### Social Network Analysis Prof. Shivani Kumar Department of Computer Science and Engineering Indraprastha Institute of Information Technology, Delhi

### Lecture - 26 Tutorial - 4

Hello everyone. Welcome back to the tutorial of Social Network Analysis. So, we have already seen different attributes of network x and how we can use it to analyze the graph and maybe we for some basic visualization of the network; however, network x is provides us with very limited options for visualization. And for a network to be understand understood fully and to be analyzed fully, we might need to visualize it in a more better and interactive manner.

In order to do that, there are various softwares that are present to be downloaded or online, both in the free and the open source domain. One such software that we will discuss in the tutorial today is called Gephi.

### (Refer Slide Time: 01:15)



So, Gephi is basically an open source software, which can be downloaded for Windows, Mac or even Linux. And it can be used to visualize as well as do some basic analysis of the network. So, you can download Gephi.

### (Refer Slide Time: 01:32)



From this Gephi dot org website and it is as I already mentioned it is available for Windows, Mac and Linux. And after you have downloaded it just install it in your systems and then we are good to go. Now, since this software is already present in my system. I will just tell you what to do after that is it is installed.

So, we already saw network x right. So, now, whatever graph that we create in network x. We can save it in a format that is suitable for the Gephi software. So, the format it can be graph m l also it can be g e x f. So, network x it provides us with a bridge in order to save a graph in a suitable manner.

So, that we can open this graph in the Gephi software and visualize or analyze it further. So, we again we as done in the previous tutorial. We will take this karate club graph the sample graph and we will just write this graph in the dot g e x f format file. So, in order to do that, we

simply call the right dot g e x f function of the network x library and we run this step. So, now our karate club graph has been written in this in this particular file. Now, how to access this file in Google collaborator?.

(Refer Slide Time: 03:13)



We just open, this files tab here and we see that the graph that we have just written is present here as a file. We go to the options of this and we download this file for us. So, here we have the file. Now, the next step would be to open this file in the Gephi software. So, we open the Gephi software and when we will open it.

### (Refer Slide Time: 03:45)



You will see a screen like this. Here we have some different options like, we can either create a new project from scratch where we will be creating a graph and the edges and the nodes in the Gephi software itself. We can open a graph file that is something that we will be doing. And also it provides that with some already present different samples graph, just to play around and get to know the software well.

# (Refer Slide Time: 04:19)



(Refer Slide Time: 04:30)

| Overview 📃 Data Laboratory 📃 | Preview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| view Settings X 69 Preview X | N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Procets                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ttings Manage renderers      | import report X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                              | Source: KanateClub.gent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                              | Issues Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                              | Nodes Issues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                              | GEXF version 1.2 (deprecated) INFO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                              | Production Distances of the second seco |
|                              | t of Noder 34 Annualization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                              | # of Edges: 78 Append to existing workspace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                              | Dynamic Grapte no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                              | Dynamic Attributes: no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                              | Multi Graph: no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                              | OK Carel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| view ratio: 0                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

We will open the graph file that we have downloaded. That is the karate club dot g e x f file. We will open this file. And we see that we are shown with some information of the network. That is there are total of 34 nodes, that are present in the network and the number of edges are 78 and the graph type is undirected, that we want.

So, we simply look at these components we see that they are good to go and we press on ok. So, that a graph based on these nodes and edges can be initialized. (Refer Slide Time: 04:58)

| Overview                                              | e néw la      | Data Labora | w Hel | р<br>ПГ    |
|-------------------------------------------------------|---------------|-------------|-------|------------|
| (11111111111                                          | 777           |             | Ī     |            |
| Workspace 1 ×                                         |               |             |       |            |
| $\operatorname{Preview}\operatorname{Settings}\times$ |               |             |       | 60 Preview |
| 🖌 Presets                                             |               |             |       |            |
| Default                                               |               | ~           |       |            |
|                                                       |               |             |       |            |
| Settings Manage                                       | renderers     |             |       |            |
| V Nodes                                               |               |             |       |            |
| Border Width                                          | 1.0           |             |       |            |
| Border Color                                          | custom (0,0   | (0          |       |            |
| Opacity<br>Des Marda Opacita                          | 100.0         |             |       |            |
| <ul> <li>Node Labels</li> </ul>                       |               |             |       |            |
| Show Labels                                           |               |             |       |            |
| Font                                                  | Arial 12 Plai | n _         |       |            |
| Proportional size                                     | 2             |             |       |            |
| Color                                                 | custom (0,0   | .0) 🛄       |       |            |
| Shorten label                                         |               |             |       |            |
| Max characters                                        | 30            |             |       |            |
| Outline size                                          | custom [25]   |             |       |            |
| Outline opacity                                       | 80.0          |             |       |            |
| Box                                                   |               |             |       |            |
| Box color                                             | parent        |             |       |            |
| Box opacity                                           |               |             |       |            |
| V Edges                                               | 2             |             |       |            |
| Thickness                                             | 1.0           |             |       |            |
| Rescale weight                                        |               |             |       |            |
| Min. rescaled weight                                  | 0.1           |             |       |            |
| Max rescaled weight                                   | 1.0           |             |       |            |
| Color                                                 | mixed         |             |       |            |
| Opacity                                               | 100.0         |             |       |            |
| Preview ratio: 100%                                   |               |             |       |            |
| -                                                     | •             | Refresh     |       |            |
| Export SVG/PDF/PNG                                    | 5             |             |       | 🗌 Backg    |

(Refer Slide Time: 05:02)



After pressing on ok, I am going in this overview tab. We can see that here a graph is coming which basically has 34 nodes and 78 edges as described in the in this right hand side top box and, but; however, right now this graph although we can understand some structure of it, but still the overall structure might not be as clear as we might want. So, we might want to change the layout of the graph a bit. We can do that in Gephi by going into this tab here at the bottom left corner.

### (Refer Slide Time: 05:44)



And selecting a layout out of all the different options of layout that we have. So, we select this Force Atlas layout. So, in this layout basically each of the node and the edges they are governed by some physics property that we define here. That is the repulsion strength between 2 nodes, should be around 200 that is the strength that the 2 nodes repel each other or are visualized away from each other on the on our screen right. So, and similarly we have the attraction strength and other different at different properties of the nodes. Now, based on this layout we run this layout on our graph.

### (Refer Slide Time: 06:32)



And we see that now our graph looks something like this, but it somehow became even difficult to understand correct. So, we might want to increase this repulsion strength, because we can see that these nodes they are very much close together and we want it to be spread apart. So, that we can we are able to visualize the structure of the graph.

# (Refer Slide Time: 07:03)



(Refer Slide Time: 07:27)



So, we just we will just increase this repulsion strength by maybe a factor of you know 10. So, we just here we increase it. Or maybe we can change the layout altogether. We will do the, we can use this layout that is Fruchterman Reingold, which will basically change this layout into a circular fashion. So, we run this, we reset our graph. And we can see here that the layout that we have now is basically in a structure in a circular manner where each node is like it is a some distance apart.

# (Refer Slide Time: 07:48)



(Refer Slide Time: 08:01)



Right, now, another thing that we can do here is that we can rank these nodes somehow. So, before going into the ranking function of it, as you can see when I hover my mouse over a particular node. The one half neighbor of that node are highlighted right. And I can also click and drag this node to wherever I want, right like this.

