
Applied Accelerated AI

Dr. Satyajit Das

Department of Computer Science and Engineering

Indian Institute of Technology, Palakkad

Lecture - 05

Introduction to Operating Systems, Virtualization, Cloud Part -2

(Refer Slide Time: 00:17)

(Refer Slide Time: 00:18)

So, system VMs in detail so, that we can get some more idea about these stacks. So,

basically the system VMs or system virtual machines are also called as hypervisors or

97

Virtual Machine Monitor or VMMs. So, wherever you see this or encounter this term as

VMM or hypervisor; that means, it is the system of virtual machine that is running

underneath.

Now, what is an what is a hypervisor? Hypervisor is an operating system for operating

system, because you can see that you have this hardware and when you boot this entire

system, the first thing gets booted up is this hypervisor. And, then you have multiple OSs

which will share the underlying hardware through this hypervisor of course, but these

virtual machines will have different OSs let us see OS 1, 2 and 3.

Now, this hypervisor will get booted up initially or in the beginning and then OS 1 will

get booted up, OS 2 will get booted up, OS 3 will get booted up ok. So, hypervisor is

essentially providing the virtual execution environment for entire OS and its application

which will be running on top of this operating system. Now, what was the advantage or

what was the difference between this hypervisor and the OS from the system the

computing system point of view?

Because, if you have the operating system alone on the top of hardware then the OS was

supposed to get booted up in the beginning itself and instead now the hypervisor is

getting booted up. And, after that your guest OSs will get booted up on these different

virtual machines.

Now, the key difference is that hypervisor here try will try to get invisible or try to stay

completely transparent. Because, if you see the operating system point of view operating

system will let us say will try to access the hardware through several privileged

instructions, that we have seen before like trying to access the file or trying to access the

network or so on and so forth.

So, basically you are initiating the privileged instructions from this OS to for this

hardware. Now, to get invisible what this hypervisor would try to do is that it will trap

those privileged instructions and then it will emulate in the underlying hardware ok, for

this underlying hardware which is the underlying eyes. So, guest operating system does

not know at all that it is actually doing something else which it was not supposed to do.

It was supposed to let us say try to access the memory or maybe disk or network

interface then it will or maybe let us say some IO devices if you want to access maybe

98

some maybe let us see your microphone or camera, it wants to try to access then it will

initiate the privileged instructions and the hypervisor will trap them and emulate them for

the underlying.

And that is the flexibility of using this hypervisor as the completely transparent system

between this OS and hardware. So, all the privileged instructions that are coming from

different virtual machines hypervisor can now schedule them for the underlying

resources that are available. So, the hypervisor is completely doing the same thing as

operating system was supposed to do that scheduling, the resource management, the

allocation.

So, everything hypervisor is now doing the same things, but for the virtual machines that

is on top of that. So, when OS guest OS gets executed that privileged instructions,

hypervisors intercepts the instructions and check for correctness and then emulate that

instruction for the underlying hardware and that is the difference between a traditional

OS and your hypervisor.

(Refer Slide Time: 04:53)

Now, let us look about different types of hypervisors that are available. So, there can be

type 1 hypervisor which is on bare metal or native. So, basically hypervisor is lying on

top of your bare metal hardware and then it is kind of trapping all the privileged

instructions coming from the virtual machines, let us say VM1 and VM2 guest operating

systems and applications are running completely in separate environment right.

99

So, VMware ESX basically VMware has different hypervisors for different machines

like desktop; your server. So, basically VMware ESX is server level system hypervisor,

Xen also provides system level hypervisor which is type 1 hypervisor. So, basically what

these hypervisors doing is that it tries to completely be transparent.

So, the virtual machines or the guest operating system which is running in the virtual

machines they will do the they will initiate or invoke these privileged instructions to

these hypervisors. Actually, they do not know that they are doing that to hypervisors, but

hypervisor underlying that will trap them and emulate them and get back to this one.

So; that means, all the things like basically when you are seeing that the stack it is very

important to understand that when you are booting up your hypervisor is get gets booted

up initially. So, in the beginning and then your guest operating systems will get so; that

means, to have or to control the hardware underlying hardware, the all the IO available

inside this hardware, all the network or file system that are available inside the hardware

to have the control you need the drivers also present inside the hypervisor.

