
Applied Accelerated Artificial Intelligence

Prof. Saurav Agarwal

Department of Computer Science and Engineering

Indian Institute of Technology, Palakkad

Lecture - 53

Accelerated ETL Pipeline with SPARK part 2

(Refer Slide Time: 00:14)

Ok. So, I have been telling about that there is a lot of performance improvement and all

that stuff; but let us understand how much is the performance improvement.

(Refer Slide Time: 00:27)

1287

So, we picked up a use case, where we had data processing from data we did data

processing on based on the public dataset of 200GB CSV which is called the FannieMae

Mortgage Dataset and you can find out, I will show you the links and all in some time;

everything for notebook and all available on the internet.

So, there you will find that ok; you will be seeing that ok data in the data bricks

environment, if you use 12 node cluster of CPUs with r4.2xlarge GPU type on the T4

instances versus the T4 instances of cloud where you use in data AWS theg4dn to its

large environment.

So, you will see that the same ETL which is reading a CSV file, converting into parquet

format and then, reading it, again doing some aggregations and transformations and then,

writing it back to the parquet file is doing the same job 4 times, almost 4 times faster

than the CPU counterpart. We call it is 4 times faster; the dollar cloud bill of CPU is 8

dollars and the cloud bill of a AWS of GPU is 3.76 dollars. Since we can see that we are

saving 50 percent cost as well, in addition to accelerating it at 4x performance.

(Refer Slide Time: 01:56)

So, this was a simple dataset and simple used case. But when we go to enterprises, and

industry; so, we do use something called a decision support. Ah. So, decision support is

something which is a industry accepted benchmarks which is cross like maintained by an

independent organization. So, that any kind of processing benchmarks you need to test,

1288

we can go through this at the TPC-DS benchmark and we can compare it. Suppose if you

want to compare spark with map reduce or map reduce spark 2 versus spark 3.

So, everyone uses this TPC-DS as a benchmark tool for doing that kind of testing.

Hence, we thought that using this particular benchmark would be more preferable so that

we can prove our point to the larger customers as well.

(Refer Slide Time: 02:51)

So, we use 3 terabyte of raw data; yes, we compressed the data of 3 terabyte of CSV into

1 terabyte on disk and then, we use double values instead of decimal values and the data

was partitioned, stored in the native file system for the environment using the EGX

cluster and the DGX A100.

1289

(Refer Slide Time: 03:17)

So, what we did is if you see this diagram, so the hardware we compared against Google

Data Proc, DGX A100 which is combination of 8 A100 GPUs and finally, EGX which is

combination of 8 servers with 2 GPUs each ok. So, we did this benchmarking on these

three kind of hardware cloud on premise and two type of on premise; node based and

specialized machine based.

(Refer Slide Time: 03:46)

So, we found that whether it is EGX, DGX or cloud, we are definitely faster. Though, we

are then fastest in the EGX kind of system, where we have 2 GPUs each in the each

1290

server and multiple such servers. DGX was faster, but it was around 2.19x faster and

then, on cloud, it was almost 2x faster. The latest benchmark we have does not have even

failures all the queries are running as usual.

(Refer Slide Time: 04:16)

Ah So, if we add the UCX, so how much faster it is? The accelerated spark shuffle, if we

add that on top of the normal GPU acceleration, we further get 1.63 X faster than GPU

alone and if we compare it with CPU, we get 3.5x faster. So, hence, we see 1.5x to 2x

faster for the networking acceleration as well.

(Refer Slide Time: 04:47)

1291

All type of queries are not faster. So, there is no one stop solution as of now that you can

have to run all the queries faster. So, here if you see UCX plus GPU speed up versus

GPU. So, the amount of the amount of data, we are shuffling is directly proportional to

the acceleration we are getting. If we are not shuffling a lot of data, the acceleration is

not that much. If we are shuffling a lot of data, then we have a lot of acceleration.

(Refer Slide Time: 05:23)

So, why GPUs are slower? There are if the data size is small, if the data queries are

failing, if there is a lot of CPU usage, if there is not lack of GPU support, these kind of

queries we are seeing to be slower.

1292

(Refer Slide Time: 05:45)

But most of the queries are faster, they are crazy fast because we are able to achieve task

level parallelization. So, if you see here, the amount of data we are processing or the

number of parallel tasks we are running; task 1, 2, 3, 4 amount of data we have. So, the

task 1 has a very less amount of data as compared to the task 1 of GPU. So, overall

throughput in addition to the parallelization is increased in processing using the GPU

base system. Hence, we are seeing the fastness.

(Refer Slide Time: 06:23)

1293

Cloud is a bit slow because it does not have networking interconnects faster; the

collocation of the nodes are not there sometimes. It has shared nodes, data proc specially

has external shuffle for stability, data locality is missing there. So, if you are sitting in

Bangalore and if you are running cluster in US, then the data locality issue is also there.

Hence it is slower.