#### (Refer Slide Time: 08:39)



And I again this run this force atlas maybe and we can see that now the graph looks something like this. We will change this value of repulsion strength and then run it again. And we can see that now the graph like the all the nodes they are spread apart a bit more and now the graph looks something like this right.

Now, another thing here that we can do in Gephi is called Ranking, that is. We can change the color and the size of the nodes and edges, based on the different properties of the nodes and edges. So, we go in this Ranking tab here at the top left corner of our screen.

### (Refer Slide Time: 09:29)



And, we select an attribute that we want to consider for a Ranking. So, here we select the degree attribute, right. And then we are shown some the you know the scale of colors or the palette of colors that we want.

So, a lower degree node would be colored closer to White whereas, a higher degree node would be colored dark Green. So, we apply this ranking to our graph and we see that the higher degree nodes they are colored on the darker side of the Green whereas, the lower degree nodes they are colored on the Whiter side right. We can also change this color palette by like either of the two ways.

### (Refer Slide Time: 10:18)



We can either select a default color palette by going here. For example, let us select this and apply we have this higher degree node with value Blue the middle ones with White and the lower ones with Red or we can select a particular this triangle that is present here. We can select this triangle and choose from any of these colors. So, for example, we might want this to be Blue, we select Blue.

# (Refer Slide Time: 10:37)



(Refer Slide Time: 10:46)



And we apply and we can see that the corresponding degree values they have changed to the said color. Then apart from the just the color of the nodes, we can also modify the sizes of the node just like if you remember we did in the last tutorials with the network x draw functions here also we can modify the size of the node, based on the on the value of different attributes.

# (Refer Slide Time: 11:12)



(Refer Slide Time: 11:18)



So, we were here in the Ranking tab of the color of the color property of the node. We will just go to one right hand side and select the size attribute of the node and again go to the Ranking module and then we will select an attribute by which we want to change the size of the node that is degree here.

# (Refer Slide Time: 11:43)



(Refer Slide Time: 11:54)



And we select the minimum and maximum size. So, right now the minimum maximum size are small. So, we can see that by applying it and we see that the size is quite small. So, we just increase the size by maybe a value of 10. So, now, the minimum size is 10 and the maximum is 40. We apply this and we see that the higher the degree of a node the larger that node appears in our graph.

Now, again these nodes they can also like we can do one more thing that is we can show the labels or the ids of the nodes on them right. So, in order to do that we just click here. That is show node labels and these ids of the node that they are shown here right. We can change the size of these labels or an interesting thing that we can do, is that we can change the size of each node, based on the size of the node. That is the label size would be bigger for a node that has that is bigger in size.

# (Refer Slide Time: 12:25)



(Refer Slide Time: 12:40)



So, we change this and we see that like 0, 33, 33, 32 they are coming to be big with big node labels. Whereas, the smaller nodes smaller degree node that is 11, 16, 26 they are coming to be smaller with smaller node labels. We can also select what kind of labels we want to show here by going to this option here.

### (Refer Slide Time: 13:19)



So, each node it basically has three labels right now. That is an i d of the node, the label of the node that is already shown and the club to which it belong. So, here in the karate club graph, basically each node belongs to one of the two club that is present in the network. So, probably we also want to see the club to which the node belongs, we select that or we want to see the club here.

# (Refer Slide Time: 13:49)



# (Refer Slide Time: 14:00)



(Refer Slide Time: 14:09)



(Refer Slide Time: 14:11)



We can also change the different attribute that you want to be shown for the edges also. But right now let us just stick to the nodes. So, we select the value of club also and we click on ok. And for each club for each node we are also shown the club. So, we might want the label to not be there in just the club we press ok.

And then we can see that these two higher degree nodes, they belong to two different clubs. This one for officer and we can see that most of its neighbor also belongs to the club officer. This one to mister hi and we can see that most of the neighbors of this node also belongs to mister hi with just one belonging to officer right.

Then the other thing other very interesting thing that can be done in Gephi software is to analyze the graph in different fashion. So, in order to do that we just go to the statistics tab at the right hand side of our screen.

#### (Refer Slide Time: 14:58)



We see here the tab statistics we go here and we can see that Gephi provides us with a lot of possible statistics that can be counted for the graph.

So, first thing is just to calculate the average degree of the of all the nodes that are present in the graph into calculate this we need to run this algorithm here. And we are shown with a degree distribution. So, the average degree is coming out to be 4.588 and this is the degree distribution that we have. That is the degree 0, comes sorry the degree 1 comes for one node only.

Then the degree 2, comes for 11 nodes. Then 3 and 4 both comes from 6 number of nodes. Then 5 comes from 3 and so on. We get this degree distribution as well as the average degree of the of our network.

We can save this report, we can copy this report or we can print this report, we close this report right now and here we can see that this algorithm is run. We can also calculate the average weighted degree, but since this is an undirected unweighted graph. The weight for each edge and each node is one. So, the weighted degree is same to a as the average degree.

(Refer Slide Time: 16:16)



Then we can also calculate the network diameter. Now, basically the diameter as already discussed it is the longest shortest path. So, to in order to calculate the diameter we need to visit the distance between the path between all the nodes that are present. So, while we are doing that while we are visiting the path between all possible pair of nodes. So, Gephi while doing that also calculates different centrality measure that is the Betweenness Centrality, Closeness Centrality and Eccentricity.

### (Refer Slide Time: 16:54)



Since it is already visiting the path between each node. So, there are just some of the like some of the options that we can provide that is either we want to normalize centrality between 0 and 1 and 1 and the graph is directed or undirected. So, for a directed graph, we can select the option of undirected here where we consider the graph as undirected for the calculation of the diameter.

But since we have the undirected graph we just have this option available for us. We press ok.

### (Refer Slide Time: 17:37)



And we see that the diameter of the of our network is 5 that is the longest shortest distance is 5. And the betweenness centrality distribution is coming out to be something like this that is the value from 0 to maybe like 20 or 30 is coming out of or 1 and so on right.

# (Refer Slide Time: 18:03)



(Refer Slide Time: 18:05)

