Social Network Analysis
Prof. Shivani Kumar
Department of Computer Science and Engineering
Indraprastha Institute of Information Technology, Delhi

Lecture - 05
Social Network Analysis Tutorial 2

Hi everyone, I am Shivani and today we will be diving into the world of network using
NetworkX. So, we already saw how to use Google Colab and how to use Python for some
basic data types and variable stuff. Today, we will be learning how can we use networks

inside Python since this is an social network analysis course.

(Refer Slide Time: 00:51)

" - Agenda

1. Introduction to Networkx

~ Networkx- Intro

+ Pythen fib
aph objects, generators and methods to create standarc graphs, etc:

vorkx in /usr/Local/1ib/pythen3. 7/dist-packages (2.5.3)

= ~ Different Graph classes available in Networkx

1. Graphs This class implements an undirected gragh. tignores multiple edges

The best way to get started with networks in Python is to use the library NetworkX. It is a
great library for beginners since it has a lot of modular functionalities available in it. So, as
said NetworkX is a Python library and the and some of the functionalities that it provides are
like the class for graph objects, some generation methods to create a new standard graph,
some interactive methods to read the graph object or write the current network into a graph

object.

Networkx also provides us with some basic drawing tools that can help visualize a network
efficiently. Among other things, so we will be covering just the basics and a few things of

NetworkX and the other things you can explore on your own definitely. Before we begin to

71



start working with NetworkX we must ensure that our system contains this library. To do so
we simply use the pip install statement with the library name that is NetworkX and see what

happens.

So, since we are working on google colab this library already comes pre installed, but if you

are working on your own PC you might want to install it using the pip install statement.

(Refer Slide Time: 02:33)

= +Cde +Tex

[28] retworkx a< nx

~ Different Graph cl lable in Networkx
(]

ents an undirected graph. It ignores muliple edges between twonads selticop edges betwezna

egradation in performa
4. MultDiGraph: A dires

@ - Addingnodes

s completedat 11:07AM

Now that we have the library with us, we can import it using the import functionality. We
write import networkx as nx. We are using the alias nx for the NetworkX library just because
it 1s easier to use, instead of always writing NetworkX completely we can simply write nx

whenever we want to refer to the library NetworkX.

We run this cell and we have imported the NetworkX library successfully talking about
graphs. So, NetworkX provides us with different graphs divided based on two prime factors,
first one being the directionality of the graph that is whether the graph is undirected or
directed and the second thing being whether the graph is a multigraph of or not.

So, a multigraph is basically a graph that can have more than one edges between a set of
node. That is if we have same a pair of nodes that is a and b we can have one edge with a
weight one and another edge with a weight two between the same pair in a multigraph
setting. Based on these two factors that is of directionality and of multigraph we can have

four types of graph which NetworkX provides us in a class format.

72



So, first type is simply graph that is an undirected graph that ignores a multi edge even if we
try to define one. The second type is a digraph that is the directed version of the graph, here
also the multi edges are ignored. The third type of graph is a multigraph which is an
undirected graph, but here multi edges are considered that is we can have more than one edge

between a single pair of node.

Lastly, we have the multidigraph that is a directed graph which also has the multi edges
capability. We can define these graphs by calling the function of the NetworkX library. So,
since we have imported NetworkX as nx we can write nx dot Graph followed by parenthesis

to define an object of the graph of the class graph this object is captured in the variable G.

In a similar manner we can define digraph multigraph or multidigraph according to our
requirement or the application that we are working on. We run this and then lastly as can be
seen here our graph is a multidigraph and if we print this G we should see that it is a

multidigraph which is empty right now. That is it has 0 nodes and 0 edges.

Since this function call of a class only creates a an empty graph. Now, in order to move
further and to explore more functionalities of NetworkX, let us define the most basic

undirected graph using the nx dot Graph function.

(Refer Slide Time: 06:22)

& C i o

:(- A GettingStarted.jpynb %%
File untime

~ Adding edges
05 completedat11:10AM

We run this and now we have the most simple undirected graph which is empty right now that

is with 0 nodes and 0 edges. Now we need to add nodes to this graph because what will we

73



do with an empty graph. So, there are multiple ways to add nodes to a graph. The first way is
when we can add a single node one at a time to do that we simply call this add node function
and provide it with the value for the node, that is here we want a node to be identified by the

integer 1.

