
Applied Accelerated Artificial Intelligence

Prof. Saurav Agarwal

Department of Computer Science and Engineering

Indian Institute of Technology, Palakkad

Performance Boosting ETL Workloads Using RAPIDS on Spark 3.0

Lecture - 52

Accelerated ETL Pipeline with Spark part 1

(Refer Slide Time: 00:15)

Hey hi everyone, this is Saurav Agarwal again. So, I am working as a senior solutions

architect at NVIDIA. So, today I will be going through Performance Boosting ETL

Workloads Using RAPIDS On Spark. So, I will be covering the following agenda today.

1263

(Refer Slide Time: 00:33)

So, I will start with what is Spark all about where it is applicable and what is RAPIDS

platform all about on Spark, how it works in detail. So, I will get in depth of how the

acceleration on GPU works on Spark using the NVIDIA GPUs and NVIDIA RAPIDS

SDK. Then I will deep dive into performance results where I will compare the CPU

versus GPU benchmarks of various types of queries or data processing workflows using

Spark on CPU versus Spark on GPU.

And at the end I will cover RAPIDS on Cloudera data platform which is one of the most

famous and used data platform on how we can use the rapids Spark on that. I will try to

keep the session very basic, but there are some intricacies or Spark I will go through. So,

in case you are not aware of spark. So, please bear with me it is very difficult to cover

and two and Spark in one session though I will try to make it as simple as possible from

the listener point of view.

1264

(Refer Slide Time: 01:48)

So, lets start with where Spark is adopted. So, we know that Spark has become a top

framework for data processing and data engineering across enterprises. So, if there is big

data then there is Spark, because Spark is not only scalable, but also is a Swiss army

knife and very robust to do data processing any kind of data extraction, data

transformation, data loading from A system to B system or X system to Y system.

So, be it consumer internet companies, be it financial services telecom, federal

everywhere we have use cases using Spark as the ETL or the data processing framework.

So, like recommender systems, advertising analytics, audience segmentation, fraud

detection, IoT analytics, geospatial analytics. So, you name it and wherever we have data

in volumes, velocity and variety we have big data processing, we have Spark there.

1265

(Refer Slide Time: 02:52)

So, how a traditional or a kind of a usual modern enterprise users Spark for the data

processing and ETL workflows? So, if you see this slide here we may have n number of

sources it can be say IoT data it can be CRM data, it can be data coming from sales

source systems. So, a customers are directly putting some forms entering the data. So, it

can be from a web app or a mobile app anything.

So, first step is to ingest the data do some ETL and discard all the bad quality data or

data which is not needed for the analytics purpose. So, and then we store the data in

something called a data repository or a data lake. So, once we store the data in the data

lake then we can have multiple use cases on top of it. The first use case be it can be; it

can be a analytics or on the unstructured or semi structured data, in the data lake. So, if

we need to do some raw data analytics then we can do it on top of the data lake itself.

But apart from that we can do two more things, we can have a data warehousing system

where what we do is we de normalize the data and we make it more and more usable for

structured relational databases kind of stuff where we can run large analytics query

which is more of a historical descriptive analytics queries which may run say suppose in

the last 10 years of data, last 20 years of data and give us some analytical insights.

So, we call that kind of where data repository as a data warehouse and Spark can be used

to build that data warehouse and those queries on top of it as well. And then finally, we

have the data science or the ML AI team where they can use the same data for training,

1266

model training and inferencing. So, we need the first time historical data taking in and

doing the model training suppose they want to build a channel analytics model and build

a XG boost kind of model.

So, they can take all the data and run the XG boost model training on top of it to create

that model and then after that for the inferencing also, the real time data is coming and

we need to infer at real time we can leverage something like Spark streaming to stream

the data and do the ETL in real time and do the inferencing as well. So, there are multi

folds use cases in an organization be it raw data processing, be it analytics on the

unstructured data or loading the data into the lake for data warehousing and finally, pre-

processing the data for the data lake for training.