| Overview                | Data Laboratory | - F        | Preview             |                                      |       | Ų                                         |             |
|-------------------------|-----------------|------------|---------------------|--------------------------------------|-------|-------------------------------------------|-------------|
| Workspace 1 ×           |                 |            |                     |                                      |       | ^                                         | NIDTE       |
| Appearance ×            | _               | Graph ×    |                     |                                      |       | $\leftrightarrow$ $\vee$ Context $\times$ | INPIE       |
| Nodes Edges             | Ф 🔂 <u>А</u> т  | S Dragging | (Conte HTML Report  |                                      | ×     | Nodes: 34                                 |             |
| hique Ranking           |                 | k          | 1.0                 |                                      |       | Edges: 78                                 |             |
| Degree                  | v               |            | 0.5                 |                                      |       | Undirected Graph                          |             |
|                         |                 | 0          | 0.0                 |                                      |       |                                           |             |
| ain size: 10 V          | Max size: 40 V  | 1          |                     | 0 1<br>Value                         |       | Filters Statistics ×                      |             |
|                         |                 | 1          | _                   |                                      |       | Settings                                  |             |
|                         |                 |            | Harmon              | ic Closeness Centrality Distribution |       | R Network Overview                        |             |
|                         |                 | 29         | 5.0                 |                                      |       | Average Degree                            | 4588 Run @  |
| sine 🍸 🕘                |                 | 1          | 15                  |                                      |       |                                           |             |
|                         | m P Apply       | 1          | 4.2                 |                                      |       | Avg. Weighted Degree                      | 4.588 Run 🕲 |
| ayout ×                 | -               | শ          | 4.0                 |                                      |       | Network Diameter                          | 5 Run 🙂     |
| Force Atlas             | ~               | 0          | 3.5                 |                                      |       | Graph Density                             | Run @       |
| a                       | B Run           |            | ± 3.0               |                                      |       | HITS                                      | Run @       |
| + Force Atlas           | P 141           |            | B 2.5               | ₽                                    |       | DeseDarch                                 | 0.0         |
| nertia                  | 0.1             |            | 2.0                 |                                      |       | ragenatik                                 | MAL 0       |
| Repulsion strength      | 2000.0          |            |                     |                                      |       | Connected Components                      | Run ©       |
| Attraction strength     | 10.0            |            | 1.5                 |                                      |       | C Community Detection                     |             |
| Askimum displacement    | 10.0            |            | 1.0                 |                                      |       | e community occcum                        |             |
| kuto stabilize function |                 |            | 0.5                 |                                      |       | Modularity                                | Run ©       |
| lutostab Strength       | 80.0            |            | 0.5                 |                                      |       | Statistical Inference                     | Run ©       |
| Autostab sensibility    | 0.2             |            | 0.0                 |                                      |       |                                           |             |
| iravity                 | 30.0            |            |                     | 0                                    |       | Node Overview                             |             |
| Attraction Distrib.     |                 | 0          |                     | Makin                                |       | Avg. Clustering Coefficient               | Run 🗇       |
| Adjust by Sizes         |                 | 2          | A Dist De Corr Star |                                      | Close |                                           |             |
| ipeed                   | 1.0             |            | Contraction in the  |                                      |       | Eigenvector Centrality                    | Nun ©       |
| orce Atlas              | 0               | <u>.</u>   |                     |                                      |       | Edge Overview                             |             |
|                         |                 | A.         |                     |                                      |       | Avg. Path Length                          | 2,408 Run 🕫 |
|                         |                 | 0.00.1     |                     |                                      |       | . Dynamic                                 |             |
| Presets., Reset         |                 | A 182 .    |                     | A. V. Vulai Polot 25                 |       | a Noder                                   | Day 10      |

(Refer Slide Time: 18:07)

| Overview                | Data Laboratory | - E        | heview                   |                           |                                |                              |               |                             | X M         |
|-------------------------|-----------------|------------|--------------------------|---------------------------|--------------------------------|------------------------------|---------------|-----------------------------|-------------|
| Workspace 1 ×           |                 |            |                          |                           |                                |                              |               | ~                           | NIDTE       |
| Appearance ×            | _               | Graph ×    |                          |                           |                                |                              |               | <⇒ < Context ×              | NTIE        |
| Nodes Edges             | Ф А т           | S Dragging | (Cont                    |                           |                                |                              | ×             | Nodes: 34                   |             |
| Inique Ranking          |                 | k          |                          |                           | Value                          |                              |               | Edges: 78                   |             |
| Degree                  | v               |            |                          | Eccentri                  | icity Distributic              | n .                          |               | Undirected Graph            |             |
| Vin size: 10 0          | Maxize: 40 C    | <b>a</b>   |                          | Locent                    | city Distributio               |                              | _             |                             |             |
|                         |                 | 17         | 16                       |                           |                                |                              |               | Filters Statistics ×        |             |
|                         |                 | 1          | 14                       |                           |                                |                              |               | Settings                    |             |
|                         |                 | 8          | .1                       |                           |                                |                              |               | Network Overview            |             |
|                         |                 | -          | 12                       |                           |                                |                              |               | Average Degree              | 4.588 Run 🙂 |
| buer 1 6                | m Acoly         | 1          | # <sup>10</sup>          |                           |                                |                              |               | Avg. Weighted Degree        | 4.588 Run 👁 |
| avout ×                 |                 | ×          | ang s                    |                           |                                |                              |               | Network Diameter            | 5 Run 👁     |
|                         |                 | 0          | Ű,                       |                           |                                |                              |               | Couch Describe              |             |
| Force Atlas             | Ý               |            |                          |                           |                                |                              |               | Graph Density               | Mun 0       |
| 0                       | 👂 Run           |            | 4                        |                           |                                |                              |               | HITS                        | ณิต ⊚       |
| V Force Atlas           |                 |            |                          |                           |                                |                              |               | PapeRank                    | Run @       |
| nertia                  | 0.1             |            |                          |                           |                                |                              |               |                             |             |
| Repulsion strength      | 2000.0          |            | 0                        |                           |                                |                              |               | Connected Components        | Run 🔍       |
| Attraction strength     | 10.0            |            | 2                        | 2                         | 4                              | é.                           | 4             | Community Detection         |             |
| Maximum displacement    | 10.0            |            |                          |                           | Value                          |                              |               | Modularity                  | Day 10      |
| Auto stabilize function |                 |            |                          |                           | , and c                        |                              |               | mounting                    | MAL U       |
| Autostab Strength       | 80.0            |            |                          |                           |                                |                              |               | Statistical Inference       | Run @       |
| Autostab sensibility    | 0.2             |            | Algorithm:               |                           |                                |                              |               | C Node Complete             |             |
| oravity                 | 300             |            |                          |                           |                                |                              |               | Hode Overview               |             |
| Attraction District.    |                 | ß          | Ulink Brandes, A hosters | Algorithm for Behweenness | Centrolity, in Journal of Matt | iematical sociology 25(2)(16 | d-1/7, (2001) | Avg. Clustering Coefficient | Run 🙂       |
| Speed                   | 1.0             |            | 🚔 Print 📴 Copy           | Save                      |                                |                              | Close         | Eigenvector Centrality      | Run ©       |
| Force Atlas             | 0               | <u>.</u>   |                          |                           |                                |                              |               | Edge Overview               |             |
|                         |                 | A.         |                          |                           |                                |                              |               | Avg. Path Length            | 2.408 Run 🕫 |
|                         |                 | 1.0 m 1    |                          |                           |                                |                              |               | · Dynamic                   |             |
| Presets., Reset         |                 | 7 Hz -     | 🗶 🗈 🔯 🗶 🗕 🚽              | A. A. Aria                | Bold, 32                       | al a                         |               |                             |             |

Then we have this closeness centrality distribution. And the harmonic closeness centrality distribution. And the eccentricity distribution. Sorry, we close it and apart from diameter and the weighted degree and the average weighted degree we can also calculate the density and the other importance measure like hits or page rank.

So, density is again calculated using this density algorithm by running this algorithm since it is an undirected graph we can select this undirected option here. And we see that the density that is the number of actual edges that are present in the network divided by the possible number of edges that can be present in the network.

