
Social Network Analysis
Prof. Tanmoy Chakraborty

Department of Computer Science and Engineering
Indraprastha Institute of Information Technology, Delhi

Chapter - 06
Lecture - 03

Let us see some of the link prediction methods that we generally use although the methods

that we are going to talk about here. These are generally used as baselines right for link

predictions, but these are useful to understand ok.

(Refer Slide Time: 00:38)

So, if you look at the taxonomy of link prediction methods right you can see that mostly they

are divided into this three categories.

The first one is heuristic based models where we essentially take some heuristics about the

node attributes and you know the connection properties and then based on the heuristics set

of heuristics we predict whether this link exists or not right. We will in this lecture we will

discuss some heuristics based on local similarity local similarity measurement and some

metrics based on global similarity measurement.

In fact, there are also a few metrics which fall in between those are called you know quasi

semi quasi similar metric right quasi local similarity metric ok. So, the second category is
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probabilistic models where in which we basically try to measure the probability of

appearance of a particular edge right it can be supervised it can also be unsupervised.

For example this hierarchical random graph model that we did that we will discuss, here that

is more of an unsupervised approach whereas, supervised random walk is a supervised link

prediction approach that we will discuss. And we will skip this one this is more of a

information theoretic model where we look at entropy based models and see whether mutual

information based you know entropy based models can be useful for link prediction tasks.

(Refer Slide Time: 02:21)

So, let us start with the you know metrics which are generally used to capture different

heuristics ok. So, generally the similarity between nodes can be derived using a combinations

of different properties it can be a combination of node level properties edge label properties

as well as node and edge and metadata in related properties.

For example say right say node level structural properties include say degree clustering

coefficient this kind of you know features. Whereas metadata of a node for example, in case

of social network you can fetch the location information of a user or job or say you know say

gender or some other interest political inclination and so on these are basically metadata

related properties that we often use.
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And as I mentioned we will look at three types of such metrics; one is called local heuristics,

the second one is global heuristics and in between these two we have quasi local semi local

kind of heuristics ok alright.

(Refer Slide Time: 03:46)

So, local heuristics let us consider a graph an undirected graph G V comma E and there are

say three nodes x y z these three nodes belong to V at the current of course, at the current

time instance and. Let us assume that x and z are connected y and z are connected, but x and

y are not connected. So, how do we decide that whether x and y will be connected in the

future ok.

So, we will discuss this metrics, we will discuss something called common neighborhood

metric common neighborhood similarity metric. Jaccard coefficient preferential attachment,

Adamic Adar salton index, hub promotion index right and so on and so forth.

So, these are some of the examples example metrics that we will discuss today ok.
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(Refer Slide Time: 04:36)

So, the simplest one is the common neighborhood similarity.

It basically says that given two nodes x and y which are not connected. Let us look at the

common neighbors ok x’s neighbors and y’s neighbors and the more this common

neighborhood set the higher the similarity between x and y.

In this case here you see that A and C they are not connected, so this broken edge this does

not exist. But A has node F, node B, node D, node E as neighbors node C has F E and D as

neighbours. Therefore, the intersection of the neighbors of A and C would be 3 the size

would be 3, so the similarity would be 3 ok.

So, this is the simplest measurement and in the matrix formulation if you think of if you take

adjacency matrix A, essentially you are looking at the second of distance right. How many

such paths how many such paths are there between A and C of size 2 right? So, this is one

path ok, this is one path and this is one path.

So, essentially and how do we how do we measure the number of paths of size 2 of length 2?

We just multiply a with itself a square. Now the similarity between x and y is basically the

entry of x and y the x and x th and y th entry of a square matrix ok. So, this is common

neighborhood the next one is Jaccard similarity.
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(Refer Slide Time: 06:26)

And so the problem in common neighborhood is that say for example, A has a lot of

neighbors lot of neighbors and C has only one neighbor right. So therefore, automatically

when we take the intersection right the intersection and say let us assume that the that is C’s

neighbor is also A’s neighbor right. Say this is C and say and this is A right there is one

common neighbour, but A has a lot of other neighbors.

