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So, today we are trying to wind up this course with a session on Federated Learning and 

AI Assisted Annotation right. And in the previous session we had discussed about how 

federated learning could be done using TensorFlow federated right. 
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And today, we will be concentrating on these three specific things right, one is NVIDIA 

FLARE, one is NVIDIA Clara, and the third one is NVIDIA Clara AIAA. So, I will try 

to show you and talk about as much as possible with some hands on, right. 

You may be able to actually appreciate like to what level right annotation and other 

federated learning could be used ok. And maybe I will have to speed up a bit, but let us 

try to do it in a fashion at least as it covers everything right. So, let us start with NVIDIA 

FLARE. 
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So, NVIDIA FLARE is basically NVIDIA Federated Learning Application Runtime 

Environment, which is domain agnostic its open source and extensible SDK for federated 

learning right. 

So, the idea is you can use this runtime environment to actually convert your PyTorch 

program or any of your programs which you have already written to get ported into a 

federated learning applications framework right. So, that is when you would be using 

NVIDIA FLARE ok. So, it is basically going to allow you to develop a secure privacy 

preserving distributed multi party collaboration right. So, with your program which you 

have written, for training it centrally you can end up converting it into a federated 

learning application right, using this particular runtime environment. 
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So, if you see this you have got the runtime which is basically learner configuration in 

the sense you have PyTorch, TensorFlow program, NumPy MONAI. So, this MONAI 

thing we will discuss further as well and we will tell you what it is actually right. It is a 

open source network we will discuss that as well. So, you have your own models, you 

can train evaluate and update your models basically using all of this. 

And then if you want to actually convert it into a federated type of a learning application 

right you have NVFlare runtime, which basically helps you to do all of this you can do 

training flows, evaluation flows, it helps you to actually change your learning algorithms 

and then you can implement some privacy preserving algorithm so on and so forth, right. 

So, the federated specification which NVIDIA FLARE gives you helps you to actually 

change or toggle all of this right. 
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So, let us understand what it is. When we say privacy preservation we are trying to 

preserve the privacy of the data, when you are talking of training and evaluation 

workflows. Technically there are two type of things which you should discuss. Training 

work flow in the sense, when you are trying to convert your PyTorch application into 

training workflow for a distributed type of environment. 

So, you have got two types of workflows which you can implement. One is generally 

called as the scatter and gather which you all know which basically is done using in any 

of the distributed learning platforms right you have the scatter and gather mechanism. 

So, you have the scatter and gather type of a concept wherein actually here there is 

something called as a central server right and this central server basically is going to 

broadcast tasks to the clients which you are having right. So, there will be a server then 

you will have various clients. So, these this particular centralized task is distributed into 

various smaller tasks and sent to various clients right. 

And these clients will execute ok these tasks and then ultimately they will share this data 

back in the form of results. And then this server is going to actually gather and aggregate 

all of this result ok, all of these results and then come up with a federated weighting 

weighted average or something like that and give you a global evaluation or global 

training parameters or whatever right. So, that basically is something called as scatter 
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and gather type of a training mechanism you have a cyclic type of a mechanism also or a 

cyclic type of a workflow available. 

Wherein a server gives something some task to the client the first client, gives certain 

specific task to the second client so on and so forth. And in the end when the final client 

completes its task right, that result comes back to the server and that is again 

consolidated. So, that is basically a cyclic type of a workflow right and when you talk of 

evaluation workflow, these are two important things other things; obviously, when you 

start working you will understand. 

But the evaluation workflow is something like a cross site model what to say evaluation 

or validation for that matter. So, you can validate each client model against the server 

global model right and then you can analyze as to how this particular client ok is actually 

doing something related to the central global type of a model right. So, that basically is 

the evaluation. Then you have a global model evaluation which talks of basically a 

subset of the total global cross validated thing right. 