# (Refer Slide Time: 18:31)



(Refer Slide Time: 18:36)

| Overview                | Data Laboratory | Previe          | w                                  | \$  | U                        | Y XI         |
|-------------------------|-----------------|-----------------|------------------------------------|-----|--------------------------|--------------|
| Workspace 1 ×           |                 |                 |                                    |     |                          | NINTI        |
| Appearance ×            | _               | Graph ×         |                                    | O.v | Context ×                | NPIE         |
| Nodes Edges             |                 | B Dragging (Con | HTML Report                        | ×   | Nodes: 34                |              |
| hique Ranking           |                 | k               | Granh Density Report               |     | Edges: 78                |              |
| Degree                  | ~               | 0               | Graph Density Report               |     | Undirected Graph         |              |
|                         |                 |                 |                                    |     |                          |              |
| Jin size: 10 0 1        | Aax size: 40 ♀  | 3               | Parameters:                        |     | Filters Destiniter M     |              |
|                         |                 | 1               | Network Interpretation: undirected |     | Files Salsus A           |              |
|                         |                 | -<br>           |                                    |     | Settings                 |              |
|                         |                 | *               | Results:                           |     | Network Overview         |              |
|                         |                 |                 | Decise 0.120                       |     | Average Degree           | 4.588 Run 0  |
| pine_ Y 🕘               | n h trolu       | 5               | Density: 0.139                     |     | Aug Wajakted Dearre      | 4500 Dun /   |
|                         | - P 1001        | ~               |                                    |     | My. Neglicu Degree       | 4.300 Mail 4 |
| ayout ×                 | -               | 4               |                                    |     | Network Diameter         | 5 Run (      |
| Force Atlas             | ~               | 0               |                                    |     | Graph Density            | 0.139 Run 0  |
| 0                       | P Run           |                 |                                    |     | HITS                     | Run (        |
| Force Atlas             |                 |                 |                                    |     | PapeRatk                 | Run (        |
| inertia                 | 0.1             |                 |                                    |     |                          |              |
| lepulsion strength      | 2000.0          |                 |                                    |     | Connected Components     | Run          |
| Attraction strength     | 10.0            |                 |                                    |     | Community Detection      |              |
| Assimum displacement    | 100             |                 |                                    |     | Modularity               | Run (        |
| Auto stabilize lunction | 00.0            |                 |                                    |     |                          |              |
| Autostab solengut       | 0.2             |                 |                                    |     | Statistical Inference    | Run          |
| Seaulty                 | 30.0            |                 |                                    |     | R Node Overview          |              |
| Attraction Distrib      | 0               |                 |                                    |     | ton Contraine Configurat | 0.0          |
| Ediest by Sizes         | ă 👘             | ß               |                                    |     | wg. custering coemcient  | MUN (        |
| ipeed                   | 1.0             |                 | A Print Do Copy Save               | ose | Eigenvector Centrality   | Run (        |
| Force Atlas             | 0               | <u>A</u>        |                                    |     | Edge Overview            |              |
|                         |                 | A               |                                    |     | Avg. Path Length         | 2.408 Run 0  |
|                         |                 |                 |                                    |     | Dynamic                  |              |
| Presets., Reset         |                 | 7 🖬 · 🔳         | A' A' Anal Bold, 32                | ÷   |                          |              |

(Refer Slide Time: 19:03)

| Overview                     | Data Laboratory | Pr           | eien                                                                                                                                                                                                               |                             | K M         |
|------------------------------|-----------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------|
| Workspace 1 ×                |                 |              |                                                                                                                                                                                                                    |                             | NIDTE       |
| Appearance ×                 | -               | Graph ×      |                                                                                                                                                                                                                    | ✓ Context ×                 | NTIL        |
| Nodes Edges                  | 🗣 🔕 🗛 т         | G Dragging ( | Configure)                                                                                                                                                                                                         | Nodes: 34                   |             |
| hique Ranking                |                 | k            |                                                                                                                                                                                                                    | Edges: 78                   |             |
| Degree                       | v               |              |                                                                                                                                                                                                                    | Undirected Graph            |             |
| Vin size: 10 0 I             | Max size: 40 0  | 0            |                                                                                                                                                                                                                    |                             |             |
|                              |                 | 8            |                                                                                                                                                                                                                    | Filters Statistics ×        |             |
|                              |                 | 1            |                                                                                                                                                                                                                    | Settings                    |             |
|                              |                 | 9            | HITS settings X                                                                                                                                                                                                    | Network Overview            |             |
|                              |                 | 29           | нгт                                                                                                                                                                                                                | Average Degree              | 4.588 Run 🙂 |
| ine_ ¥ 🕘                     | m Acoly         | 1            | Computes two separate values for each node. The first value (called Authority) measures how valuable<br>information stored at that node is. The second value (called Hub) measures the quality of the nodes links. | Avg. Weighted Degree        | 4.588 Run 🙁 |
| avout ×                      |                 | ×            |                                                                                                                                                                                                                    | Network Diameter            | 5 Run 🐲     |
| Faces Allas                  |                 | 0            | Directed Epsilon:                                                                                                                                                                                                  | Granh Density               | 0139 849 0  |
| POICE ALLES                  |                 |              | Undirected Stopping criterion, the smaller this value, the longer convergence will take.                                                                                                                           | and the second              |             |
| 0                            | 🕨 Run           |              |                                                                                                                                                                                                                    | HITS                        | Run ©       |
| Force Atlas                  |                 |              |                                                                                                                                                                                                                    | PageRank                    | Run 🛛       |
| nerba<br>Regulating strangth | 2000.0          |              | -OK Cancel                                                                                                                                                                                                         | Connected Components        | Dun (i)     |
| Attraction strength          | 10.0            |              |                                                                                                                                                                                                                    | comectes components         | 1001 0      |
| taximum displacement         | 10.0            |              |                                                                                                                                                                                                                    | Community Detection         |             |
| Auto stabilize function      |                 |              |                                                                                                                                                                                                                    | Modularity                  | Run 🐵       |
| lutostab Strength            | 80.0            |              |                                                                                                                                                                                                                    | Statistical Inference       | Dan di      |
| kutostab sensibility         | 0.2             |              |                                                                                                                                                                                                                    | Subscontinentitie           | 141 0       |
| Sravity                      | 30.0            |              |                                                                                                                                                                                                                    | Node Overview               |             |
| Attraction Distrib.          | <u>U</u>        | 0            |                                                                                                                                                                                                                    | Avg. Clustering Coefficient | Run 🐵       |
| vajust by Sizes              | U               | -            |                                                                                                                                                                                                                    | Einerster Centrality        | Dun (i)     |
| ipeed                        | 1.0             |              |                                                                                                                                                                                                                    | Eigenvector Centrality      | Kun ©       |
| orce Atlas                   | 0               | A            |                                                                                                                                                                                                                    | Edge Overview               |             |
|                              |                 | *            |                                                                                                                                                                                                                    | Avg. Path Length            | 2.408 Run 🙂 |
|                              |                 | 0.00.18      |                                                                                                                                                                                                                    | Dynamic                     |             |
| Presets., Reset              |                 | 1 KE -       | A' A' Anai Bold, Sc 🔷 🔤 🖸                                                                                                                                                                                          |                             |             |

So, that value the density is coming out to be 0.139. We can also calculate the hits value that is the hub and the authority scores of the of each of the nodes of our value of our graph. And we see that this is basically the distribution of the hubs and the authority value.