So, writing hypervisor from scratch is kind of the type 1 hypervisor because it is

completely independent of everything and it is underlying all the guest operating system

and basically it is sitting on top of your hardware. So, so it must have all the drivers that

will be necessary to access the underlying hardware. Now, type 2 hypervisor will give

you some flexibility in terms of implementation.

So, what that does is that it is now no longer a part of your; that means, you are now no

longer writing the hypervisor from the scratch. Now, what you are doing there, you are

now making the hypervisor a part of your operating system as well as part of your user

space. So, now, the question is why I will write all the drivers that are already present

inside the operating system right.

Operating system has its own drivers and modules to control the underlying hardware.

So, why I will write the all the things from the scratch which is the type 1 hypervisor

doing. So, with the help of native operating system; so, native operating system is

essentially which is running on the bare metal hardware and guest operating system

which is running inside your virtual machine which is not running in the on the top of

your bare metal hardware.

100

Now, on the bare metal hardware your native operating system will be running. So, why

not that taking the advantage of all the drivers and modules that are present inside the

operating system and put your hypervisor in the kernel portion. So, you write one kernel

module inside the operating system to take over the privileges; that means, to take over

the control of all these modules which will be inside your native operating system.

And, also provide some user level libraries or some links to run your user level

applications right. So, now, we have type 2 hypervisor which is kind of hosted on the

native operating system. So, that is why it is called also called the hosted virtual

machine. Now, you have this native operating system; so, basically all the native

applications can be run on this native operating system.

And, if you have the virtual machine that can be on top of your type 2 hypervisor and all

these privileged instructions coming from this guest operating system can be trapped and

emulated inside this hypervisor and that is the type 2 hypervisor here. Of course, writing

this type of hypervisor will not need much of effort because you are not writing from the

scratch by implementing all the driver modules for the for controlling the underlying

hardware right.

(Refer Slide Time: 10:08)

There are another sets of virtual machines called para-virtualized virtual machines which

modifies the. So, basically virtual machine we have seen that modifying the guest OS

will give better performance for the para-virtualized virtual machines, because if you see

101

the traditional hypervisor with full virtualization. So, basically they expose the virtual

machines to virtual hardware through this which is fully underlying hardware.

And of course, advantage is that you do not need to modify your guest OS. So, guest OS

can run as it is because it does not know that there is underlying hypervisor is running,

because the hypervisor which is the full virtualization type 1 hypervisor. So, that is

completely running underneath and completely transparent; so, basically you do not need

to modify your guest OS ok.

But, disadvantage of this kind of hypervisors is that sensitive instructions must get

trapped and emulated by the hypervisor. And, all the sensitive instructions that are

coming from your guest OS trapping them and emulating them will cost this resources.

So, virtualizations like KVM, the Kernel level Virtual Machine, VMware, ESX that we

have seen.

So, all these are providing you full virtualization, but of course, they cannot add up to the

entire or all the resources take advantage all the resources that is available, because of

this penalty of tapping and emulating right. So, para-virtualized VMs sees a virtual

hardware abstraction that is similar to this, but not actually the real hardware.

So, basically what it is doing, guest OS is modified with the replacing some calls;

sensitive instruction calls. So, basically you have hardware, the hypervisor and the OS.

So, if the hypervisor wants to get fully transparent then all the instructions privileged

instructions coming from your OS needs to get trapped into the hypervisor and get

simulated.

Now, you are saying that I do not want all the instructions to get emulated inside your

hypervisor rather you can have some of these sensitive instructions or define one set of

the sensitive instructions which will have executed through this hyper calls to your

hypervisor. So, now, hypervisor is no longer transparent.

Because, now OS knows that this set of instructions or this set of sensitive instructions

will be through hyper calls to your hypervisor and this set of instructions will be normal

system calls right. So, in that way your hypervisor is now no longer fully transparent

rather it can capture some set of sensitive instructions through these hyper calls.

102

So, there will be now interface of this hyper call interface that we have seen that will

come into picture now for these para-virtualized virtual machines. And, providers like

Xen provides both para-virtual and as well as full virtual machines for the users ok. And,

also this was another advantage because often this traditional hypervisor that we have

seen are partially para-virtualized.

Because, the device drivers in guest OS may be para-virtualized to the hypervisor calls

right. So, some mix and match you can do and you can have this para-virtualized VM.