So, these are certain things which you will be using and then you have management 

tools, you have got popular ML DL frameworks which you can use with it, then 

extensive APIs are there, reusable building blocks these are all very user friendly right. 
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And then you have got a lot of domains which you can use. So, these are application 

domain agnostics and they are applicable to real world scenarios in a sense that you have 

the security and privacy in built into these runtimes. 

And you can actually ok understand and deal with system failures and unresponsive sites 

and with imperfect data set right. So, these are the various design principles which 

NVIDIA NVFlare is going to be helping you with ok. 

(Refer Slide Time: 07:34) 

 

So, let us try to understand the learning algorithms, when you talk of learning algorithms 

what are the various learning algorithms available for you ok, when you use NVIDIA 

FLARE. You have got this federated averaging which basically means that you have 

weighted average to update global model right. 

Then you have federated proxy, here each of these learning algorithms ok are basically 

trying to improve your model by applying federated learning 1 and then trying to 

optimize that federated learning ok. So, in this particular case of federated proxy, your 

client is going to add a loss to stay close to the global model. So, the idea is each client is 

going to have its own model which it is running right. 

And then you try to reach as near to the global model ok and this basically avoids model 

drifting for heterogeneous data sets right. Since you are using heterogeneous data sets 

there is a lot of possibility that your model training drifts ok from one end to the other 
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because of the heterogeneity available in the data sets. So, you want your models not to 

drift away from the global model ok, and that is why you use something called as a 

federated proxy type of a model. 

Then you have this adopted adoptive federated optimization wherein, the global model is 

updated using a optimizer which you already have been working with like Adam or 

SGD, with momentum, Adagrad and so on and so forth, right. And then cyclic weight 

transfer as I told you models are continuously fine tuned and circulated around 

institutions. So, this basically means you are trying to transfer your weights ok from the 

first client to the second client to the third client so on and so forth, right. 

So, they may go on improving it with their data sets right, then you have something 

called a scaffolding which basically adds the correction terms right during the training to 

deal with non-IID type of data sets and then you have ditto, and then you have 

algorithms which can be extended right. So, you can have homomorphic encryption and 

so on and so forth. So, something like this ok. So, these are various algorithms which are 

available to you. 

(Refer Slide Time: 10:04) 

 

Now, the federated learning phases if you see ok, if you want to develop a solution right. 

So, there are two things which you should concentrate on, one is the workflow which 

you are trying to develop and another one is the privacy. Because when you are talking 

1466



of federated learning right you will have to develop your workflow in such a manner that 

none of the client is able to see the other clients data ok. 

So, you have got these five steps technically. So, first step is that you have to have a 

authentication and some provisioning. So, you basically have this provisioning startup 

kits, you have SSL authentication and then you have got appropriate authorization 

policies for access mechanisms. Then you need to prepare the data. So, you should have 

federated data, yesterday we showed you some mechanisms of course, they were in 

TensorFlow federated. 

But you had to create your own federated data right and then here also you basically 

need to create your own federated data with certain curations need to be done for this 

workflow and then you have this federated workflow. You use scatter gather cyclic or 

eval type of workflow and then you basically are going to use any framework whether on 

TensorFlow, PyTorch, RAPIDS, at the edge right and you have this privacy preserving 

thing which will happen for inferencing. 

And then at the same time you have got our APIs which will help you to monitor and 

visualize the whole federated learning solution right. So, the basic idea is you have to 

prepare the data. Before that you have to have a provisioning and authentication, then 

you come up with your the federated workflow and then you do that inferencing which 

you want to do it at the edge. And then you basically are in a position to monitor and 

manage whole of this right ok. 
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So, this is a very very high level architecture right, you have a provisioning tool which 

will help you to provision, this is the server, these are the clients, then there is a admin. 

So, you in our case today we will be showing you a server and the admin is the same and 

there is one client. So, we are going to show you with a minimal thing ok, but technically 

speaking, if you really want to implement it in a production environment in real life 

environment you will have a server, you will have admin, and you will have a number of 

clients right. 