So, we say G dot add node 1. So, here 1 is can be considered like the name of the node. So,
here we are providing with an integer, but NetworkX accepts any kind of hashable input as a
node. So, here we could have also given a string for instance as the node value. We run this
and we see that initially when the while the graph was empty now after we have added a node
1 we can see that this graph now contains 1 nodes, but 0 edges since we have not yet added

any edges to the graph.

We can also add multiple nodes at a same time by using the sequence data types. We can use
the function called add nodes from and then pass it the any sequence which can be a tuple or
here we are using a list. So, we simply write G that is our graph and then we write add nodes

from and then to this function we give the input the list.

Now, we see the graph and we see that the graph now has 5 nodes. That is the first node that
was already added before and the 4 new nodes that we have added just now using the add
nodes from function. Now this graph has 5 nodes with 0 edges since we have not added any

edges yet.

We can add an edge by using this add edge function, but an interesting thing to note here is
that, if we add an edge between two such nodes that are non-existent in the graph. Here we

can see that we have nodes from 1 till 5, but the nodes 6 and 7 are not present in the graph.

74



(Refer Slide Time: 09:26)

ax 50 @m.;.‘ 3

Rommet 2 swe W g

araph with

~ Adding nodes

®. Adding edges
05 completedat1170AM

But we call the add edge function between these two nodes 6 and 7. So, what NetworkX will
do is that it will automatically add these two nodes 6 and 7 to the graph and then we will add
an edge between two nodes. So, let us see the output of the cell to confirm whether this is

what actually happens or not.

(Refer Slide Time: 09:51)

05 completedat 11:14AM

We run this and we see now that the graph has 7 nodes with 1 edge. So, earlier it had 5 nodes
and now we have added 2 more nodes making it a total of 7 nodes and also we added an

edge, so we have a single edge here. Now apart from this way of adding edge we can also add

75



edge in another ways. For instance we can add one single edge at a time by using this
function called add edge that adds an edge between existing pair of nodes as well as new

nodes. So, here we are providing it with an existing set of nodes.

So, the first value is the source node while the second value is the target node. So, here since
G is an undirected graph the source and target node values might not matter much, but
suppose if G would have been a directed graph then the direction of the edge would have
been from 1 to 2. So, we add this edge and then again print G and we see that now G has two

edges instead of the value 1 that was earlier.

Instead of adding 1 edge at a time we can also add edges from a sequence, just like we added
nodes from a sequence. So, like nodes we can use the function called add edges from. So, if
you remember for nodes we use the function add nodes from, in the for the edges part we will

use the function add edges from.

We have this graph object G we call this function add edges from we provide it with a
sequence of tuples. Now, each of this tuple in the sequence represents a pair of source and
target nodes. So, this statement basically adds 2 edges between the nodes 2 and 3 and the
nodes 3 and 4. So, now, where will when we will print G we can we would see that it has 7
nodes, but 4 edges because we are adding 2 new edges in this particular cells, as expected we

are getting 7 nodes and 4 edges.

Now, each edge can also contain some attributes to them for example, we might want a
weighted graph. So, we might want to add the attribute weight to the edges. Now what we do
here is that we add another edge using the add edge function and provide it with the source
and target nodes along with the attribute. For example, here we have the attribute weight with

the value of the attribute that is 2 here.

So, this attribute can be anything. For example, in the next sentence in the next code
statement, we again use the add edge function we provide it with the source and target nodes
and provide it with an attribute called friends and set the value of this attribute as true. So, for

instance it can be signifying that the nodes 5 and 6 are connected and they are also friends.

So, instead of just having 1 attribute per edge NetworkX also provides us with the
functionality of having multiple attributes over a single edge. As can be seen in this statement

we call this add edge functions between the source node 7 and 1, that is we are adding an

76



edge between 7 and 1 with 2 attributes to it. First one being the weight that with the value 2
and another one, being the attribute friends with the value false. We add these three edges

with different attributes to them and then we print the graph G.