So, this is basically completely orthogonal to your type 1 and type 2 hypervisor that we

have seen in the previous slide ok.

(Refer Slide Time: 14:45)

So, now next we will talk about we will see some of these hypervisors that are available.

So, these are providers VMware, Denali, Xen, IBM, Oracle, Power VM and you can see

what kind of host ISA can support and guest ISA they can support, host OS they can

support and guest OS they can support and these are the companies by which these

names have being provided ok.

103

(Refer Slide Time: 15:14)

So, now we have seen the two extremes of virtualization. So, basically you have a

traditional processes. So, let us say you have hardware, host OS and similar processes are

running on top of that. Now, these processes are sharing the underlying resources and

complete multiplexing is happening inside these OS to share the resource between these

processes. They may be taking one or several threats and all these things will be actually

controlled by the OS to have access to this privileged instruction for this hardware access

underlying there.

Now, what kind of isolation we have? Of course, the processes can see that all the

resources that is available for me, but of course, some virtualization or multiplexing that

is done by this OS in this level of multiplexing you can see that several process will be

there, but we can see that entire resources are forbidden. But, the OS will handle which

portion will go to him and which resources will be allocated for which processes.

If they are taking too much time they will be preempted and all these things will happen

inside the OS. Now, these are very loosely isolated we can see that because let us say

these processes will talk to OS through system calls. And, they have let us say 400 near

400 system calls in Linux. Now, you have all the system calls available for all the

processes that is available on top of it right so; that means, they are very loosely isolated.

So, this is one extreme and in the spectrum another extreme is the traditional virtual

machines that we have seen.

104

So, hypervisor will be there and top of on top of that we will have virtual machines

which will have let us say guest OS 1, guest OS 2 and on top of that guest OS you will

have similar processes running. Now, these processes running on these guest OS will

have no idea about what kind of resources or the isolation between the processes that are

running here on top of these two guest OS is completely rigid.

Because, the resources that have been shared between these guest OS are completely

managed by this hypervisor right. So, there is a complete isolation of how much disks or

resources that will be accessed by this virtual machine on guest OS. So, all this guest OS

will see the hardware and this process will only know that this whatever system calls that

this process is invoking for this guest OS, no other system calls are there inside this guest

OS from this process right.

Because, these processes system calls will be routed through this guest OS which is

completely other virtual machine. So, the isolation here is completely rigid and this is

kind of co exchange that we can see here right.

(Refer Slide Time: 18:42)

So, system level virtual machines we can see that each virtual machine has its own guest

OS, own guest physical memory which is virtualized view of the memory seen by this

guest OS. And, and let us say one or more virtual CPUs based on the allocation by the

hypervisor and virtual IO devices which is abstracted by the hypervisor through this

virtual machine. Now, ideally so, you can see that these two guest OSs can see or share

105

anything between them. So, that is the main idea we will be for this system level or

system virtual machines.

(Refer Slide Time: 19:26)

So, but of course, isolation of these processes are very important because with increase

in workload of different application domains what happens is that some processes we

need isolated completely from the set of applications. So, limiting of what we want to

process, who will want to process, how much resources they can see, how much

resources these processes can share.

So, all these are very necessary in terms of or from the point of view of isolation. So, the

processes that are sharing of course, they can share too much because their isolation is

not high and great isolation will be provided by the system level virtualization through

this multiple isolated user spaces and sharing of one kernel and native performance ok.

106

(Refer Slide Time: 20:26)

So, what we will do is that we will go in between of or the midway of these two

extremes which is the container based approach. So, this is also one way of virtualizing

things, but the thing is that here we are containerizing several processes which we think

that these processes can talk to each other.

But, they need to be completely separate from or there should be some isolation between

these sets of processes and these sets of processes. And, these are called containers and

this container concept was coined in the year of 2008, when Linux operating system

started using the namespaces because processes share namespaces.

107

(Refer Slide Time: 21:14)

So, if you contain the processes in terms of namespaces and control groups then you can

have isolated execution of concepts of processes from another sets of processes. So,

containers group traditional processes together and restrict what resources they can see

and access. So, basically if you are familiarized with the namespaces, you can see that

processes share namespaces. So, if you create one separate namespace and control group

for one set of process, they can create one container and you can contain this process into

these control groups and namespaces.

