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Let us discuss another algorithm called a LINE, ok. This is another graph embedding
algorithm. And LINE stands for Large Scale Information Network Embedding. So, the, so I
am | am actually you know displaying the paper, the original paper of this method, ok. Just to
show you how you know things have been written, and how we can also you know read a

scientific paper.
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ABSTRACT 1. INTRODUCTION

Thi netwarks are ubiquitous in the real world with

578v1 [cs.l

Categories and Subject Descriptors
1.2.6 [Artificial Intelligence]: Learning

03.03

So, what is the claim here? The big claim is that most existing graph embedding methods do
not scale for real world information network which usually contain millions of nodes, ok. So,
this method is particularly designed for large network, ok. So, they proposed something
called “LINE”, which is suitable for arbitrary types of information network, be it undirected,

directed, weighted, unweighted and so on and so forth, ok.

So, here the idea is also same. The idea is the idea is very same as the one which was used in

hop.
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The idea is that, it is not always the case that two nodes are closer only when they are directly
connected, ok. It may also be the case that two nodes are closer, two nodes are similar if their

neighbors are also similar, ok.
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we make the following

be undirected, directed, and/or weighted.
should be placed closely i the low-dimension
are connected through a strong tie. Vertex
also be placed closely as they share similar neighbors. a fow hours on
To summ:

 We propose a novel network emb
N 2

words, the observed first-order proximity in the real world the “LINE,” which suits atbitrary
data is not sufficient for preserving the global network struc- networks and easily scales to milli
tures. As a complement, we explore the second-order prox- a carefully designed objective fun

imity en the vertices, which is not determined through both the first-order and second-or
the observed tie strength but through the shared neighbor-
hood structures of the vertices. The general notion of the
second-order proximity can be interpreted as nodes with
shared neighbors being likely to be sinular. Such an intu-
ition can be found in the theories of sociology and linguistics.
For example, “the degree of overlap of two people’s friend- o We conduct extensive ex

o We propase an edge-sampling algo
the objective, The algorithm tack
the classical stochastic gradient ¢
the effectiveness and efficiency of

eriments

They kind of you know motivated this thing, motivated their algorithm by you know
presenting kind of a dummy figure. This is the figure, ok. What they are saying is that node
say 6 and node 7, they are of course close, they are of course similar, because they are

directly connected, ok.
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But node 5 and node 6, they are also similar although they are not directly connected. Why
they are similar? Because they have common set of neighbors. 4 neighbors are shared by both
5 and 6, ok. So, this is called the first-order proximity. Because they are directly connected
within one hop. And this is called the second-order proximity because 5 and 6 are similar

with respect to two hops, right, with respect to two hops, right.
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ship networks correlates with the strength of ties between maticn networks. Experimental results prove the ef- ‘\4)
them,” in a social network d “You shall know a word fectiveness and efficiercy of the proposed LINE model. NPTEL
by the company it keeps” (Firth, J. R. 1957:11) in text cor-

Organization. The rest of this paper is organized

pora [3]. Indeed, people who share many common friends 3
are likely to share the same in and bocome friends, and  [0lows. Secton Blsummarizes the rlated work. Section 3

. i formally defines the problem of large-scale information nei-
wonds that are used togeter with many simiar words are 11l defnes the problem o largescale information ne
ek b hive il ar i asin: work embedding. Section [ introduces the LINE model in

details. Section[F]presents the experimental results. Finally

Fig, [T presents an illustrative example. As the weight of P
the edge between vertex 6 and 7 is large, e, 6 and 7 have a we concluds i Section
high first-order proxiniity, they should be represented clasely
o cach other in the embedded space. On the other hand, 2 RELATED WORK
though there is no link between v 5 and 6, they share Our work is related to classical methods of graph em-
many commen neighbors, i.c., they have a high second-order bedding or dimension reduction in gereral, such as multi-
proximity and therefore should also be represented closely o dimensional scaling (MDS) [1], IsoMap [‘zﬂ LLE [ﬁﬂ and
each other. We expect that the consideration of the second-  Laplacian Eigenmap [2 s approaches typically first
order proximity effectively complements the ity of the construet the affinit;
first-order proximity and better preserves the global stru data points, ¢.g., th hbor graph of data, and
tare of the network. In this paper, we will present care- then embed the a 2 into a low dimensional
fully designed obje that preserve the first-order and space. However, these algorithms usually rely on solving the
the second-order proximities. leading cigenvectors of the affinity matrices, the complexity