### (Refer Slide Time: 19:06)

| Overview                | Data Laboratory | Pre Pre       | ien             |                         |       |              |                             | K MA        |
|-------------------------|-----------------|---------------|-----------------|-------------------------|-------|--------------|-----------------------------|-------------|
| Workspace 1 ×           |                 |               |                 |                         |       |              |                             | NIDTEI      |
| Appearance ×            | -               | Graph ×       |                 |                         |       | $\bigcirc$ v | Context ×                   | NITLI       |
| Nodes Edges             | Ф А т           | G Dragging (C | HTML R          | port                    | ×     |              | Nodes: 34                   |             |
| Unique Ranking          |                 | k             |                 |                         |       |              | Edges: 78                   |             |
| Degree                  | ~               |               |                 | Hubs Distribution       |       |              | Undirected Graph            |             |
| Min cine: 10 0          | Max sizes       |               |                 |                         |       |              |                             |             |
|                         |                 | 12            | 5.0             |                         |       |              | Filters Statistics X        |             |
|                         |                 | 1             | 1.5             |                         |       |              | Settings                    |             |
|                         |                 | 9             | -,0             |                         |       |              | Network Overview            |             |
|                         |                 | 29            | 3.5             |                         |       |              | Average Degree              | 4.588 Run 🙂 |
| spine. Y 🕘              | a Acoly         | 1             | Ŧ.              |                         |       |              | Ava, Weighted Degree        | 4.588 Run @ |
|                         | - (             | ×             | 0 <sup>25</sup> |                         |       |              | ,,                          |             |
| Layout ×                | -               |               | 2.0             |                         |       |              | Network Diameter            | 5 Run 🙂     |
| Force Atlas             | Ŷ               |               | 1.5             |                         | -     |              | Graph Density               | 0.139 Run 🙂 |
| 6                       | D Pun           |               | 1.0             |                         | -     |              | HITS                        | Run 🙂       |
| V FORCE ADJAS           | P run           |               | 0.5             |                         |       |              |                             |             |
| Inertia                 | 0.1             |               |                 |                         |       |              | гаденати                    | NUT 0       |
| Repulsion strength      | 2000.0          |               | 0.0             |                         |       |              | Connected Components        | Run ©       |
| Attraction strength     | 10.0            |               |                 | 0 1                     |       |              | Community Detection         |             |
| Maximum displacement    | 10.0            |               |                 | Score                   |       |              | Community Detection         |             |
| Auto stabilize function |                 |               | -               | • · · · · · · · · · · · | _     |              | Modularity                  | Run ©       |
| Autostab Strength       | 80.0            |               |                 | Authority Distribution  |       |              | Statistical Inference       | Dan di      |
| Autostab sensibility    | 0.2             |               | 100             |                         |       |              | Statistical Increase        | 141 0       |
| Gravity                 | 30.0            |               | 3.0             |                         |       |              | Node Overview               |             |
| Attraction Distrib.     |                 |               | 4.5             |                         |       |              | Avg. Clustering Coefficient | Run 🗇       |
| Adjust by Sizes         |                 | P             | a nin B         | Care E Care             | Close |              |                             |             |
| Speed                   | 1.0             |               | a mit u         | l cohà 🔲 pase           | 0000  |              | Eigenvector Centrality      | Run 🔍       |
| Force Atlas             | 0               | <u>A</u>      |                 |                         |       |              | Edge Overview               |             |
|                         |                 | A.            |                 |                         |       |              | Avg. Path Length            | 2.408 Run 🙂 |
| P                       |                 | 0.001         |                 |                         |       |              | Dynamic                     |             |
| Presets., Reset         |                 | X 68 . 1      | U III 🖓 🕹       | W. V. Will Don' 20      |       | -            | # Noder                     | Day 10      |

(Refer Slide Time: 19:11)

| Overview                    | Data Laboratory | - F         | heview                                                                                                                                        |       |                             | Y XA        |
|-----------------------------|-----------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------|-------------|
| Workspace 1 ×               |                 |             |                                                                                                                                               |       |                             |             |
| Appearance ×                | _               | Graph ×     |                                                                                                                                               |       | Context X                   | NPIE        |
| Nodes Edges                 | € ၍ A π         | Co Dragging | (Conte Conte HTML Report                                                                                                                      | ×     | Nodes: 34                   |             |
| Unique Ranking              |                 | k           | 0 1<br>Score                                                                                                                                  |       | Edges: 78                   |             |
| Degree                      | v               |             | Authority Distribution                                                                                                                        |       | Undirected Graph            |             |
| Min cine 10 0               | the size of the | 2           | Authority Distribution                                                                                                                        |       |                             |             |
| VIII 5426. 10 V             | 40 V            | 12          | 5.0                                                                                                                                           |       | Filters Statistics ×        |             |
|                             |                 | 1           | 4.5                                                                                                                                           |       | Settings                    |             |
|                             |                 | 9           | 4.0                                                                                                                                           |       | C Natural Overday           |             |
|                             |                 | 20          | 3.5                                                                                                                                           |       | Network Overview            |             |
| pline 🍸 🗊                   |                 | 1           | 20                                                                                                                                            |       | Average Degree              | 4.588 Run 🙂 |
|                             | m 🌔 Apply       | 1           | ¥ 3/1                                                                                                                                         |       | Avg. Weighted Degree        | 4.588 Run 🙁 |
| ayout ×                     | _               | A           | 825                                                                                                                                           |       | Network Diameter            | 5 Run 🕫     |
|                             |                 | 0           | 2.0                                                                                                                                           |       | Courb Daracha               | 0.110 0     |
| Force Atlas                 | Ý               |             | 15                                                                                                                                            |       | diaph Density               | 0.159 Mun @ |
| 0                           | 👂 Run           |             | 1.0                                                                                                                                           |       | HITS                        | Run 🕲       |
| V Force Atlas               |                 |             |                                                                                                                                               |       | PapeRank                    | Run @       |
| Inertia                     | 0.1             |             | 0.0                                                                                                                                           |       |                             |             |
| Repulsion strength          | 2000.0          |             | 0.0                                                                                                                                           |       | Connected Components        | Run @       |
| Attraction strength         | 10.0            |             | 1                                                                                                                                             |       | Community Detection         |             |
| Maximum displacement        | 10.0            |             | Score                                                                                                                                         | D.    | Modularity                  | Don 10      |
| Auto stabilize function     |                 |             |                                                                                                                                               |       | modularity                  | 141 0       |
| Autostab Strength           | 0.08            |             |                                                                                                                                               |       | Statistical Inference       | Run @       |
| Autostab sensibility        | 20.0            |             | Algorithm:                                                                                                                                    |       | Rede Owniew                 |             |
| aravity<br>Meanting Distrib | 0               |             | <ul> <li>In M. Balakara, Anthonization Process in a Uncontrained Professional Information (Internal of the 1711 IN 171-701 (1999))</li> </ul> |       |                             |             |
| Addition District           |                 | ß           | Jon M. Kielinberg, Automative sources in a hyperankea Environment, in Journal of the ALM 46 (3): 604–632 (1999)                               | _     | Avg. Clustering Coefficient | Run ©       |
| Adjust by sizes<br>Sneed    | 1.0             |             | 🚔 Print 📭 Copy 🜉 Save                                                                                                                         | Close | Eigenvector Centrality      | Run @       |
| Forma átlas                 | 0               | A           |                                                                                                                                               |       | Edge Overview               |             |
|                             |                 | A.          |                                                                                                                                               |       | Avg. Path Length            | 2.408 Run 🕲 |
|                             |                 |             |                                                                                                                                               |       | P Dynamic                   |             |
| Presents Resent             |                 | 7 Hz -      | T N N T - Arial Bold, 32 - C                                                                                                                  |       | é                           |             |

(Refer Slide Time: 19:28)



So, this basically tells us the importance of a particular node. The how authoritative that node is or how much of a hub that node is based on this algorithm. We can also calculate the page rank for each node. By simply using this by providing the different attributes of the paging algorithm that is the probability of random work and the epsilon value we pass.

