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Good evening everyone, so, today we are going to actually start with a bit of hands-on, 

on containers and IDE. And specifically, we will be talking about Dockers and we will 

do hands on Dockers and I had suggested also for people who would like to do some 

hands on along with me. And I had actually submitted a link also through which you 

would have actually tried to download and install Dockers in any of the three types of 

operating systems right. 

The intention today is to just make you comfortable with Dockers. It is also going to be 

shown as to how do you use GPU with Dockers using optimized containers which 

NVIDIA also provides which effectively run on NVIDIA GPUs. But the basic essence 

today is to be accustomed and comfortable with working with Dockers.  

So, I am starting with a very basic thing; so, that if you would have installed Dockers, 

just installed Dockers you can start working with them straight away right. So, that is the 

intention of this particular session today. In the previous session you had seen the 

concepts of virtualization, you had seen the concepts of containers right. So, we are 

taking it forward from there and trying to do hands on today ok. 
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(Refer Slide Time: 01:43) 

 

So, let us start with the agenda of today, we would be doing ML workflow, why is 

actually Dockers needed right. We would be discussing about the general machine 

learning workflow and the problems faced. Then we will do hands on Dockers, I will 

take you to the NGC website wherein you can register in your leisure and try to 

download optimize Docker containers. Then a very brief on Jupyter Notebook and then 

we will try to run a Jupyter Notebook on a DGX using a Docker container right. So, this 

is the overall agenda of today. 

(Refer Slide Time: 02:23) 
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So, this is the generic workflow of any machine learning, deep learning algorithm. What 

you generally do is, the first step is to source get and prepare your data then you tend to 

design a model. You need to train and evaluate the model on a common shared platform, 

why I am telling common shared platform is there is let us say a DGX or there is a 

cluster which is commonly available to all the teams right. 

All of you would be doing your respective models or your respective application, but 

there is a centralized facility. Because its a big cluster it has to be shared by all the 

people or it can be a DGX or whatever right, but ultimately you should know how to 

work on a shared hardware right. So, once you are able to do this training and evaluation 

of the model on a common hardware, you need to test that model right and then you need 

to deploy that model.  

So, this is a generic machine learning workflow and on an average 40 percent of 

businesses right said it takes more than a month to put an ML model into production 

right. If this is the scenario right how are we going to optimize ok, our delivery in such a 

manner that we put in less amount of effort just to put any ML model which we have 

designed into production right. 

(Refer Slide Time: 04:01) 

 

So, what are the problems in such a scenario? There are lot of software dependencies to 

handle. Because we will see right there will be different teams working on different type 
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of frameworks, different type of operating systems, the versions and so on and so forth 

and all have to run on the same hardware right.  

So, you need to access the same hardware each of you will be having different 

frameworks and different approaches to solve. And you need to have deployment and 

version control problems which will be encountered as you go along ok. So, these are the 

three problems basically which you have to encounter when you are working on a 

common shared hardware right. 

(Refer Slide Time: 04:49) 

 

So, let us try to understand this dependency problem what it is. So, if you see this this is 

the common shared hardware on the slide right this is a shared hardware. So, it can be a 

cluster, it can be a DGX, it can be a system which has got multiple GPUs on that you 

would be running a operating system right and that operating system will have to be 

running certain projects which you would like to do. 

Now, let us say from the Layman’s perspective, I am just trying to tell you and correlate 

right whatever we studied in the previous class about virtualization and containers and all 

that to a very generic simple type of a example. Wherein let us say you have two projects 

and there is one team which is trying to do project one with TensorFlow with Python 3.8 

and you are trying to access a GPU and you are trying to work with CUDA Toolkit 10. 
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There is another team which is working on project 2 and its working with PyTorch 

Python 3.7 and CUDA Toolkit 11. So, what is the actual thing here of what we should 

understand; the problem here is, this particular team requires these things and this 

particular team requires these things. And all of them are supposed to run on the same 

operating system and then on the hardware right if this is the scenario. 

(Refer Slide Time: 06:28) 

 

If this is the scenario what effectively happens is, there is a dependency problem. Now 

what is that dependency problem? Right, you cannot have more than one version of a 

software, because you will have clashes about, the drivers right the toolkit all of this right 

it all gets complicated. So, if this person installs everything on this operating system ok, 

how are you going to use it?  