So, all these functions where we have need for a data processing and b data analytics we

need apache Spark as a base framework; why? Because, traditional frameworks like

pandas or SQLs or similar tools do not scale I mean if the data volume goes up in

gigabytes or hundreds of gigabytes or terabytes or petabyte then a single system or a

single server will not be enough. Hence, we need something which is distributed which

is real time which can process both structured and unstructured data as well. So, Spark is

one Swiss army knife which can do all of this together.

(Refer Slide Time: 06:24)

So, if you might know about big data processing you might know about the word

Hadoop. So, Hadoop era started in the early 2000s where Google and Yahoo released

1267

multiple papers on big table and map reduce. And similar frameworks, where they used

to process terabytes and petabytes of data, but it was very slow. So, map reduce

framework or the Hadoop framework as a whole was very good to process batch data,

but the processing was so slow that it took sometimes even days together to process

some new volume of data.

So, after that in the early 2000s 10 era Spark came into the picture and then many

organizations felt that there is a need of faster data processing; hence, Spark leverage the

memory that the RAM instead of that hard disk to do the intermediate data processing.

So, the entire workflow instead of being run on CPU plus disk, it ran on CPU plus RAM

and finally, if the there is a need to write back the final process data as the output to the

disk.

So, there is a huge saving from the perspective of read and write to the disk because

reading and writing to the disk is very slow, though our processing capabilities have

increased multifold our RAM has the RAM capacity has increased multifold, but the

speed of reading and writing data from a disk or to a disk is still not that great. Hence,

the Hadoop framework was really slow to be used to do data processing and data

analytics on top of it.

Hence, the Spark became very popular and it became. So, popular that almost 80 to 90

percent workloads got migrated from map produced to Spark. And then finally, after this

Spark 2 eras, we at NVIDIA are envisioning that the next set of say the next set of

accelerated analytics era on Spark will be on Spark itself. There will be no new tool

which will be coming like Spark, but it will be Spark itself, but it will be highly GPU

accelerated and it will be based on previous optimizations done on the open source code

of Spark on the GPUs.

So, here since we first moved from disk to memory, now we are moving from memory to

GPU plus GPU memory. Hence, we think that the next wave of accelerated computing or

data processing will be on Apache Spark’s deal on GPUs.

1268

(Refer Slide Time: 09:27)

So, there are three main advantages of running Spark 3 on NVIDIA GPUs first is yes

execution time is faster. So, accelerated data preparation be it for machine learning, be it

for data warehousing, be it for data analytics; quickly move to the next stages of the

pipeline focus on the most critical activities. Second will be streamlining analytics to AI,

so orchestrating end to end pipelines from ETL to model training to visualization same

infrastructure for Spark and machine learning deep learning frameworks.

And finally, reducing infrastructure cost where we can complete jobs faster with less

hardware. So, we will save a lot of cost there. So, suppose if you can replace 100 CPU

nodes with say if 30 GPU nodes. So, imagine the amount of cost you are saving for the

organization. So, even if the GPU node are 1.5 x costly, but since you are reducing the

number of nodes by 3 x still you are at the positive total cost optimization state.

1269

(Refer Slide Time: 10:38)

So, first of all a lot of organizations are still using Spark 2, I did some survey recently

and I found that on a high level 50 percentage of the organizations are on still Spark 2,

the reason being there is a; there is a tech depth that they need to work upon that. That

means, that they do have the plan, but they do not have enough resources to migrate the

jobs, because there are some breaking changes as well.

And this is the biggest reason, but the breaking changes are mainly 5 to 10 percent. It is

not more than that. If the organizations see these benefits definitely they will prioritize

the 50 percent which have not done yet to migrate their workflows to Spark 3. Now, if

you see this Spark 3 advantages basically without GPUs at all is that you can have

adaptive query execution; that means, that automatically it will optimize the SQL query

execution or the processing if based on the amount of memory amount of CPU it needs.

Then we have dynamic partition pruning; that means, we will only prune or we will only

scan the data which is needed for the analysis not go to the entire memory or entire disk

you are to check where the data is lying and all that stuff because, we do have that

partition pruning which is very dynamic in nature in the Spark 3. So, apart from that we

do have graph support, Kubernetes support which will give you better orchestration and

better language and coverage of all the operators we can think of in SQL and data

processing world.

1270

However, apart from that, if we just migrate from CPUs Spark 2 to CPUs Spark 3, we

have seen based on various benchmarks that you will get at least 2 x acceleration.