### (Refer Slide Time: 19:37)

| Overview                | Data Laboratory | Prev           | ew                                                                                                                     |                             | 1 10        |
|-------------------------|-----------------|----------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------|
| Workspace 1 ×           |                 |                |                                                                                                                        |                             | NPTE        |
| ppearance ×             | -               | Graph ×        | -                                                                                                                      | Context ×                   | NITL        |
| Nodes Edges             | 🗣 🔕 🗛 т         | G Dragging (Co | M HTML Report X                                                                                                        | Nodes: 34                   |             |
| hique Ranking           |                 | k              | Kesuits:                                                                                                               | Edges: 78                   |             |
| Degree                  | v               |                | PageRank Distribution                                                                                                  | Undirected Graph            |             |
| Ain size: 10 0          | tay size0       | 2              | 5.0                                                                                                                    |                             |             |
|                         |                 | 2              | 45                                                                                                                     | Filters Statistics ×        |             |
|                         |                 | 1              | 40                                                                                                                     | Settings                    |             |
|                         |                 | 9              | 3.5                                                                                                                    | Network Overview            |             |
| in T in                 |                 | 1              | 3.0                                                                                                                    | Average Degree              | 4.588 Run 🙂 |
|                         | m 👂 Apply       | 1              | <b>5</b> 2.5                                                                                                           | Avg. Weighted Degree        | 4.588 Run 🙂 |
| ayout ×                 | _               | A              | 0 2.0                                                                                                                  | Network Diameter            | 5 Run 🙂     |
| Energe Atlan            |                 | 0              | 15                                                                                                                     | Graph Density               | 0.139 Run 👁 |
| Torce Hans              |                 |                | 10                                                                                                                     |                             |             |
| 0                       | 🕨 Run           |                |                                                                                                                        | HITS                        | Run 🕲       |
| Force Atlas             |                 |                | 0.5                                                                                                                    | PageRatik                   | Run (B      |
| Inertia                 | 0.1             |                | 00                                                                                                                     |                             |             |
| Repulsion strength      | 2000.0          |                |                                                                                                                        | Connected Components        | Run 🐵       |
| Attraction strength     | 10.0            |                | 0 1                                                                                                                    | C Community Detection       |             |
| Maximum displacement    | 10.0            |                | Score                                                                                                                  | Community Detection         |             |
| Auto stabilize function |                 |                |                                                                                                                        | Modularity                  | Run 🐵       |
| Autostab Strength       | 80.0            |                |                                                                                                                        | Statistical Inference       | Res (i)     |
| Autostab sensibility    | 0.2             |                | Algorithm:                                                                                                             |                             | 141 0       |
| Gravity                 | 30.0            |                | Page, Lawrence and Brin, Sergey and Motwani, Rajeev and Winograd, Terry (1999) The PageRank Citation Ranking: Bringing | Node Overview               |             |
| Attraction Distrib.     |                 |                | Order to the Web. Technical Report. Stanford InfoLab.                                                                  | Avg. Clustering Coefficient | Run 🐵       |
| Adjust by Sizes         |                 | P              | Barry Datas Ellers                                                                                                     |                             |             |
| Speed                   | 1.0             |                | E un rE roha R and                                                                                                     | Eigenvector Centrality      | Run 🐵       |
| Force Atlas             | 0               | <u>A</u>       |                                                                                                                        | Edge Overview               |             |
|                         |                 | A.             |                                                                                                                        | Avg. Path Length            | 2.408 Run 🕲 |
|                         |                 |                |                                                                                                                        | . Dynamic                   |             |
| Presets., Reset         |                 | A 18 . 1       | A. V. Augi polo 25                                                                                                     | # Norier                    |             |

We select ok and we see that this is basically the distribution of the page rank value, that we are getting for all the nodes for this network. Then we can also see how many number of connected components and they are there are present in our graph by simply running this algorithm.

# (Refer Slide Time: 19:55)



(Refer Slide Time: 19:57)

| Overview                    | Data Laboratory | 🤛 Pre        | view                                                                                                            |       |                             | Y M         |
|-----------------------------|-----------------|--------------|-----------------------------------------------------------------------------------------------------------------|-------|-----------------------------|-------------|
| Workspace 1 ×               |                 |              |                                                                                                                 |       |                             | NIDTE       |
| Appearance ×                | -               | Graph ×      |                                                                                                                 | 0.    | Context ×                   | NTIC        |
| Nodes Edges                 | Ф Д т           | G Dragging ( | HTML Report                                                                                                     | ×     | Nodes: 34                   |             |
| Unique Ranking              |                 | k            | Connected Components Report                                                                                     |       | Edges: 78                   |             |
| Degree                      | v               |              | connected components report                                                                                     |       | Undirected Graph            |             |
|                             |                 | 2            |                                                                                                                 |       |                             |             |
| vinsize: 10 V               | Max size: 40 0  | 2            | Parameters:                                                                                                     |       | Eiters Statistics X         |             |
|                             |                 | 1            | Network Interpretation: undirected                                                                              |       | Cattions                    |             |
|                             |                 | 9            |                                                                                                                 |       | seungs                      |             |
|                             |                 | -            | Results:                                                                                                        |       | Network Overview            |             |
| ine T al                    |                 | 1            | Number of Weakly Connected Components                                                                           |       | Average Degree              | 4.588 Run 🕲 |
|                             | m Acoly         | 1            |                                                                                                                 |       | Avg. Weighted Degree        | 4.588 Run @ |
|                             |                 | ×            | Cine Distribution                                                                                               |       | Name & Discourse            |             |
| ayour ^                     |                 | 0            | Size Distribution                                                                                               |       | Network Diameter            | 5 NUN (B    |
| Force Atlas                 | ~               | -            | 10                                                                                                              |       | Graph Density               | 0.139 Run 🕲 |
| 6                           | B Run           |              | 10                                                                                                              |       | HITS                        | Run 🕲       |
| r Force Atlas               | P then          |              | 0.9                                                                                                             |       | Beachash                    | Day 1       |
| inertia                     | 0.1             |              | 0.8                                                                                                             |       | regenerik                   | Mar (o      |
| Repulsion strength          | 2000.0          |              | 0.7                                                                                                             |       | Connected Components        | 1 Run 🙂     |
| Attraction strength         | 10.0            |              | 0.6                                                                                                             |       | Community Detection         |             |
| Assimum displacement        | 10.0            |              | E os                                                                                                            |       | Madularity Statement        | Date of     |
| Auto stabilize function     |                 |              | 8                                                                                                               |       | Modularity                  | MA 0        |
| Autostab Strength           | 0.08            |              | 0.4                                                                                                             |       | Statistical Inference       | Run @       |
| Autostab sensibility        | 0.2             |              | 0.3                                                                                                             |       | - Nede Ouspiew              |             |
| aravity<br>Menutian Distrik | 500             |              | 0.2                                                                                                             |       | S HAVE OVERVIEW             |             |
| Nordcoon Distrio.           |                 | ß            |                                                                                                                 |       | Avg. Clustering Coefficient | Run 🔍       |
| Speed                       | 1.0             |              | 🚔 Print 📴 Copy 📕 Save                                                                                           | Close | Eigenvector Centrality      | Run ®       |
| Force Atlas                 | 0               | <u>.</u>     | The second se |       | Edge Overview               |             |
|                             |                 | A.           |                                                                                                                 |       | Avg. Path Length            | 2.408 Run 🕲 |
|                             |                 | 10 - 15      |                                                                                                                 |       | Dynamic                     |             |
| Presets., Reset             |                 | 7 Mil - 1    | 🖬 🔝 👔 🔫 👘 🗛 Anal Bold, 32 🔮 📲 🖪                                                                                 |       |                             |             |