You cannot use it because you want CUDA Toolkit 11 the other person would have 

installed CUDA Toolkit 10. In that case what are you going to do this is one of the 

dependency problem this is a problem actually right. 
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(Refer Slide Time: 07:05) 

 

And then this ultimately means that you can only run one project ok; so, only one project 

will run at a given time in such a scenario wherein you are bound to be installing 

everything on that operating system right. 

(Refer Slide Time: 07:23) 

 

So, to sum up if there is a review team which is going to review let us say for example, 

they are trying to do some testing right of your code. So, there are there is a team A 

team, B team, C all three of the teams submitting their code for testing right say. And 
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these projects are from different teams with different requirement and review team has to 

do it.  

So, how are they going to set up these environments right which you have told that 

because it is running on your system you want it effectively to be running on somebody 

else system given the same conditions, given the same framework, given the same 

dependencies right. So, to do all that the team has to invest lot of time right to do all this. 

(Refer Slide Time: 08:10) 

 

So, ultimately what happens again if you set the system for team A review team B and 

team C would have done something else with some different framework, some different 

versions of toolkits right. In that case very hard to set up the system for review right from 

scratch and process is going to take a lot of time. 
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(Refer Slide Time: 08:30) 

 

So, there are basically two possible solutions ok which you can use which we have seen 

also in the previous class, there are virtual machines which you can use and then you can 

use Docker and containers right. So, in case of a virtual machine how is the possible 

solution going to look like right. 

(Refer Slide Time: 08:53) 

 

So, this is how it is going to look like, you have the hardware, you have the host 

operating system, you have the hypervisor and then let us say for this project 1 you work 

with the guest OS Ubuntu. And then you have TensorFlow Python 3.8 CUDA Toolkit 10 
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and then there is another virtual machine which basically is again having a guest OS like 

SUSE Linux or something and then you work with PyTorch Python 3.7 and CUDA 

Toolkit 11.  

These are isolated virtual machines in the sense that project 1 also could work on this, 

project 2 also could work on the same system right. But what is the issue? The issue here 

is that you have got computational overhead in both these cases, because you have a 

guest OS in both of that both of these virtual machines which will make it more bulky or 

heavy right it takes lot of memory.  

(Refer Slide Time: 10:04) 

 

 So, this is this ease and was one of the possible solutions which was effective till Docker 

scale. Now, in this case also let us say team A review you have a separate project image, 

team B also has a separate project image. So, review team is a bit happy about it, but the 

only thing is these images have full OS and are large in size; so, that is the only thing 

which is of a disadvantage here. 
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(Refer Slide Time: 10:33) 

 

Now, when the Dockers came the solution was something like this, you have the 

hardware you have the host operating system. You have a Docker engine and you have 

project 1 in container, project 2 in container it may have ok, things wherein it will have 

its own framework ready everything ready these are all totally isolated containers right. 

(Refer Slide Time: 11:02) 

 

So, from the review aspect these images will have the project and they are easy to share 

and manage you have got separate project images. 
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(Refer Slide Time: 11:14) 

 

So, this is how the Docker actually gives you a lightweight solution to a virtual machine 

problem. And in case you have to have a GPU access also, this is just a very basic 

diagram for people to understand that let us say this is a server wherein you have your 

Docker image running PyTorch project through the operating system. The hardware you 

have the access to the GPU and the thing which gets done here through port forwarding.  

This is your system from where you are trying to run this Docker on this hardware; on 

this hardware and then you are going to project it through your own web browser. And 

can work with Jupiter Notebook you can work with many things ok and so, this is the 

overall idea about how you can work with Dockers right. 
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(Refer Slide Time: 12:15) 

 

So, now, before we start to do some hands on, let us try to understand whatever I showed 

you ok. You have a client this is a Docker host the Docker, host will have a lot of 

containers, you will have a lot of images this is controlled by Docker demon. And then 

you have a registry from where these Dockers could be pulled.  

So, I am telling you two generic registries today; one is a registry which is basically from 

the Docker hub, and another one is a registry which is from the NVIDIA NGC cloud. So, 

you can pull in those containers ok and then try to use it for your own application or 

project development right. So, this is a basic brief idea about how is the total setup with 

which you can work with Dockers ok. 
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So, the Dockers if you see the container life cycle right, we will see what a container is 

how it is done. But for the time being just try to understand that a Docker container 

lifecycle you create a Docker container, you can run it, you can pause it, you can stop it, 

you can delete it ok. So, at various stages you can do all of these operations on those 

Docker containers. So, this is just a brief idea of Docker containers.  
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