And then this is an open source RPC right Remote Procedure Call type of a 

communication and gRPC is the recent open source standards which you which this 

client server communication uses, right. So, there is this TCP IP which is required for 

communication between the server and the admin. And then the server and the client you 

have got this remote procedure call which is very very secure and which will maintain 

privacy so gRPC. And then you have a provision tool which will help you to provision 

all of this, right. 
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So, this is how it is going to happen yeah. So, where are the various APIs which you are 

going to use ok? These are available to you with NVIDIA FLARE right ok. 

(Refer Slide Time: 13:40) 

 

So, open provision API in the sense you have this provisioning API here, then you have 

a server controller API, then you have client worker API, and then you have admin API. 

So, at all these places right you have got this Application Programming Interfaces or API 

is available to you. 
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So, let us just briefly see what all each of these APIs help you to do right. So, open 

provision API basically defines the overall project configuration and generates mutually 

trusted configuration packages for servers and clients using provisioner and builder 

modules. So, your whole project configuration which is basically a trusted configuration 

ok, between the server and the client has to be developed and you are using this 

provision and builder modules for doing it. 

Then the server controller is a python object, that defines the global federated learning 

control flow via task and events. So, this open provisioning system helps us to configure 

everything, server controller helps us to control the federated learning flow, client API or 

the client worker API is used to define executors that perform tasks which are 

orchestrated by the server controller. 

So, each client basically is going to actually define ok certain executors, which are going 

to perform certain specific task ok and these will be orchestrated obviously, by the server 

ok. And then the admin API basically controls the federated learning system and allows 

application developers to manage operation via external interfaces or web user interfaces 

or whatever, right. So, these are how various APIs could be used ok. 

(Refer Slide Time: 15:47) 

 

So, controller and worker API defines the overall control flow which basically is related 

to events, tasks and executors. So, the idea is you have got this open MPI right. So, this 
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controller and worker API actually is in context of developing a API, which basically 

revolves around the concept of open MPIs, open MPI right. 

So, the controller defines the series of tasks to be executed by the worker and determines 

how these tasks are distributed. So, you can broadcast, you can do cyclic, you can do 

scatter gather and something of that sort, the worker implements executors that execute 

specific name tasks are defined and distributed by the controller. 

So, this is basically a MPI type of a scatter gather mechanism. So, I would not go into the 

details of this. So, basic idea is you distribute, process and gather the results right ok. 
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So, this is how it is going to happen basically it is something like this, you have a 

federated learning client you have a federated learning server. So, it is something like the 

controller is there and the worker has to execute the task. So, you assign the task, it 

executes the task and submits the task result back ok. So, this is how basically the 

controller and worker API behave ok, right. 
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So, let us go to the scatter gather controller model for training. So, you have a global 

model ok. So, for example, this is one client, this is another client, this is the third client. 

So, each of these clients will basically run their own program or model here and each 

will actually get us these weights, ok. So, these are the weights which are required to 

improve the model ok, for this local client here. So, again this client or this site will have 

its own model which is running. 

So, it will have delta w 2 set of delta w 2, here also its set of delta w 3 and all of this will 

actually be used for training this global model, right. So, this is how it is scatter gather 

controller model. 
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So, you basically initialize the model. So, for a number of rounds, server broadcast the 

global model to the workers, workers validate global model and train on the data, then 

workers keep track of their locally best models and workers send back updated models 

and server gathers and aggregates it, right. So, this is how it is going to happen. 
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So, this is how basically the model evaluation is done. You have actually to send the 

information about your best local models, which is the metric which you are going to 

send. So, it can be a set of values for your delta w ok. So, this is a way of cross site 
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validation or a global model validation. So, these are your metrics, global final, global 

best, site-1, site-2, site-3 so many models. So, for each of these sites right how is this 

behaving? How is this behaving? What would be with regards to this? Ok all of this type 

of analysis is done. 