Selecting the undirected option and we see since all the nodes are reachable by all the other nodes that is there is just a single connected component present here. Now, we calculated these metrics, now we can also rank our nodes based on these metrics instead of the degree that we used. So, again we go to this color tab here, go to this ranking tab and now earlier we were just getting the option of degree, but now if we just click on this drop down box, we are getting the option a full we are getting a lot of options, because we already calculated a lot of metric by running these different algorithms that were present.

#### (Refer Slide Time: 20:33)



So, now we can we can basically modify the visualization of our graph based on these attributes. For example, we select betweenness centrality here we apply it and the color changes based on the value of betweenness centrality and the size also we might want to change for the betweenness centrality here. Again the let us select a larger scale for our you know graph sizes. And we can see that the betweenness centrality is higher for mister hi and lower for officer. All the degree was higher for officer right.

And, now what we can do. So, right now we can see that these two nodes are probably overlapping there are some other overlapping nodes as well. So, we can adjust now when we have modify the sizes we can go to this layout tab. And we can adjust the layout by the sizes of the node. So, we just enable this option we run it again. And we see that the graph is more spread out and it is more easily visible. Now, let us just change this color palette a bit.

# (Refer Slide Time: 21:39)



(Refer Slide Time: 21:55)



So, that it is more easier to see, yeah. So, now, apart from this ranking and these different metrics that can be created we can do one thing we can perform community detection here. So, what is community detection. So, basically any community detection mechanism or algorithm, it tries to find different groups in the network which are highly connected in like the nodes inside a group is highly connected, when compared to the nodes between two groups right.

So, we can perform community detection here by calculating the modularity values. So, modularity is again a metric. We will not be going into detail of the modularity and community detection here, but modularity is basically a value which tells us how interconnected a community is and how less connected a community is to the other communities. So, we run this modularity algorithm here and we just select some of the option that are present to us.

# (Refer Slide Time: 23:14)



(Refer Slide Time: 23:18)

| <ul> <li>Overview</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Data Laboratory | P           |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Workspace 1 ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |             |                                                               | ALD THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Appearance ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _               | Graph ×     |                                                               | Content × INP I E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Nodes Edges                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ¢ ၍ A π         | Co Dragging | HTML Report                                                   | X Nodes: 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Unique Partition Rankin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10              | k           | Results:                                                      | Edges: 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Retweenness Centrality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | v               |             | Modularity: 0.409                                             | Undirected Graph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| according to be a set of the set |                 |             | Modularity with resolution: 0.409<br>Number of Communities: 4 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Color:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |             | NUMBER OF COMMANDER 4                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | 2           | Size Distribution                                             | Filters Statistics ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | 1           | 12                                                            | Settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | 4           | 11                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | 29          | 10                                                            | Graph Density 0.139 Run @                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Nine_ 🍸 💿                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 | 1           | 2.0                                                           | HITS Run @                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | m 🌔 Apply       | 1           | 2 ×                                                           | PaneRatic But @                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ayout ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -               | A           | 2 *                                                           | - age to the second sec |
| F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 | 0           |                                                               | Connected Components 1 Run @                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Force Atlas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ~               |             | 9 d                                                           | Community Detection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Run             |             | j 5                                                           | Modularity 0.409 Run @                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Force Atlas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |             | 9 4                                                           | Statistical Inference Dun di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| nertia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1             |             | <del>2</del> 3                                                | Station in the state of the sta |
| Repulsion strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2000.0          |             | 2                                                             | ⊙ Node Overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Attraction strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.0            |             | 1                                                             | Avg. Clustering Coefficient Run 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Auto stabilize function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |             | 0                                                             | Eigenvector Centrality Run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Autostab Strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 80.0            |             |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Autostab sensibility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.2             |             | -1 U 1 2 3<br>Modularity Charg                                | 9 Edge Overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Gravity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30.0            |             | Produiating Gass                                              | Avg. Path Length 2.408 Run @                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Attraction Distrib.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |             |                                                               | P Dynamic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Adjust by Sizes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | p           | B                                                             | City Binder Bin B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0             |             | 🖾 kutt n robh 🛤 zuse                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| orce Atlas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0               | <u>A</u>    |                                                               | # Edges Run 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | A.          |                                                               | Degree Run @                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |             |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

We select ok and we are basically we get basically all the modularity values associated with the different nodes in our network. We close it and now we can use this modularity value to perform a partition that is to perform the community detection mechanism. To do that we go to this left hand side tab that we have and go into this partition tab. Now, we select like we have different attributes here, according to which we can have different partitions.

#### (Refer Slide Time: 24:00)



But we select this modularity class value. And we see that this algorithm it identifies four different communities right. And each community is assigned with some color. This is like the default color that is present here. We run this we just apply this partition value. And we see that these are the four communities that are identified by the modularity value. If you consider the modularity value that is this is one community this blue nodes these green nodes are one community then we have one with pink and one with orange. So, these are the four communities.

Now, a community can be like it can be of different things. So, for example, here in this network the most basic community that we can think of are the two communities of the two different professors, that is Mister Hi and Officer. So, in order to see these two ground truth communities.

### (Refer Slide Time: 25:07)



We can select like in the partition module only we can select the club as the attribute. So, the club is the already present node attribute, that we have in the ground truth we select this and we apply these coloring here and we see that now we have just two communities these are basically the ground truth communities, where these nodes belong the green nodes belong to the Mister Hi club and these nodes belong to the Officer club. So, whereas, this is the ground truth community detection.

# (Refer Slide Time: 25:41)



#### (Refer Slide Time: 26:06)



That is when we have the two communities, but if we select the modularity value we are getting four communities with this kind of a partition right. Now, apart from partitioning the nodes in this manner we can also perform some filtering.

Now, filtering can be done using this tab here. That we have on the right hand side. There are different like there are very many options to filter the graphs and the networks and the edges from we just show one example here where we go to the topology and use this degree range for as one of our filters.