So, automatically if you did the intersection it would be one right. So, you are, but A and C

are not similar right. So but you are not penalizing the fact that A has a lot of degree right

which lot of neighbors which are not common for C right. So, this matrix should be

normalized ok, now Jaccard similarity is basically a normalized common neighborhood

similarity in which the numerator is same, basically intersection of two neighbors and the

denominator is the union of two neighbours.

Now when we take the union you basically penalize the fact that a node has a lot of neighbors

and the other node has very few neighbors ok. Say in this case if you see node A has node A

has four neighbors right, node B has three neighbors right intersection is three union is four

therefore 0.75.

But if you take that example that I given that I have given earlier this one say this is C this is

A and let us say there is a common neighbor x, but A has say 50 other neighbors ok. So,

intersection would be one and the union would be what the size of the union would be would

be 51, so 50 neighbors here and this one 51 ok 1 by 51 which is much much lesser right.
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So, this is Jaccard index and then we say that ok right these two nodes are similar, then you

basically rank all the node pairs based on Jaccard similarity and you return top five highly

similar node pairs right and you say that ok you know this five pairs will be connected right

in the future.

(Refer Slide Time: 09:18)

So, let us look at some other metrics. So, one is called Salton index ok, what is Salton index?

Salton index is, so Salton index between x and y is neighbors of x right intersection neighbor

of y ok and you take the cardinality of this and square root of k x k sub x and k sub y k sub x

is a degree of x and k sub y is a degree of y. This is again another way of normalizing the

common neighborhood right.

So, numerator is same as the Jaccard coefficient right the denominator is different here the

denominator is essentially the degree right you are also considering. So, in the in case of

Jaccard coefficient the denominator was the size of the union right and when you take union

you basically do not duplicate do not count the common neighbors two times ok common

neighbors are counted one times right, but if you take the degree common neighbors are also

connected two times.

So, in order in order to reduce the effect because it may happen that there are many common

neighbors and you are counting this common neighbors double times right. So, you take the

square root, so the effect will reduce ok; so this is Salton index.
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Similarly there is another metrics , so these are look. So, I mean you can also come up with

your own way you can say that look I will not take square root I will take write 1 by 3 ok or 1

by 4 does not matter right. It depends on the application and depending on that depending on

the application you can think of your own ways. So, the other one is called Sorensen index

ok, now these names are these names are coming from the inventor of this metrics ok.

So, this is S x y is two times intersection of this one ok essentially you are taking the

intersection and then you are normalizing it by the average degree of x and y x and x plus y

by 2 right, this is called Sorensen index ok. So now, let us look at another interesting metric

called hub depressed index ok hub depressed index ok HDI.

So, this HDI between x and y is neighborhood of x intersection neighborhood of y, you see

that this numerator is common almost same right for all the cases only the denominator

changes. And then you have max here we are not taking the average here we are taking the

max.

So, this is called you know hub you know hub depressed index and similarly another metric

called let me write these two metrics side by side hub promotion index, hub promoted index

promoted index ok HPI. So, S of HPI x y is intersection of neighbors of x and y divided by

mean of k x and k y what does it mean ok what does it mean, so ok. So, let us look at this

denominators carefully ok.

So, this is called hub promoted index meaning that if x is connected to a node y which is a

hub, so hub will promote you ok. So, let us say sorry I mean x and y are not connected ok.

So, you are trying to understand whether x and y will be connected or not. So, if x is a x I

mean if we are measuring right the similarity between x and y and one of them is hub. So, if

one of them is hub then its degree would be huge right say y is hub.

So, x y would be much greater than x of x because it is a k of x because it is a hub. So

therefore, when you take the minimum of this always the other node which is not hub that

will be considered here in the denominator. So, in other ways hub basically promotes the

other node to use its own degree. So, you will basically be better off if you are if you are

surrounded by hubs.