However, it is not it does not ended there if you add the GPU flavor to it you will further

get at least on top of that 2 x you will get further 3 x to 4 x at least on an average

acceleration, plus you will also get one single cluster for both your data preparation and

model training.

Because, starting this Spark 3 and the GPU support you can train your models on Spark,

basically if they are based on XG boost, TensorFlow and PyTorch based models you can

use TensorFlow on Spark or frameworks like Horvod on Spark to do the machine

learning or deep learning and you can do Spark on the same cluster for the data

preparation. Hence, we can call it that ok we can use the same cluster for data

preparation and ML DL as well.

(Refer Slide Time: 13:23)

So, NVIDIA brings GPU acceleration to Apache Spark. So, here we you can see that

seamless integration with Spark 3 has been done, where we are using unmodified

customer code or your code is completely unmodified do not need to change or make any

configuration changes in the code itself. So, only change is the underlying cluster if we

use a GPU cluster rather than a CPU cluster its more than enough to do the processing on

GPUs.

1271

So, however, from the coverage perspective it covers Spark data frame, it covers Spark

SQL, it covers machine learning deep learning frameworks like PyTorch, XG boost,

PyTorch for deep learning, TensorFlow or deep learning; Horvod for deep learning and

XG boost for machine learning. I mean from the perspective of classification regression

and classical machine learning.

(Refer Slide Time: 14:20)

So, here if you see there are apart from the SQL API and data frame API we do also have

custom implementation of Spark shuffle which is optimized to use something called

RDMA and GPU to GPU direct communication. That means, if the data during the

processing stage suppose there is a stage where you need to aggregate the data.

So, in those aggregation steps, we need to move data from one node to another; because

data is distributed across multiple nodes and we cannot use the data where it is lying.

Suppose, if you need to calculate the average age. So, age of first 5 people is lying in

node 1 and age of next 5 people is lying in node 2 and we need to calculate the average

age. So, the intermediate average age of node 1 and node 2 needs to come somewhere to

get again averaged out to get the final result right.

So, because of that the networking IO is also a factor; that if the networking is slow. That

means, movement of data from one node to other is slow then it may become a challenge

for processing in the GPUs because unless and until we have accelerated Spark shuffle

the entire job can go slower. Hence, we have this a custom implementation where we

1272

directly move data from one GPU to another GPU data on the same node or a different

node using something called UCX libraries.

So, that detail I will come through in the next set of slides. From the perspective of SQL

we have the base RAPIDS library on top of on bottom of it called libcudf and then yes it

uses the CUDA architecture at the end because that is what our main USB is that the

GPUs provided by NVIDIA have the CUDA cores which are highly optimized for

increased throughput and parallel processing. So, that is what CUDA is helping us to do.

(Refer Slide Time: 16:34)

So, what are the NVIDIA innovations particularly on the Spark 3 what kind of open

source contribution NVIDIA has done to make it faster to run on GPUs. So, these are the

main three changes which has been done first is NVIDIA has created a jar or a java

based I mean jar based plugin, which can be used to accelerate in by passing it as the

additional jar to the Spark jobs.

So, it intercepts and accelerates SQL and data frame operations, dramatically improving

the ETL performance. Second is modification to the Spark components where we have

columnar processing support in the catalyst query optimizer. Columnar processing that

means that instead of processing row by row, suppose it has thousands and millions and

billions of rows. So, it cannot process one row at a time or row by row right; it will be

very slow and that will not even leverage the parallel processing of NVIDIA.

1273

So, what we can do is instead of that passing the columnar kind of queries and columnar

processing the entire column together in batches so that the entire chunk of the data goes

together in the GPU system and gets processed together. So, that is how the modification

has been done. And then as I said the Spark shuffle implementation which I already

explained and finally the third is GPUs aware scheduling.

That means, if you have a cluster which has a combination of CPU nodes and GPU based

nodes and that does not mean that only it will run on GPU nodes or it will fail on the

CPU nodes. Wherever it has GPU where whatever possible it will run on GPU, whatever

possible not possible on GPU it will fall back on the CPU. So, it is a combination it is the

same job the same query can have multiple operations like select, filter, aggregate.