Even if a sound objective is found, optimizing it for a very of which s at least quadratic to the number of nodes, making
large network is challenging. One approach that attracts  them inefficient to handle large-scale networks
attention in recent years is using the stochastic gradient de- Amang the most recent literature is & technique called

g the feature vectors of the

scent for the optimization. However, we show that directly
deploying the stochastic gradient descent is problematic for
real world information networks. This is because in many
networks, edges are weighted and the weights usually prese
a high variance. Consider & word co-occurrence network, in
which the weights (co-occurrences) of word pairs may range
from one to hundreds of thousands. These weights of the
edges will be multiplied into the gradients, resulting in the

graph factcrization [[ 1t finds the low-dimensional embed-
ding of a large graph through matrix factorization, which is
optimi
ble because a graph can be represented
trix. However, the objective of matrix
designed for networks, therefore does not ne
serve the global network structure. Intuitively, graph fac-
torization expects nodes with higher first-order protimity

So, they carefully designed an optimization function which takes care of the first-order

proximity and second-order proximity in a systematic manner, ok.
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In Section) e empircally compare the proposed model
with these methods using various real world networks.

3. PROBLEM DEFINITION
We formally define the preblem of large-scale information

network embedding using firstorder and sccond-order prox-

imities. We first define an information network as follows

Do 1. (Tnformation Network) An informa-
tion network is defined as G = (V where V' is the set
of vertices, each representing a data object and E is the
set of edges between the vertices, each representing a re-
lationship between two data objects. Fach edge ¢ € E is
an ordered pair ¢ = (u,v) and is associated with a weight
w,y > 0, which indicates the strength of the relation. If G
is undirected, we have (u, v, u) and Wy, = we; ifG
i directed, we have (u,v) £ (v,u) and Wy, £ W

In practice, information networks can be either directed
(e, citation networks) or undirected (e, social network
of users in Facebook). The weights of the edges can be either
binary o take any real value. Note that while negative edge
weights are possible, in this study we only consider non-
negative weights. For example, in citation networks and
social networks, w,, takes binary values; in cc-occurrence
networks between different objects, w,, can take ary non-
negative value. The weights of the edges in some networks
may diverge as some objects co-oceur many times while oth-
ers may just co-oceur a few times.

information network into a low-dimensiona
soace i usefi! in a variety of annlications. To eonduct the

that always co-occur with the same se: of words tend to
‘have similar meanings. We therefore define the second-order
proximity, which complements the first-crder proximity and
preserves the network structure,

DEFNITION 4. (Second-onder Proaimity) The second-
order proximity between a pair of vertices (u,v) in a net-
work is the similarity between their neighborhood network
structures, Mathematically, let pu = (a1, iy jv() de-
note the first-order proximity of u with all the other vertic
then the second-order proximity between u and v is deter-
mined by the similarity between p, and p.. If no vert
linked from/to both u and v, the second-order pr
betveen u and v is 0.

We investigate both first-order and second-order proxim-
ity for network embedding, which is defined as follows.

Derimion 4. (Large-seale Information Network En
bedding) Given & large network G = (V,E), the problem
of Large-scale Information Network Embedding aims
to represent each vertex v € V into a low-dimensional space
R, ie., learning a function fg -V — RY, where d < |V
In the space ', both the first-order proxinity and the
second-order proximity between the vertices are preserved.

Next, weintroducea large-scale network embedding model
that preserves both first- and second-order proxinitics

4. LINE: LARGE-SCALE INFORMATION

NETWARK EMRENNING
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So, they started off by defining what is information network. Information network is basically
a graph V comma E, V is a set of vertices, E is the set of edges. And every edge small e is an
ordered pair u comma v, and is associated with an weight with a weight w, right, indicating
the strength of the relation u and v. And if it is undirected, then this is symmetric. If this is

directed, this is asymmetric, ok.

(Refer Slide Time: 03:54)

(e.., citation networks) or undirected (e.g, social network
of users in Facebook). The weights of the e can be either
lm]m\m take any real value, Note thet w \Inh negative edge

networss between iferen objects, o €
of the edges in some networks
occur many times while oth-

s,

Embedding an information network into a low-dimensional
space s seful in a variety of applica mnn\ To conduct the
embedding, the network stru
first intuition is that the log o
local pairwise proximity between the vertices, mus
served, We define the local network structires as the first-
order praximity between the vertices:

Deixirio 2. (First-onder Prozimity) The first-order
prosimity in & nety wise proinity be-
tween two vertices linked by an
edge (v,v), the veig aics the first-
order proximity between u and o is observed
between u and v, their first-order proxiity is 0.