(Refer Slide Time: 06:51)

Some of the queries are crazy fast on networking interconnect because sparks of shuffle

are inefficient for I/O bound or disk for shuffle which writes a lot of data to the disk and

many times to the disk; sometimes there are hardware bottlenecks, where PCIe bus is

involved as I was showing in the diagram. So, for all those scenarios, the thus UCX is

fast and slow respectively ok.

1294

(Refer Slide Time: 07:22)

Let us move to the Cloudera section now. So, we accelerate rapids on cloudera as well.

(Refer Slide Time: 07:36)

So, where we if you see a typical data science workflow which starts with data loading,

data preparation, model training, packaging deployment, serving and monitoring. So, all

this based on cloudera data science, data platform is made available to the users and we,

at media are accelerating each part of it, if not all. ah

1295

(Refer Slide Time: 07:59)

So, we know that spark, the latest version of cloudera called cloudera data platform has

spark 3 enabled capability where we can enables spark 3.

(Refer Slide Time: 08:13)

And we can optimize for our workloads as well based on GPU acceleration. So, we have

seen that 5X performance acceleration, where we are just saving 3X of the total cost

because of the 5X acceleration. Based on the type of GPUs, it is more or less. So, if we

use A30; two A30 per node, then we see that ok it is 5X faster; if we use one A100 per

node, it is 6X faster.

1296

(Refer Slide Time: 08:47)

So, we did some benchmarking specifically on cloudera data platform as well, where we

used identical cluster of CPU as a GPU, where we use 8 servers with 232 core AMD

CPUs and 100 GBs CPU versus the same CPU plus 1 A100 GPU per server.

So, there we saw another in our data analytics pipeline, where we had data from

customer billing, phone features, internet features, account properties, customer

demographic data and so on and so forth. We saw that where we doing data preparation

like finding out the account properties, internet features, customer billing events, phone

features, demographic data and then, doing some analytics on top of it was faster.

So, how much faster it was? So, it was around 5X faster; 4.3X faster. Now, this 3X

faster; 4.3X faster is coming from the entire pipeline on an average, where we are

combining data preparation, analytics both together. So, analytics also involve the data

science portion, where we are also doing feature engineering model training and so on

and so forth ok.

1297

(Refer Slide Time: 10:11)

So, that is the from the theory perspective. Let us let me show you some hands on as

well.

(Refer Slide Time: 10:28)

So, first of all, I will like to show this particular website, where we have the entire details

about the spark on GPU acceleration. So, this is called spark nvidia.github.io/spark-

rapids.

1298

(Refer Slide Time: 10:45)

(Refer Slide Time: 10:45)

1299

(Refer Slide Time: 10:46)

There you will see what kind of acceleration, we give how to use at a high level and all

the details which I will went through today. Then, it will also give ok how to configure it

On-Prem, EMR, Databricks etc etc; how to download those jars and configurate; how it

to check the compatibility, what are the operative just a put it.

(Refer Slide Time: 11:00)

(Refer Slide Time: 11:06)

1300

(Refer Slide Time: 11:10)

As I was saying that not everything is supported; decimal some limitation is there,

timestamp calendar intervals and so on so forth.

1301

(Refer Slide Time: 11:15)

How to tune the accelerator for spark tuning?

(Refer Slide Time: 11:21)

How to set the number of executor, pooled memory, print, pinned memory; all these

details will find here.

1302

(Refer Slide Time: 11:25)

(Refer Slide Time: 11:31)

And also, if you want to do your hands on some examples of the ETL notebook, you will

find. So, one such notebook apart from this is the mortgage dataset we have.

1303

(Refer Slide Time: 11:44)

(Refer Slide Time: 11:49)

1304

(Refer Slide Time: 11:54)

And another notebook is on the and just open that XGBooster.

(Refer Slide Time: 11:56)

So, this is a simple use case, where I am comparing CPU versus GPU on using colab;

Google colab ah. So, you can find these notebooks in my github as well which is again in

public website.

1305

(Refer Slide Time: 12:11)

(Refer Slide Time: 12:23)

So, here the CPU versions are there and here, the GPU versions are there. So, I just use

the same notebook here and import it in colab and then, I made sure that I am allocated at

T4 GPU.

1306

(Refer Slide Time: 12:38)

(Refer Slide Time: 12:40)

So, if you are not allocated, then you have to go to the runtime, change the runtime type

to GPU and then, ok. Again, if you do not see the nvidia-smi command giving tesla T4,

then you can do a factory reset and try to run it again and again. So, maybe 5 to 10 times

you have to do; but you will definitely get allocated one GPU for sure.

1307

(Refer Slide Time: 12:58)

Once you are allocated the GPU, you can follow the notebook. I will just magnify and

explain at a high level. So, here if you see first, I am running downloading Java8 because

it needs Java, then I am downloading spark 3.

(Refer Slide Time: 13:14)

1308

(Refer Slide Time: 13:21)

Then, I am downloading unpacking the spark 3; open source for this.