(Refer Slide Time: 14:36)

U5 completedat 11:17AM

We see that this graph has 7 nodes with 7 edges. So, as we have seen above in the node in the
adding node section, we can also add edges between non-existent nodes. That is for example,
here we are adding in the edge between the nodes 8 and 9 which are not yet part of the
network. But after we will call this function these 2 nodes will become part of the network as

well as the edge between these 2 nodes will be incorporated in our network.

We run this and we see that the count of nodes has increased by 2 and the count of edges has

increased by 1.

77



(Refer Slide Time: 15:21)

:(- A GettingStarted.jpynb %%

File Edit Vi

rtveBa@n

~ Removing nodes and edges

U5 completedat11:17AM

Now, we can access the different attributes and different aspects of a graph in a very efficient
way using NetworkX. For example, here let us look at each statement one at a time. The first
statement that is G 1 basically prints the adjacency list of the node 1. So, if we just; if we just
run this particular code snippet of G 1, we will see that we are getting the adjacency list
something like this. So, for the node 1 we have the neighbour 2, but the edge between the

node 1 and the node 2 has no attributes.

So, the value for the node 2 is coming out to be empty whereas, node 1 also has a neighbour 7
which has and the edge between 1 and 7 has 2 attributes that is weight and friends with the

value 2 and false. So, that is also shown here.

78



(Refer Slide Time: 16:44)

€

:(- A GettingStarted.jpynb %%
File 0

ryeB/ET

o
~ Removing nodes and edges
=

U5 completedat1123AM

Now what we can also do is that we can access a particular edge, separately using an
indexing such as like this. G 7 that is for the 7th node and 1 that is the edge between 7 and 1.
So, whatever attributes are on that edge that will be printed using this print statement. So, we

have this we have 2 edges 2 attributes on this edge that is weights and friends.

So, NetworkX also provides us with various different iterables like nodes and edges which
helps us to get a list of all the nodes and edges that are a part of the network, that we have
defined. So, here as we have seen that we have 9 nodes and 8 edges. So, these function that is

G dot nodes and G dot edges should give us a list.

So, for example, the first function G dot nodes it should give us the list of nine nodes with the
name of each node, here the name being the integer assigned to it. And then G dot edges
should give us a list of tuples of all the existing edges in the network. So, once we will run

this it will become more clear.

We run it and we see that as expected G dot nodes is giving us a list of all the nodes that are
present in the network. Whereas, G dot edges is giving us a list of tuples such that each tuple
represents the source and target node between which an edge is present in our graph. Now,
what we can also do is that we can see that what all data does these edges contain that is the
different attributes of each edge present in our network. So, if we run this G dot edges dot
data function we will get this kind of an output, that is it is a list of a triplet. So, basically it is

a list of tuple, but each tuple contains 3 values.

79



The first one represents the source node, the second one represents the target node of the edge
whereas, the third element represents the attribute of the edge that is present between the
source node and the target node. So, as can be seen between the edge 1 between the nodes 1
and 2 the edge has no attributes, but between the edge 1 and 7 the edge has 2 attributes of
weights and friend and that is shown by this G dot edges dot data function.

We can also access a particular attribute of all the edges by simply writing G dot edges dot
data and inside the data function we provide the name of the attribute for which we want the
information. So, for example, here we may want the information of the attribute weight for all

the edges that are present in the graph.

In order to do that we write G that is our graph, followed by the function edges followed by
the value data and inside this data function we pass the attribute name that is the weight. We
run this and we see that between whichever edges we have the weight attribute that attributes

value is shown here.

So, we had the weight attribute between the edge 1 and 7 and the edge 4 5 with the value of
two both. Whereas, we did not have any weight attribute for the edge 1 2,23,34,56,67
and 8 9 and therefore, the value for the attribute is showing to be none. We can also directly
access the value of this attribute between a particular edge by calling the edge and then

calling its particular attribute.