The /n\hm! prosinity usually implies the similarity of

s in-
portance, many existing graph embedding algorithms such

bedding) Girven a large network G = (V, k), the problem
of Large-seale Information Network Embedding aims
each veriex v € V into a Jow-dimensional space

.0, learning a function fo : V = RY, where d < |V].
In the space R’, both the first-order proximity and the
second-order proximity between the vertices are preserved

Next, ve ntroducea large-s
that preserves both first- and second-order proximities.

cale network embedding model

4. LINE: LARGE-SCALE INFORMATION
NETWORK EMBEDDING

A desirable embedding model for real world information
iy several requircments: fist, it must

ctworks, say millions of vertices a
i candeal with networks with arbitary
hied. In this
iz model called
the “LINE," which satisfies all the three mp\m nents.

41 Model Description
We describe the LINE mode to pieserve the first-onder

proximity and second-order proximity separately, and then
introduce a simple way to combine the two progimity.
4.1.1 LINE with First-order Proximity

The first-order prosinity refers o the local pairwise prox-
imity between the vertices in the network. To model the,

NPTEL

Then, they suggested something called first-order proximity. What is first-order proximity?
The first-order proximity in a network is a local pairwise proximity between two vertices, ok.
For each pair of vertices linked by an edge u, v, the weight on that edge w uvm indicates the
first-order proximity between u and v, straightforward, ok. If no edge exists, then the

first-order proximity is 0.

So, what is second-order proximity? Second-order proximity between a pair of vertices u
comma Vv is a network in a network is the similarity between their neighborhood network

structures, right.
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DEFINITION 3. (Second-order Prozimity) The second- ¢
order proximity between a pair of vertices (u,v) in a net- 5 P < |
bortood netyork | V]
o - o (
imity {

then the second-order proximity between u and v is deter-
mined by the similarity between p, and p,. If no vertex is
Iinked from/to both u and v, the sccond-order proximity
between u and v is 0.

We investigate both firs-order and second-order prosin.- |
iy fo vetwork embedding, which s defined as fllows. | ) ’,/ 9

Deriiion 4. (Large-seale Iformation Network EnLC Y
tedding) Civen a larg:
of Lar

veVintoa low-
it g 2 tion fg : V = R
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value. Note that v
i this study wo only
example, in citation

akes binary valtes; in co-occurrence
rrent objer take any non-
cights of the edges in some networks
sjeets co-occur many times while oth-
1 few times.

nation network into a low-dimensional
jety of applications. To conduct the
k structures must be preserved. The
'he local network structure, ie., the
¥ between the vertices, must be pre-

Next, we introduce a large-seale network embedding model
that preserves both firsi- and second-order proximities.

4. LINE: LARGE-SCALE INFORMATION
NETWORK EMBEDDING
A desirable embedding model for real world information

networks must satisfy several requirements: first, it must
Fe ahle t nreserve hath the firdtander nrovimity and the

Mathematically, let p u be, p u denote the first-order proximity of u, right. You see that there
are mod v number of, so mod v is essentially N, right. Let p u be the first-order proximity of
u, right with the other vertices. Similarly, say for p u, you have a vector like this. For p v, you

have also a vector like this, right.

So, the second-order proximity between u and v is determined by the similarity between these
two, ok. This is essentially this one, right. This is essentially saying that this is a this is u and
this is v, ok. And p u consist of say this is A, B, C; A, B, C with some ways, right. It may not
be directly A, B, C, but say the weight between u A, u B and u C.

Similarly, for v you have p v which is the weight between A v, B v and C v, right. And then,
the second-order proximity between u and v is the similarity between p u and p v. Meaning
the similarity between the neighborhood structures, ok. So, and what is the goal? The goal is
to come up with an embedding, right. Embedding of vertices, so that you map every node to a
d dimensional space, where d is less than, less much much less than mod v, ok

low-dimensional space.
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0= 5 wyleapien) @ L3 Combining fstoder nd second-onler prox-
en inities

b the

Now, let us see how you how we, you know how we capture these two proximity measures,
ok. So, right. So, what is the idea? The idea is that every vertex say you have uiviand vj.
We would try to come up with an embedding which is denoted by say u i, right vector, right.
This is u j vector, right. This is these are the embedding of v 1, v j respectively which we

would try to come up with, right.