(Refer Slide Time: 13:24)

Then, I am installing some library called find spark, where which will be able to use and

you know initialize spark; setting the JAVA HOME, SPARK HOME, downloading that

data the forest cover data in parquet format, then setting up the libraries.

1309

(Refer Slide Time: 13:45)

(Refer Slide Time: 13:47)

So, we need the cuDF library, we need the RAPIDS Spark library, the jars which I was

talking about, we need the XGBoost because we are running XGBoost model for GPU.

So, all those jars will be downloaded from the respective maven repositories into the

local.

1310

(Refer Slide Time: 14:04)

(Refer Slide Time: 14:07)

1311

(Refer Slide Time: 14:08)

And then, we can move it to the respective location.

(Refer Slide Time: 14:11)

And then, set up the form like set up the jars in the PYSPARK shell. So, that we are able

to execute spark code now.

1312

(Refer Slide Time: 14:23)

So, we can configure the local; that means, it will use the only one node cluster.

(Refer Slide Time: 14:28)

This is the configuration for enabling the spark rapid GPU plugin and we do not want

GPU pooling because we only have single GPU of now. So, I am disabled

1313

(Refer Slide Time: 14:40)

Then, we can add all the machine learning XGBoost jars reading the data; creating data

spark data frame; training and testing data.

(Refer Slide Time: 14:52)

1314

(Refer Slide Time: 14:55)

So, this is the data frame forest tree cover. So, where we have elevation, aspects, slope,

horizontal distance, to hydrology, vertical distance, horizontal distance, to roadways and

so on and so forth.

(Refer Slide Time: 15:10)

So, we are using this data.

1315

(Refer Slide Time: 15:17)

Passing the parameters, classifier, setting the label, feature columns, classifier.fit train

the data and then, making the predictions.

(Refer Slide Time: 15:23)

Ah Selecting the and computing the test error; so, here we are using the ml library

basically multi classed evaluation for understanding the accuracy, though the accuracy is

bad; but definitely, it will help you to understand the flow at least.

1316

(Refer Slide Time: 15:42)

(Refer Slide Time: 15:46)

So, the same thing, we are doing for CPU versus GPU and we are finding ok for CPU

versus GPU training and testing data, converting from pandas to GPU format, running by

XGB format.

1317

(Refer Slide Time: 15:54)

(Refer Slide Time: 16:01)

So, we are comparing against a normal cudf as well.

1318

(Refer Slide Time: 16:06)

So, cuDF might have heard about that this alternative to pandas on GPU. So, even spark

gets faster than cuDF.

(Refer Slide Time: 16:20)

So, this is a simple classification kind of data set. ah

1319

(Refer Slide Time: 16:25)

Though you can find more and more examples, where the FannieMae Mortgage Dataset,

which I was talking about you can keep that as well here.

(Refer Slide Time: 16:31)

1320

(Refer Slide Time: 16:36)

So, if I can go through; so, here if you see the fanniemae mortgage data set, the

installation part is exactly the same; just that the data download is different.

(Refer Slide Time: 16:45)

Because you are downloading a new data set of mortgage data of 200 GB csv.

1321

(Refer Slide Time: 16:54)

Then, we are reading the data. ah

(Refer Slide Time: 16:56)

So, the base function, the main function is at the end, where which is calling the read

parquet.

1322

(Refer Slide Time: 17:00)

Then, it is converting that parquet into read csv and converting to parquet.

(Refer Slide Time: 17:15)

Then, reading the parquet and running this notebook function called run mortgage, which

is basically running the two more functions called create of delinquency and create

acquisition. So, create perf delinquency is one where we do the maximum

transformation, where you can see we have case one statements, we have group by

aggregates, where we have max, min, select, joint joining of data frames.

1323

(Refer Slide Time: 17:27)

(Refer Slide Time: 17:29)

hm.

1324

(Refer Slide Time: 17:41)

And then, with column exploding selecting and so on and so forth.

(Refer Slide Time: 17:45)

1325

(Refer Slide Time: 17:50)

And then, we have creating acquisition a function, where we have creating data frame,

joining the data frame, dropping, adding more columns. So, you might have if you even

do not know spark, it is very similar to what you can do with pandas or similar tools. So,

it is a data frame based processing, a logic which you definitely might know about.

(Refer Slide Time: 18:13)

So, here also you can see that there is a performance improvement for sure. So, here if

you see we are running in 1082 seconds. Ah. So, if I compare it with GPU, so this was

the CPU part, where we are taking 1082 seconds.

1326

(Refer Slide Time: 18:54)

But the GPU the same thing on the GPU will just run in 513 seconds. So, you will see

that ok you are even gaining 2x on the Google colab environment which is free to use as

well. Because it does not have that great GPU, it is a very cheap GPU called T4. So, you

will just see 2 to 2.5x acceleration. But if you use better GPUs like A30, A100, then

definitely you will find more and more acceleration.

1327