Similarly, this is the other one is called hub depressed because we are taking max right. So, if

you are surrounded by hubs the hubs degree will be dominated. So, hub the hubs degree will
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dominate this metric right and because you are you are taking max. So, so k of y will be

considered here right.

So, this would be high ok your degree would not play any role. So now, these are some of the

metrics which are which we use in not only link prediction (Refer Time: 15:37) also for I

mean in general simulated measurement ok.

(Refer Slide Time: 15:42)

So, the next one is called preferential attachment, now preferential attachment is something

that we already discussed in the network growth model chapter right. So, here the idea is that

the philosophy behind preferential attachment is that two nodes are connected to due to I

mean a node will get connected to a node based on its degree right.

So, it is highly likely that the degree both the degree would play an important role right. So,

likelihood of a node x to obtain an a new edge is proportional to k x this is called preferential

attachment. Therefore the preferential attachment score between two randomly selected

nodes x and y is just the multiplication of the degrees k x times k y ok.

So, this is the very simple idea and this kind of matrix this has a lot of applications in

different you know to quantify different functional significance of links, subject to various

say you know node based dynamics such as percolation right propagation synchronization

transportation and so on and so forth.
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(Refer Slide Time: 17:12)

So, now let us look at a very important metric ok, but before that let me you know discuss

another metric which people generally use. Leicht Holme Newman index right LHN ok.

This is kind of similar intersection of the neighbors, but the denominator is k x times k y we

have taken we have seen average max mean now multiplication ok alright. So, now, let us

look at a very important metric right, now this is this has been used as a baseline for quite

some time although it was proposed long time back. This is called Adamic Adar distance or

Adamic Adar similarity right and two researchers Lada Adamic and Adar, so they proposed

this metric.

So, Adamic Adar distance between two nodes x and y is sum over we look at the common

neighbors ok. You see here gamma x intersection gamma y right common neighbors and z is

one such common neighbor and we take 1 by log of k z what is the intuition behind this ok,

let us try to understand.

So, let us say A and B ok and they have common friends two common neighbors C and D.

So, C you see that C has a lot of degree alright C is connected to many nodes whereas, D is

connected to only A and B ok. It means that C is more D is more dedicated to A and B

compared to C.
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So, any information if it comes to C right if it comes to C the likelihood that C will pass that

information to B say right, say an information moves from A to C the likelihood that C will

pass the information to B its is lower than the same for D ok.

So, we basically penalize those nodes those common neighbors which have a high degree ok.

In this particular case you see, C will be penalized because C is not dedicated to A and B

whereas, D is dedicated ok. So, the metric basically says that we take the sum the intersection

of the neighbors of x and y and z is one such common neighbour, we take 1 by k z, k z is a

degree of z.

So, higher the degree lower the importance because we take 1 by x k z right of course, we can

take log because we want to dampen the effect, so we take the log ok. In fact, there is another

metric called resource allocation index same as Adamic Adar, but here they do not take the

logarithm of the degree they just take the degree ok.

Now this is a very interesting idea ok. You are basically saying that it is good to be connected

with less nodes less to be connected with less number of nodes which are common neighbors

which have less degree compared to the case where you are connected to a lot of nodes, but

the common neighbors have higher degree ok.

(Refer Slide Time: 21:31)

So, Salton index hub promotion hub depressed we have already discussed.
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(Refer Slide Time: 21:37)

Let us look at the global heuristics. So, these are local heuristics the metric that we have

discussed so far. In the local heuristics we only look at the neighbors and based on that we

judge right. Now global heuristics with is with respect to the entire graph ok the first one is

Katz centrality sorry Katz score right and this Katz score is motivated by the Katz centrality

that we discussed earlier ok.

So, the Katz score between x and y is forget about this part right is the number of number of

paths of length p ok and we take all paths all possible paths of all possible lengths. Say you

have length 1, length 2, length 3, length 4, length 5 right and between x and y there are two

paths of length 1 three paths of length 2.