And the proximity the first-order proximity, so think about it, you have the graph, ok and you
are mapping it, mapping all the nodes to an embedding space, right. So, you have first-order
proximity with respect to the original graph, you have first-order proximity with respect to

the embedding space, right. So, let us say these are the embeddings.

So, what is the first-order proximity with respect to the embedding space? The first-order
proximity between v i and v j is defined in this way, right. This is essentially 1 by 1 plus e to
the power minus x sigmoid, right. Where, x is nothing but the dot product of these two

embeddings. So, higher the dot product higher the similarity, ok.

So, this is the first-order proximity on the embedding space, right. So, this is the; this is the
embedding. This is the this proximity is something that we are trying to learn, right.
Similarly, we have we can measure the proximity based on the graph structure, which would
be the original empirical proximity, right which is given to us. And how do we measure this?

So, this is this one.
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So, with respect to graph the proximity between two nodes v 1, v j is nothing, but first-order
proximity, meaning two nodes are connected. The weight between 1 and j, v i, v j divided by
the total weight, total weight of all the nodes, right. This is basically w equals to sum of all ij
in E, right, w 1j.

So, this is the empirical proximity which is known to us. Because the graph is known to us.
Proximity, this proximity is not known to us. Why? Because these embeddings are not known
to us, ok. So, what would be our target? Our target would be to come up with embeddings of i

and j, such that these two proximities are closer, ok.

So, how do we measure the closeness? So, now, think about it. So, for every node pair you
have the you have a value, for every ij pair you have value. So, we can get a distribution of
this learned proximity, right. So, this would be p of v i, v j. And this is some sort of CDF or

whatever PDF, right. Similarly, for empirical proximity, we have another distribution.

So, this two distribution should be close to each other. And how do we do that? How do we
measure the closeness between two distributions? We can use KL divergence for example,
right. So, we use the KL divergence, right between empirical proximity distribution and learn
proximity distribution, right. And if you are aware of this, so KL diversion between two
discrete as I said discrete distribution, right say X and Y, X and Y, log x 1, x 1, logxiy 1,
right.

Let me write it a fresh. So, KL divergence between this is discrete distribution i equals to 1 to
N, x 1 log of x 1 by y 1. In our case, x 1 is the empirical proximity, right p 1j, right a log of p 1
hatbyp 1,vivj,p 1 1ij, right.

849



(Refer Slide Time: 11:47)

NPTEL

ubining first-order and second-order pros-
ifes

b the

If you do the math, what you get here? If you do the math you will see that this is nothing,
but summation of; right. So, what you have? pip I 1, j hat, right logof p 1 1,j hatby p 11, ],
right.

The denominator is the learned one and the numerator is the empirical one. So, this is
essentially log, so log x by y is log x minus log y. So, this should be this minus this, ok. Look
at the first term. The first term all these numbers are constant, right because this part is
nothing, but v ij by w which is constant. This part is also constant. So, there is no point in

minimizing this. You can just ignore this part.

So, only second part will be there which is minus of this log this, right, ok. So, this is the; this
is the optimization, this is the objective function which we want to minimize, right with
respect to the first-order proximity. Now, let us look at the second-order proximity, right. So,
here also the idea is same. Second-order proximity, as I mentioned, it assumes that vertices
sharing many connections to other vertices are similar to each other, right. So, what they do

here? Think about it.
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NPTEL

the trivial solution. we can still utilize the negative sampling

So, when I say that this is u and this is v, these are common neighbors and these are
uncommon neighbors. So, when I look at u, this node, this node, this node, these nodes are
context, these node has the context of node u, right. So, this is the central node and these are

the context nodes.

When I look at this node, right this is the central node and this is the context node, right. So,
here also, every node plays dual role. You know one time it acts as a context, another time it

acts as a central node, right. So, the second-order proximity is this one.

So, given v 1, v 1 is the central node. Given v 1, what is the probability of encountering v j as a
center as a context node? Given V, what is the probability of obtaining this as a context node?

Ok. And how do we capture this? They basically use softmax kind of function; where.

So, as I mentioned already, so for every vertex v i, we have here we have two embeddings.
So, u i is the embedding when you use vertex v 1 as a central node and u 1 dash is an
embedding which you when you use v i as a context node. So, here you see that v 1 is the

central node and v j is the context node. So, what is the similarity?