So, maybe filter sometimes may work may not work on GPU based on the operator

support capability and if it supports on GPU will run on GPU if it is not supported, it will

fall back on the CPU. Hence, your job is not killed or failed and at the same time you are

also able to leverage your investments into the GPU.

(Refer Slide Time: 19:00)

1274

(Refer Slide Time: 19:04)

(Refer Slide Time: 19:09)

So, RAPIDS accelerator for Spark is available on all types of platforms now be it open

source Spark, be it Databricks, be it Google Cloud, be it a Amazon EMR, be it Cloudera

example of which I will show you today on the we can also do it in the Google colab

environment.

1275

(Refer Slide Time: 19:29)

So, one of the customer story we have here is Adobe where they got 7 x performance

boost and 90 percent cost savings on data bricks. So, they have given this testimonial to

us that significantly faster performance with NVIDIA accelerate Spark 3 compared to the

Spark 1 CPUs.

(Refer Slide Time: 19:55)

So, let us deep dive on exactly how it works how the CPU to GPU conversion works and

why it is faster. So, the three things which I told, how exactly that will perform at the

end.

1276

(Refer Slide Time: 20:11)

So, here if you see Spark SQL how the CPU physical plan look like. So, any query even

if you do not know about Spark just let me explain at a high level that any query whether

you use traditional SQL platform or you use this modern Spark platform needs to go into

a physical plan that how this query will get executed in the hardware ok. So, if you see

the hardware execution, so first the query is data frame based then the logical plan is

created then the physical plan is created then the RDD is created.

(Refer Slide Time: 20:47)

1277

So, that particular plan is now changed the CPU physical plan gets rewritten because of

the jar which you add, because of the plug in which you add to the GPU physical plan.

So, instead of running on say CPU 1, CPU 2, CPU 3 it will run on a GPU 1, GPU 2,

GPU 3 and instead of creating row based RDD as I said, we will create RDD of

columnar batches. That means, maybe one column at a time maybe that particular

column 20000 values at a time.

So, it will entirely go together and will execute on one core of the GPU and similarly we

since we have so many codes a lot of such columnar batches can go and execute in

parallel.

(Refer Slide Time: 21:34)

Deep diving into the physical plan now you may ask that ok, how the physical plan looks

like. So, if you see the physical plan has a lot of steps if you see on the right hand side

the CPU physical plan, it reads the parquet file converts it to row format and then does

the stage aggregates, shuffle the data across the nodes because there is aggregate

function here, then second aggregate and then finally, write it. But from the GPU

perspective, it will read the parquet file it will directly do the stage aggregate.

There is no need of converted conversion to the row format. And then we will have the

shuffle exchange which will be again accelerated because of the RDMA capability which

I was talking about and then it will directly go to the writing the parquet file without

bothering about the row format again. Hence, we see that there are lot of steps which are

1278

not required like specifically working with the row format data and also come

accelerating the processing and shuffle of the data across the nodes. Hence, it is more

faster than the CPU plan.

(Refer Slide Time: 22:49)

(Refer Slide Time: 22:55)

Now, deep dive into this shuffle as I was explaining about the UCX library that what is

UCX. So, the form of UCX is unified communication x library which is again like a kind

of a plugin, if you deploy it in your nodes which has the GPU, it abstracts

communication transports. So, what it does is suppose you have a specialized

1279

interconnects. So, the network fabric, the by default the network fabric used to connect

from one node to another is Ethernet which will give you a maximum of 10 GBPS speed

or something like that.

But there are some specialized interconnects nowadays being used which is something

like InfiniBand or RoCE that is RDMA over conversed Ethernet which can provide up to

202 to 300 Gbps speed. So, what you unified communication next library does is, if it

finds that this particular cluster has a hardware which can support higher bandwidth

memory data transfer like 200, 300 Gbps.

So, first it will identify that kind of hardware second is it will redirect the data transfer

from a normal TCP based CPU to CPU Ethernet based 10 Gbps movement to a

accelerated movement of data up to 200 to 300 Gbps.