So, we just click on this degree range and drag it to the query box here. Sorry the filter box here. And we select the range of the degrees that we want to be shown on our screen. So, suppose we want that all the node that have degree less than 4 to not be shown as our as a part

of our network. So, we select the lower value the lower bound of the degree as 4 and we click on this filter function.



(Refer Slide Time: 27:02)

And we see and we see that all the nodes that have values less than 4 are now vanished from our screen. And we can only see the nodes that have a degree of greater than 4 in the original network. Not here this mister hi may have or this node may have a degree 2, but in the original network it had a degree 4 or greater than 4 right.

Now, apart from this partitioning, filtering and layout and ranking mechanism. The last thing that we might want to do with in Gephi is to now to after all the processing of the all the analyzing that we have done. We might want to save this graph in a way that we that the visualized network can be used in maybe our report or any other system. So, in order to do that we go to this preview tab on the top.

And we select the different attributes of how we want our network to look like when we save it. So, these default options we just refresh our system and we see that this is the kind of network that is coming right now. We might want it to be the lines to be straight. So, we select the default straight option here then again we refresh it.

(Refer Slide Time: 28:15)



(Refer Slide Time: 28:35)



(Refer Slide Time: 28:43)



And we can see that the edges are straight and we also have the labels here. We might not want to have these labels we can select we can like disable this option of show labels in this node label option here. Then again refresh it and we do not have the labels anymore. We there might be a case where we want to increase the thickness of the edges.

# (Refer Slide Time: 29:01)



(Refer Slide Time: 29:09)

| Overview                  | Data Laboratory      | Preview      |     |
|---------------------------|----------------------|--------------|-----|
| Workspace 1 ×             |                      |              |     |
| Preview Settings $\times$ |                      | 64 Preview X |     |
| 🛃 Presets                 | 8                    |              |     |
| Default Straight          | v                    |              |     |
| Settings Manage           | enderers             |              |     |
| V Nodes                   |                      |              |     |
| Border Width              | 1.0                  |              |     |
| Border Color              | custom [0.0.0]       |              |     |
| Opacity                   | 100.0                |              |     |
| Per-Node Opacity          |                      |              | 10  |
| Node Labels               |                      |              |     |
| Show Labels               |                      |              |     |
| ont                       | Arial 12 Plain       |              |     |
| Proportional size         | V                    |              | 00  |
| Color                     | custom [0,0,0]       |              | 104 |
| Shorten label             |                      |              |     |
| Max characters            | 30                   |              |     |
| Outline size              | 0.0                  |              |     |
| Outline color             | custom [255,255,255] |              |     |
| Outline opacity           | 80.0                 |              |     |
| Box                       |                      |              |     |
| Box color                 | parent               |              |     |
| Box opacity               | 100.0                |              |     |
| Edges                     |                      |              |     |
| Show Edges                | 2                    |              |     |
| Thickness                 | 5.0                  |              |     |
| Rescale weight            |                      |              |     |
| Min. rescaled weight      | 0.1                  |              |     |
| Max, rescaled weight      | 1.0                  |              |     |
| Color                     | mixed                |              |     |
| Opacity                   | 100.0                |              |     |
| Preview ratio: 100%       |                      |              |     |
|                           | - and                |              |     |

# (Refer Slide Time: 29:10)



(Refer Slide Time: 19:17)



So, for example, 30 here and we refresh it. And it is quite big. We might want to do it 5 here and refresh it and we have a big like you know thicker edges that we have right. Let us just make it even thinner maybe 2 is fine yeah

Then we can show the labels we can have it in proportional size. We can also shorten the labels that instead of a whole officer or mister hi coming we can shorten the label and select the character as probably 3. And we see that only three a characters for each labels are shown.

# (Refer Slide Time: 29:43)



(Refer Slide Time: 29:48)

| Overview                   | Data Laboratory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Preview               |                                         |              |        |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------|--------------|--------|
| Workspace 1 ×              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                         |              |        |
| Preview Settings $	imes$   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6-a Preview X         |                                         |              |        |
|                            | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |                                         |              |        |
| Default Straight           | v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |                                         |              |        |
| Settings Manage re         | nderers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                                         |              |        |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | The second second second                |              | ~      |
| Y NODES<br>Decides MCalife | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       | an Preview Settings - Pont              |              | ^      |
| Border Color               | custom (0.0.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | Fort:                                   | Font Style:  | Size:  |
| Onacity                    | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       | Parlay Conducted Stack                  | Disle        | 12     |
| Per-Node Opacity           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                         | Pielii       | 12     |
| V Node Labels              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | Arial Black                             | Plain        | 8      |
| Show Labels                | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | Anal Narrow                             | Bold         | 10     |
| Font                       | Arial 12 Plain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | Anal Rounded Mil Bold                   | Raid Italia  | 12     |
| roportional size           | <ul> <li>Image: A start of the start of</li></ul> |                       | Protect clement,                        | Della Italie | 1      |
| Color                      | custom (0,0,0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | Barlow Condensed                        |              | 24     |
| Shorten label              | <ul><li>✓</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       | Barlow Condensed Black                  |              | 36     |
| Max characters             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | Barlow Condensed ExtraBold              |              | 48     |
| Outline size               | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |                                         |              |        |
| Outline color              | custom [255,255,255]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | Preview                                 |              |        |
| Outline opacity            | 80.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                         |              |        |
| Box                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | The quick brown fax jumps over the lazy | dag          |        |
| Box color                  | parent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                         |              |        |
| Box opacity                | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                                         | N            | _      |
| ✓ Edges                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                         | A OK         | Cancel |
| Show Edges                 | <b>V</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                                         |              | mg     |
| Thickness                  | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |                                         |              |        |
| Rescale weight             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                         |              |        |
| Min. rescaled weight       | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |                                         |              |        |
| Max, rescaled weight       | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |                                         |              |        |
| Color                      | mixed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                                         |              |        |
| Opacity                    | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                                         |              |        |
| Preview ratio: 100%        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                         |              |        |
|                            | 🔷 🌚 Refresh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |                                         |              |        |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Recknessed Reset norm |                                         |              |        |

(Refer Slide Time: 29:55)



We can select the different font and the different size of the font that we want. So we select a font, we do this and we can have it like this. So, let us just disable the show label option here we have a graph like this then we have other functions for example, the edges arrow for a directed graph. It will have an arrow for we if the edges also have some kind of attributes associated to it. We can also have those labels shown on the network and so on. Finally after we are satisfied with this preview of the network, we can save it in either s v g p d f or p n g format.

#### (Refer Slide Time: 30:30)



By using this export functionality here. We select this and we simply just like we name our graph some way we just name its sample here. And we select the types for example, let us select an s v g type and we just press on save. And then if we just go to the location where we have saved it. We see that we have this sample at s v g here we click on it and we can see that we have this graph with us which can be open in this like this an any h m l format h m l supported software right.

So, today we I gave you a very brief overview of the Gephi software. So, this was just to get you started and get you motivated towards using the software. Of course, there are a number of more options a number of more different tweaking and the things that you can try in the software for the visualization for the analysis as well as for the preview aspect of the things. And I would encourage you to have a look of all these different attributes on your own and explore the software.

Thank you.