So, similarity would be that basically dot product, you take the dot product, dot product of v i
as a central node and v j as a context node, u j dash, you see here dot product, right. And you
pass it through a kind of a softmax, right. Therefore, e to the power, e to the power x by

summation of e to the power x dash, x dash, all the remaining part, ok.
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So, this is the proximity. This is a second-order proximity, remember based on the
embedding. So, these things are not known to us. What is known to us is the empirical

proximity. So, this is the empirical proximity.

Empirical proximity that v i is the central node and v j is the context node is simply the
weight between 1 and j by, so remember this is conditional probability. So, it should not be
normalized by the weight, right by the total weight. It should be normalized by the degree of
v i, right. You are basically saying that I am fix, let us fix this one, let us let us look at all the

weighted degree and what is the probability that this weight is chosen, right. So, w i) by d 1.

Now, d 1 is the weighted degree remember this, ok. So, here also the same target, the target is
to minimize the distance between empirical distribution and the learned distribution using KL

divergence, ok. You see here.

So, these are the two objective functions that we are now optimizing, right. So, the remaining
part is very straightforward. So, what they are saying is that first-order proximity this one is

easy to optimize, right for a large graph.

But for a large graph this is difficult to optimize. Why? Because the denominator as you see
here this ranges over all the vertices. For every central node, you need to do this calculate this

denominator, right across all the vertices, and this is quadratic. It will take a lot of time.

What is the remedy? The remedy is negative sampling the one that we discussed in the last
lecture. So, what we do in the negative sampling is that we basically sample nodes from the
distribution of vertices, right distribution of nodes. And this sample nodes would act as

negative samples, would act as non-context samples, and then we feed it to this one.

And this is very straightforward, we have seen, I think this equation multiple times if you are
aware of say what to wake you know glove, these kind of methods in NLP and this is very

straight forward, ok. This is well-known, right. And then the rest of the part is same.
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sampling proposed in [13], which samples multple negative
dges according to some noisy distribution for cach edge
(i1f). More specifically,it secifes the following objective
furction

log(if" :..)YT:).IW( u‘,T i), /(
—/

whiete o(2) = 1/(1+exp(-1)) s the mlnuM [Hlltmm The
first term models the observed edges, the second term mod-
) els the negative edges drawn from the noise distribution vmd
K s the mumber of negative edges, We set Py(v) o d,
as propesed in (13}, where d, is the out-degree of vertex v,
For the objective function (7], there exists a trivial solu-
tion: uyy = o0, for n@ md k=1
the trivial solution, we can still utilize the negative sampling
by just changing @ to i]
We adopl. the asynchronous stochastic t algorithm
(ASGD) [I7] for optimizing Eqn. ). In each step, the
ASGD elgonithm samples a mini-baich of edges and then

@ asaspecific “context” and vertices with similar distributions

B over the “contexts” are assumed to be similar. Therefore,

each vertex plays two roles: the vertex itself and a specific

“context” of other vertices. We introduce two vectors , and

i, whete 7 is the ropresentation of v, when it Is treated

a5 4 vertex while 7 .\n..- representation of v, whe

o For each directed edg

we first define the p|w1h)\hl]ll\ of “context” v; gmvnmtl

vertex v, as:
N

treated as a spe

3

For each
conditional distribution
d. To avoid

network. As mentioned above, the second-onder proximity
assumes that vertices with similar distributions over the con-
texts are similar to each other. T the second-order
raximity stribution of
the contexts pa( ) specified by the low-dimensional rep-
resentation be close to the empirical distribution fu(-v:).
Therefore, we minimize the following objective function:

updates the model parameters. If an edge (i) is sampled,
the gradient w.r.t. the embedding vector i; of vertex i will
be caleulated as

0r= 3 Nd(a(vi). pa( ). ()
&

90 Dlogpalv;[vi)
bij - ——p=—— 8)
" i, @
Note that the gradient will be multiplied by the weight of
the edge. This will become problematic when the weights

is the dist

where d. ce between two distribuions. As
the imports ices in the network may be difer-
ant, we introduce X; in the cbjective function to represent

e of the ve

So, now, we have two objective functions O 1. So, this is O 1, this is O 1 and this is O 2 now
And then what we do? We take the gradient descent, right as usual with respect tou 1 and u
I, uiand u i dash, right. You update the, you update the this one you update the objective

function, right.
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nal edges and treat the sampled edges as bina
the sampling probebilitics proportional to the ariginal edge
weights. With this edge-sampling treatment, the overall ob-
jective function remains the same. The problem boils down
o how to sample the edges according to their weights.