(Refer Slide Time: 19:21) 

 

And then we will show you some example of cifar10, we will go to that of course and 

yeah. 
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So, this is basically we will show you the example. So, but the basic idea is right, when 

you are trying to compare various algorithms right. So, the idea is that you set up your 

own virtual environment, create your own federated learning workspace, then you can 

run various experiments to basically understand right how basically everything works. 

And then you can basically develop your own models and then further on go on 

improving upon that, right. 

So, this is how it is right. So, you can vary the data heterogeneity of the data splits then 

you can do centralized training, federated average on different data splits, then you have 

this federated algorithms which we talked about. And then how do you do homomorphic 

encryption and then privacy differential privacy so on and so forth. So, you have got a lot 

of things which you can work with ok so yeah. 
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So, see here for the cifar10 ok, the central cifar10 configuration what is the value of 

alpha and what is the score right validation score? So, federated average, this is cifar 

federated average and this is ok something like that, then this is again configuration how 

is that validation to score changes right with the alpha value getting changed right. 

So, this is how is the client data heterogeneities impact ok, on the validation score so on 

and so forth. There are so many parameters which you can vary and see we are just 

showing you this. 
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So, this is cross site validation, this is just an example to show you like how people use 

this ok for selecting the best validation score. Because you are trying to work with the 

local data, but you are trying to improve upon some global data right. So, if you send 

something which is not good ok, then how is that global data is also going to be affected 

all of that needs to have some correlation right. 

And then you need to do some cross site validation, and then based on that you can 

actually see and send in that value ok. So, yeah so before that let us try to do this 

NVIDIA FLARE hands on demo first and then we will go to Clara ok. 
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So, let me just share yes. So, 1 minute let me just increase in the size of it, yes. So, we 

are going to show you cipher central ok. So, we are trying to use a NVIDIA docker 

container which basically is pulled from NVIDIA cloud, which is NGC ok and the name 

is this fed ok. So, we are trying to download a docker container which is fed ok. 

And this basically is a docker container, which is going to run federated training or 

federated learning example with ok 1 server, 1 client ok for training. So, the server itself 

behaves as a admin here. So, let us start it and then we will try to see ok. So, we have 

come to the workspace and then in this workspace, if you see we have got this NVIDIA 

FLARE. So, we will open this and see what all is available. 

So, if you go to the CD sorry, if you go to the examples folder. So, you have got a lot of 

examples you have got cifar10, federated analysis then you have this hello world which 

is cyclic you can use hello with MONAI, then you have got cross validation so many of 

them, right. So, we are trying to show you this cifar10 example, right. So, if you see 

here, you have got proof of concept you can run secure you can run certain specific 

experiments and then you have got this virtual environment. 

So, let us try to basically go to this virtual environment, yes. Why is this error ok? Yeah 

we have come to the NVFlare cifar10. So, that is ok so that should not be of concern ok, 

yes. So, we are going to run this proof of concept now, with this condition which tells us 

that we are going to use ok a central algorithm with 1 server and 1 client. 
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So, it is now starting the server, see here we have started the server, we have started the 

admin server and we are starting one of the clients. Now, we are able to prepare the data 

it has already prepared. 
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So, if you see this show it once again from what we have done till now. Maybe for 

people to understand ok. So, yeah so this is this NVFlare folder and if you go to that 

folder you have got a lot of examples. So, you have got examples which are cifar10, you 

can do federated analysis, you can do cyclic type of hello program, you have got 

MONAI hello then there are so many of the examples right. 
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So, we will try to work with this cifar10 example right. So, first thing is you have to set 

up your virtual space right and once you set up your virtual space, you can go to this 
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proof of concept creation right. So, one minute workspace ok we are first starting the 

server here and then you are in a position to see that we have deployed the server trainer. 

We are starting the admin server, which is running on this local host port 8003. 

So, we have started the server, we have started one client also ok and that particular 

client basically is now a client which is going to send local information to the global 

server, right. So, this is how it is. You can do more than one clients also right you could 

have done 2 or 3, but the point is when I am showing this it gets struck. So, that is the 

reason why I showed 1, otherwise we have tested it up till 6, that works fine ok in a good 

environment. And we are now preparing data also. 