Remember there can be there can be multiple shortest path between a pair of nodes ok. So,

you have two shortest paths of length 1 I mean of course, let us not you know let us not use

the term shortest path here. You have two paths of length 1, three paths of length 2, one path

of length 3, two paths of length 4 and two paths of length 5 ok. We basically sum them up ok,

but we also penalize the paths having higher length ok which is controlled by alpha say alpha

is point say alpha is 0.5.

So, you penalize this in this way. So, the component the contribution of this part would be 0.5

to the power 1 times 2 plus this would be 0.5 to the power 2 times 3. Now this 1 is the length

2 is the length this would be so plus 0.5 to the power 3 times 1 this would be 0.5 to the power
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4 times 2 and this would be 0.5 to the power 5 into 2 right. So, as you move further right you

see the contribution will also decrease.

So, this is 0.5 times 2, this is 0.25 times 2 3, this is 0.125 times 3. So, although you may have

more number of shortest path more number of paths say 3 2 whatever, but the contribution

will decrease because now you multiply it by 0.25 then 0.125 and so on. This is exactly same

as the Katz centrality that we discussed, but here we take the pair of nodes right and this

alpha is a damping factor same as the Katz centrality ok.

(Refer Slide Time: 24:55)

The next one is called hitting time, what is hitting time? So, hitting time before understanding

this again is based on the this random surfing behavior right random walk process. So, you

start your random surfing from a node x right you basically move to a neighbor of x again

you just choose one of the neighbors uniformly at random and then you move there again

from that node you choose another node uniformly at random again the neighbors one of the

neighbors and then you move there.

So, hitting time between x and y is the expected number of steps a random walker needs for a

needs to move from x to y. So, why do I say that expected number of steps because this is a

random walk process and depending upon your trials the path length will change right.

So, you basically repeat these experiments again and again and you take the expectation of

this and that would be your hitting time and we take the negative minus why because we

557



want that higher the hitting time. So, lower the hitting time better would be right better would

be the similarity or higher would be the similarity.

So, lower the hitting time higher the similarity between x and y therefore, we take the minus

because if we take the minus then higher I mean then we can say that you know higher the

negative of hitting time higher the similarity right. So, higher the better, so the in order to

satisfy this we basically do this thing.

So, sometimes what happens is that you know this measurement with the hitting time this is

not normalized ok if this is not normalized what I mean you basically want to make this thing

between zero to one. So, what you do you multiply this with the stationary distribution that

we obtained from the PageRank hope you remember what is PageRank.

You basically repeat because PageRank always guarantees that this would be this would be

the stationary distribution the stationary distribution the sum would be 1 and each would be

between 0 to 1. So, we basically multiply this quantity with the stationary distribution of I

mean the value of x from the stationary distribution of the PageRank process ok.

(Refer Slide Time: 27:54)

The next one is commute time.

So, here idea again the idea is same, but here we look at both the things. So, in the hitting

time we start from x and see when the random walk will hit random walker will hit y right
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here you start from x and you measure the hitting time to reach y you also start from y and

you measure the hitting time to reach x right.

So, HT xy, HT yx you take the sum and that is your commute time ok and of course, you take

the negative the same due to the same reason. And if you want to make it normalized you

multiply it by the stationary distribution of x and y in the PageRank process ok.

(Refer Slide Time: 28:46)

So, this is pretty much about the local heuristics that we use local and global heuristics that

we use for link prediction ok. For essentially for you know measuring the similarity between

two nodes.

But if you remember with the in the link analysis chapter we also discussed measures like

SimRank PathSim right. So, SimRank PathSim those are also used for measuring the

similarity between two nodes right SimRank was SimRank in SimRank if you remember, it

was basically based on the idea that how similar the neighbors of your nodes of the given pair

of nodes right.

In case of PathSim we look at the heterogeneous graph and then we look at the meta path and

we look at number of meta paths of certain types and so on and so forth. So, those matrix can

also be used for link prediction ok. So, we stop here we will discuss this algorithm in the next

lecture ok.

Thank you.
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