Let (wn,aa,...,wig) denote the sequence of the
weights of the edges. One can simply calculate the sum of
the weights u S5 wj frst, and then to sample
random val the range of [0, 0,,,,] to see which e
ferval [0 w3, 5 ) the random value fall nto. This
approach takes O(|E|) time to draw a sample, which is costly
when the number of edges |E| is large. We use the alias table
to draw a sample according to the weights of the
h takes only O(1) time when repeatedly drawing
samples from the same discrete distribution.
pling an edge from the alias table takes constant time,

o

find that the number of steps used for optimi
ally proportional to the number of edges O(| ).

the overall time complexity of the LINE is O(dK | E|), which
is linear to the mumber of edges |E], and does not depend
on the number of vertices |V'|. The edge sampling treatment
improves the effectiveness of the stochastic gradient descent
without compromising the effc

4.3 Discussion

‘We discuss several practical issues of the
Low degree vertices. One practical issue
curately embed vertices with small degrees. As the mumber
of neighbors of such a node is very small, it is very hard
to accurately infer its representation, especially with the

INI

model,
how to ac-

3 EXPERIMENTS

We empirically evaluated the eflectiveness and efficiency
of the LINE. We applied the method to several large-scale
real-world networks of different types, including a language
network, two social networks, and two citation networks.

5.1 Experiment Setup

Data Sets.

(1) La NETWORK.
occurrence network from the entire set of English WIKIPEDIA
Words within every 5-word sliding window are con-
ch other. Words with

We constructed a word co-

dered to be co-occurring with
frequency smaller than 5 are fliered out. (2) SOCIAL NET-
WORKS. W osocial networks: FLICKR and YouTusif]
The FLICKR network is denser than the You?

(m same lnl\\nfkuh\lwlm]]up\\ul

o use

between authors an
network records the nuber of papers written by one anthor
and cited by another auther. The detailed statistics of these
netwarks are summarized into Table ] They represent a
ariety of information networks: directed and undirected,
binary and weighted. Each network contains at least half a
million vodes and millions o edges, with the largest network
containing around two million nodes and a billion edges.

lelmrn’ Algorithms.
ompare the LINE model with several existing graph
vm\wd( g methods that are able to scale up to very large
networks. We do not. compare with soi
amhadding aleovithme snch as TG Tankfars
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ggadient descent and is able to handle large networks
7 only applies to undirected networks,

DeepWalk (6], DeepWalk is an appronch recently
proposed for social vetwork embedding, vhich i
applicable for networks vith binary r cach
vertex, truncated random wi ing from the ver-
tex ave used to obiain the contextual information, and
therefore only cecond-onder proximity is utilized.

LINE-SGD. This i the L del introduced in Sec-

winu@ it opti . (3
directly with

. an.,
ent. With this
for model up

e divectly mulii-
proach: LIN
use firs!

vic gradient step, an
ity proportional to
for model upds
two variants: LINE(Ist) a

graph factorization, both LI
only apply to undirected
SGD(2ud) apply to both und

st+2nd): Toutilize both first-onder and second:

And then, you basically keep on updating the embedding vectors and then you stop when you
get the convergence, right, when you obtain the convergence. And they showed that I mean
with respect to methods like, with respect to methods like deep walk. Deep walk is something

that we will discuss in the next lecture, right a LINE with SGD, first-order SGD,

size win = 10, walk length £ = 40, walks per vertex y = 40
for DeepWal. Al the embedding vectors are finally nor-
malized by setting ||, = 1

5.2 Quantitative Results

5.2.1 Language Network

i

T
T kg
50T | w0

al.[12]. Given a word pair (a,b) and a vord c, the task aims
to find a word o

similar to the
b+ c:2. For

ir (“China’
ver should be

and a word

en the word o
e word d* whos

second-order SGD perform significantly better, right across different networks.

So, this is another method, method which basically looks at higher order proximity, right.
And all these methods hop, LINE, (Refer Time: 20:15) these are non-neural network based

methods, right.

In the next lecture, we will start with random work based approaches, and then we will move

to the neural network based approaches for graph embedding.

Thank you.
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