So, for example, here we are we are we want to access the attribute weight between the edge
that is present between the nodes 7 and 1. So, we write G dot edges and in bracket we write 7
1 because that is the pair of nodes that we want to access and then the name of the attribute
that is weight. We will run it and we see that the value is coming out to be 2 as expected
because the value of the attribute weight between these two pair of nodes between the edge of

this node is 2. Now, just as we added the nodes in the network.

80



(Refer Slide Time: 22:19)

o A GettingStarted.jpynb
S
File Edi Inser! Runtie Tools Help

~ Removing nodes and edges

fa5]

Graph with 7 nodes and 7 edges

~ Drawing

ORY- T I
I

s completedat 1125AM

We can also remove nodes from the network. To do that a very similar function to addition is
used that is when we added you remember, we used add node function to remove we simply
used the remove node function. We to remove 1 node at a time we use the remove node

function and provided with the value of the node that we want to remove.

We can also remove a list of nodes directly from the graph by using the remove nodes from
function and providing it with a list of node that we want to remove. Here we are removing
both of these nodes separately one by one at a time and then we are printing G. So, earlier we
had G the graph with 9 nodes and 8 edges and now if we remove these 2 nodes let us see

what happens.

So, 2 nodes are removed and also the corresponding edge that was present between these 2
nodes that is also removed. So, we are left with a graph with 7 nodes and 7 edges we print
this. So, we have already printed this graph, but now we there can also be a case that we do

not want to remove the nodes, but we might want to remove the edges between the nodes.

To do that we can change this function from remove node to remove edge followed by a tuple
of the source and target nodes, between which we want the edge to be removed. Now, moving
ahead to the drawing part of it that is. So, visualization is extremely important in networks,
we want to see the type of network that we have in order to assess some of the attributes of

the graph.

81



So, NetworkX provides us with a various different functions to visualize a network, here we
use the draw function of the NetworkX library. If we use the draw function in the default
manner we simply have to write nx that is the NetworkX the alias with which we have
imported the library, dot draw and we should pass the graph that we want to draw in this

function. So, nx dot draw in an parentheses we have passed g to it.

(Refer Slide Time: 25:06)

We run this cell and we see that we have such kind of a graph with us, that is 7 nodes with 7
edges. Here you can see the node colors the edge colors the node sizes these are all taking the
default values. So, we might say that while we are able to understand the structure of the
network the there are some information that is still unclear in the network. For example, the

name of the nodes.

So, NetworkX very nicely provides us with some customization ability to this nx dot draw
module. So, apart from just passing the graph as it is to the draw function we can also pass
the position that is the type of layout we want. So, for example, here you can see these edges

are crossing into each other, but we might want to see it in a circular layout.

So, we pass this nx dot circular layout function that is already present in our NetworkX
library, which gives us the position for each node to be drawn on the plot based on a circular
layout. We pass the node colors that we want, so instead of blue we might want it them to be

red. The edge colors can also be changed, so here we just pass the value blue here.

82



Then we want that each node is also shown with a label, that is the name of the nodes. So, we
pass this value of with labels as true which is by default set as false. Then we increase the
size of nodes a bit and we change the node shape from circle to a square. So, to do that we

pass the value s to the attribute node shape.

Also just to find it a bit aesthetically pleasing we change the, we lower the value of alpha. So,
what alpha does is it sets the transparency level of the node and edges. So, if it is less than 1
the nodes and edges will be a bit more transparent. And then the style that is the style of the
edges, so if we have provided with double hyphen the style of the edges would be in a dashed

mannecr.

(Refer Slide Time: 27:48)

0s completedat 1126AM

So, we can see here if we run the cell.

83



(Refer Slide Time: 27:50)

So, it is the same graph, but if we look here it the structure and the information is more
clearly visible in this particular graph. So, we can see that each node has the name that is the
labels on them then the edges type is dashed the node are square and of a red color and a bit
transparent also. Apart from these attributes that we provided in this function NetworkX
provides us with various other attributes as well. And definitely many more functions are also

available in NetworkX.

We encourage you to look at the documentation of the NetworkX library which is very
beautifully written and provided on the internet. And in the next class we will dwell deeper
into the NetworkX library and we will see more about the algorithms, that we can access

from this library.

Thank you.

84



