon seeing a symbol a. So, you look at each r € R where all can you go upon seeing

a, so that is given by 6(r, a), it is a set of states.

Now, you take the € closure of it, meaning where all can you go after this by just using e
transitions. Now, you take the union over all the possible r € R, that is the transition function.
So, this completes the construction of the DFA that is equivalent to the NFA. The correctness
is fairly straightforward.

(Refer Slide Time: 37:18)

e '&w"};ﬁz oW, O
K
= U 9(}(9\,0\3} NPTEL

hek >

¢

> = BLiwt). e(/?tn,«) *

R readiag G g b N g possibly
Mk B ik 2@, fion W ol sendh

II Reflay.

Readl vuswle b wn o, b, fk o
Waahiobin | 40 tashidion it dho
Dasdl

locqdikia Frows o 0PN @

L\)L haay UF*‘A,MW%M wAL Q’lﬂ&\bilih&
o DPha. Bk o OFAy st paothl T D b

Hat oy |, Loty s, DFAs s, DR
~ae e g st

b v vadivas | ol 60 ypsmaded f
By tecopuig B Bug bugag.

Thagom 127" Buas NPA by an uanalind D

iy wigliay Hhak NP o oy o prsahd s

v

Jw,\&ﬂ; Buasig NP Loy MMWMJF&-: @

ﬂ‘% WQ«MMUW Nm%upm%&&a
DIZYe

e {1 Dt 1)

0B Risp ek, S e
sty NFA ol P""‘M‘gbl-"’\‘

UROO | ff MO 1 ST

IoPK . Ragp ek)t k& 8 poie ho'd
sty o NFA endd pwé%& b w

ol NI 8 AR AL))
"@T@T’
|)
a
0 9
LN
ﬁ’b 0 L \ X

If you read any string and the DFA reaches the states r1, r3, ri, S0 the DFA reaches a state rio.
This means that the NFA after reading the same string can reach exactly these three possible
states it could reach r1 in the NFA or rz in NFA or ryo in the NFA, these three states are the
exact states possible and this is an accepting state if either three of them or if any one of them
or some subset of them is an accepting state of the NFA. It is fairly clear by the construction
that if the non-deterministic finite automata, the NFA can reach three states ry, r, rio, then the

DFA by construction will reach the state containing exactly these three states.

So that is the main theorem that | want to state in this lecture. The point is that the computation
power of NFAs is equivalent to DFAs, meaning in terms of the languages that can be
recognized by the NFA it is the same as what can be recognized by the DFA. This is proved
by showing that every NFA has an equivalent DFA and that is the construction that we saw.
And the main idea is to build a DFA where each state of the DFA is a subset of the set of all
states of the NFA. One point is that this NFA has four states, the NFA in blue over here has
four states.

So, the equivalent DFA as per this construction will contain how many states? It will contain
as many states as the power set of this contains. The power set of a set of four elements contains
2* which is 16 states, 16 elements. The equivalent DFA will contain around 16 states, one for
each subset of this. This set of states could be the empty set, it could be the singleton sets, the
set containing two elements, it can be three elements and the set containing all the four states.

So that could be 24, which is 16 states and it can get a bit involved.

(Refer Slide Time: 39:46)

e

Readl vumnle L1 o, bl bk o g:%}
Wiiobion | 40 cuinction, i t dboe

Toy et To B laaeosg

F O
Thagem T2A Brasy NER Loy n unnslind DFK ﬁ,%}f

NPTEL

flix iagbias ik WFA, w ady o praafdl oy
DAL

(g 180 Koo & gl L by
1§t voddiminnfie Yuide audimaton (NFR)

Pl [} Nasn 129)

IDEk: Resp a1 sk 4 ot preble Wl
SW%MFKM?W%L.M.i / AN,

Maybe one thing that you can do is an example in the book, which is example 1.41. So, the
DFA that | have written below contains three states qi, 02, gz. g1 IS the starting state as well as
the lone accepting state and it is over the binary alphabet. If you see the alphabet is just a and
b and there is an empty transition e as well. For this state the in the Sipser book they construct
an equivalent DFA, and the equivalent DFA as you would expect contains 23, which is equal
to 8 states, but then the example of the book notices that some states are not really useful, so
they finally reduce.

So, the equivalent DFA contains 23 equal to 8 states this is what we can say without any actual
construction, but when you construct actually there are some unreachable states, some states

which are useless. So, as you can see in the example, they actually cut down two states because

it is not serving any purpose in the DFA, so it ends up being 6 states. So please go through the

example in the book.

And so that is all I wanted to say in this lecture, where we saw the main theorem which is that
every NFA has an equivalent DFA. Also, the implication is that this gives a new
characterization for regular languages which is that the regular languages are the class of
languages that have some NFA that recognizes it. So, the earlier definition was that a language
is regular if there is some DFA that recognizes it. Now | have a new definition. A language is
regular if there is some NFA that recognizes it. That is all | have for lecture 8. See you in lecture
9. Thank you.