(Refer Slide Time: 24:16)

So, here if you see from the example from the hardware perspective the CPU centric data

movement even if it has GPUs, if the actually UCX library is not added, then you will

see that GPU 0, GPU 1 will have to transfer the data to the CPU first to go to the GPU

from 1 GPU to other. Hence, there is the PCI-e bus is a bit slow if the data transfer is

involving the PCI-e bus and the CPU in between as a hop then it may become again a

bottleneck for the performance.

1280

(Refer Slide Time: 24:59)

Hence, the GPU center data movement completely removes the CPU from the equation

and it says that, whether you have a RDMA or Infiniband or a specialized interconnects

like NVLink I will first prefer to do that instead of preferring to use CPU. Hence, it is

very fast and dynamic in nature.

(Refer Slide Time: 25:25)

So, if you see like a brief description about hardware InfiniBand is UCX optimized TCP

transfers may not show performance advantage, hence you can use that. NVLink is

fastest GPU to GPU which is only present in our specialized systems like DGX and also

1281

we can do some friendly PCI topologies where GPUs and the network the interface cards

connected to the PCI switches instead of the root complex can achieve a full PCI

bandwidth.

So, that will also make sure that the even if the PCI is involved it is utilizing as fast as

possible; because, at the end of the day you can have a scenario where the GPUs are not

on the same node it is on the multiple nodes.

(Refer Slide Time: 26:16)

(Refer Slide Time: 26:20)

1282

So, the other feature we have added is stage level scheduling. So, you may know that ok

when we run distributed computing jobs in Spark. So, it divides the data into chunks ok.

We call those data we can call it as partitions, we can call it as blocks or whatever you

can call it. So, those partitions of data pick up the parallel task. So, each data partition

goes to a task.

And if the task level execution completes for all the task level execution completes then

only we can say that ok that particular job is complete; because, a job is a combination of

many tasks and a data is like a data set is a combination of multiple partitions. So, we

can run the each partition on each task and multiple tasks combined to make a job. Now,

you may say that ok what will happen if some of the operators in the same job are

supported and some are not supported.

So, their stage level scheduling will happen; that means, the stages where we will see

inside the job that ok if we say so, there are multiple types of stages. So, first is narrow

transformation and the other type of transformation is wide transformation. If there is a

change in transformation from a narrow to wide; suppose you are filtering a data and

then aggregating; that means, it will have two stages.

One is filter stage other is the aggregate stage. So, because of the stages being multiple,

so if the stage one is not being supported on GPU then it will run on the CPU if the stage

two is being supported on the GPU that will run on the GPU. Similarly, you can think

from this diagram that suppose ETL stage is there and the ML stage is there. So, ETL

stage I want to just run on CPU or it is not supported on the GPU, it will run on the CPU

itself and the ml stage will run on the GPU.

So, thereby giving a full flexibility that ok you can have your GPUs to start with and you

do not have to convert your entire 100 nodes or 200 nodes of cluster to a GPU based

cluster to start with.

1283

(Refer Slide Time: 28:36)

So, the Jira ticket is 27495 where we have contributed and we have added that ok

specifies path resource requirements for operation, it dynamically allocates container to

meet the resource requirements and it schedules task based on appropriate continuance

which may run on GPU or run on CPU in parallel.

(Refer Slide Time: 29:05)

The columnar processing support is also added on the Jira ticket 27396 where we have

added accelerators like GPU, FGPA, SIMD and so on and so forth.

1284

(Refer Slide Time: 29:20)

So, how you do the scheduling? So, how it will identify that which nodes has GPU

which node does not have GPU? So, where you submit; so, this is a shell command to

submit a Spark job to do the data processing.

So, here if you see there is a additional parameter that ok the number of GPUs 1 the

number of resources for GPU 2. So, this is the discovery script. So, this discovery script

will make sure that to find out that in that particular node we do have GPU or not if it has

GPU, it will use the GPU, otherwise it will not use the GPUs at all it will run on the

CPUs.

1285

(Refer Slide Time: 30:01)

If you want to see on the UI from the GPU perspective, so that ok, if the GPUs are being

used or not, so you can click on the executor tab of the Spark environment and click on

the resources check box and there you will find that ok, GPU 0 1; that means, GPU is

being utilized as of now.

1286