So, here we are partitioning the CIFAR-10 data ok, with one site with this sampling with 

alpha 1 dot o right. So, this these are certain parameters ok, for sampling and now trying 

to understand how it is partitioned right. So, we are partitioning it assuming that there is 

one global and one local server now at present ok. 
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So, you are starting the training. So, you have got various this thing. So, you are talking 

of APIs. So, if you see here, you have got this scatter gather workflow which you are 

using ok, you are initializing it and then you are running it ok. 

So, success, then the target is server then you get successes so many of this thing is 

happening ok. 

(Refer Slide Time: 29:01) 

 

And then there is a process executed which talks of waiting for the process to finish. You 

have got all of these federated client information, executing the task federated server 
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request fetching the task requested from the client so on and so forth. So, all of this is 

happening correctly then yeah. 
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So, it is basically trying to see tell you that local epoch right is now 17 out of 25 epochs 

which we have finalized ok. This is 16 epochs this is a local thing. So, if you have got 

about 2 or 5 clients like this for each of these clients right you will have you to you will 

have these local epochs for each of the sites. 

So, local epoch site-2, local epoch site-3 local epoch site-4 so on and so forth. And since 

each of these is to be showing you a maximum epoch of 25 now. So, each of this site will 

have like this ok, at the server end. 
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So, we will wait for all of this to complete the idea was to just show you how it happens, 

ok. So, if you see the learning rate it is point o 1. So, another two epochs. So, it got stuck 

again ok. 
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So, if you see here, that you have now completed everything ok and the through the 

communicator you have received ok from site-1 ok so many bytes of information in so 

much seconds and you basically have to update it now, ok. So, all of this happens ok. 
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So, this will go on happening. So, run 1, run 2 ok. So, now, here if you see this once you 

have updated and done things. So, now, the idea is after run 1 ok, and after this scatter 

gather control gives you the final information, that the round is finished and you have 

finished the scatter and gather training right. 
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So, now with respect to site-1 ok, there has to be this cross site model evaluation which 

will happen. 
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So, this model validation thing ok, with the clients is going to happen. So, it is a cross 

site validation which is going to happen. So, you have the server model which is there, 

which is basically a standard model which you would be using right. And then you are 

basically going to compare that models performance with the local models performance 

and that is called as cross site model evaluation ok. 
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So, so we are trying to schedule a task for validation and then we are waiting for it. So, 

here if you see you can see that received from example project server some information. 
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And then you can see here starting to push the execute result right from the federated 

client, through the communicator and then your server responds that you have received 

an update from this particular site right. 

So, the idea about cross site model evaluation is that everything might be a very 

confusing thing as to how it is automatically doing everything and all, but that should not 

be a concern at present. You will understand it when you basically see the 

documentation, but the basic idea is that since you are trying to have a global assessment 

of how each client is going to change your global accuracy, right. 

You should ensure that the data is not of a low quality. In the sense the information 

which you are getting should not be such that it pulls down your global accuracy down 

right. So, you will have to ensure that. So, doing that requires something like cross site 

model evaluation right, something like this is going to happen. Then I suppose I hope 

you have understood this and then once that is done, task validate exited with status task 

completion which is ok right. 
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So, you have got this information about the task validation or the validation is completed 

right. So, yeah so this is basically like about to end run. 
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So, you are going to do this, so end run fire yeah. So, process finished with execution 

code 0. So, we are having a status which shows that it is a success right. 
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So, once it is success, we can actually shut down our local what to say our server’s right 

and then try to analyze this particular thing now ok yeah. 

So, if you see this analysis here, when you are trying to shut down the server your total 

training time is 518.709 ok seconds. So, this is basically a model which is trained using 

federated learning. So, we wanted to show you this, if the data is split there is 1 client 
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and 1 server and then you train this using this ok. So, this is what we wanted to show you 

in this example, this is a proof of concept which basically tells you that federated 

learning ok can train your models effectively. 
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