So, this concept is very important to understand the neat level of virtualization where we

cannot have the high or rigid, you can see still container is one process. Because,

container will invoke system calls to this host OS and then host OS to your hardware

right and also this container will invoke the host system calls to resource OS and so on

and so forth.

So, in terms of virtual machines; so, fully virtualized virtual machines or system level

virtual machines you cannot get that much of isolation. But, since you have much more

resources which are allocated for your full isolation of processes, you can have big

resource gain in this approach or container based approach where you can have a kind of

namespace separated between these processes and kind of isolated execution or isolated

resource sharing between these containers ok.

108

(Refer Slide Time: 23:20)

So, that is that brings us to cloud computing. So, basically we have talked about

virtualization at different levels. Now, if you virtualize everything like your processing if

you want to virtualize, if you virtualize your storage, if you virtualize your software

resource system as a service; that means, you have seen all the software resources on the

entire software stack.

If you virtualize that also ok in terms of packing everything into one resource and you

share the resources. Now, as you share the resource of the entire software package as a

service right. So, now, we have virtualized concept of processing the storage, the

software resources everything as service ok.

And, these services now we can have or the service providers which who will provide

these services, they can have pay as you go service. Because, let us say how much

distributed processing or how much processing you want, how much storage you want,

what are the software resources what you want to access based on that you will be

charged from the service providers.

So, that is all about the cloud and according to the NISTs definition cloud is a model for

enabling convenient, on-demand network access to a shared pool of configurable

computing resources. Now, computing resources means of course, the networks, servers,

storage, application services everything right that can be rapidly provisioned. So, pay as

you go and released with minimal management effort. Because, as you are paying for the

109

services, you do not want to manage or have more access to you just want to just have

access on all the management will be done by the service providers.

So, management effort less or minimal management effort or service provider

interaction. So, that is the formal definition of cloud which is provided by NIST and

widely accepted. And, as the services that we are talking about if the services are

provided as let us see infrastructure service.

(Refer Slide Time: 25:38)

Basically, customers can then provision the computing resources within the providers

infrastructure. So, that will be called as infrastructure as service, you can have platform

as service; basically if you or customers can want to create custom applications.

So, have some more flexibility in terms of creating applications to have access to the

programming tools supported by the provider. So, this will be called as platform as

service and software as service will be the provision where consumer uses providers

application running on providers cloud ok. So, this is the end user where you want to try

to access the applications they are provided by the service providers.

110

(Refer Slide Time: 26:32)

So, basically if you see from the different levels of the computing stacks. So,

networking, storage, servers, virtualization layers, then operating system, middleware

and runtime data and application. So, if you are operating on premise the entire stack of

computing system. So, basically you have the entire server stack here and that is

managed on premise then you have to manage everything.

If you are taking infrastructure as a service then you have to manage only the from the

software stack; so, after the virtualization layer. So, basically the OS, middleware,

runtime, data and application you have to manage and the infrastructure basically which

is virtualized servers, storage, networking everything will be managed by the company.

So, this was provided by Microsoft and if you want to have platforms as service only the

application and data you want to manage that you also you can have and software as

service. So, all the applications only you will access right.

111

(Refer Slide Time: 27:42)

So, just to have an idea how this cloud architecture works from infrastructure point of

view, because there you have this the virtual machines which are actually working

underneath right.

So, you are the let us say user here and you are talking to the cloud manager, the cloud

manager will have a connection between these cluster managers. And, cluster manager

will have access to different sets of computing manager which are essentially set of

virtual machines which will be running on top of one hypervisor underneath physical

hardware that is present.

So, let us say one user is trying to access to some resources in this virtual machine, this

virtual machine and another user can access this virtual machine, this virtual machine.

But, everybody will talk to your cloud manager through cluster manager and cluster

manager will be talking to your computer manager through high bandwidth network.

Now, of course, all the metadata of this accesses, resource allocation and everything will

be managed inside your cloud manager who let us say several storage like data center

object storage and so on and so forth and the entire service will be managed as such ok.

So, as a user you just want to access these machines which are actually provisioned as

virtual machines which are managed by this computer manager.

112

(Refer Slide Time: 29:25)

So, who are the service providers? Just to have a look like to have an idea of what kind

of service providers are there for different levels of services. So, infrastructure services

are provided by AWS, Amazon, Microsoft, Google computing engine. So, these are

mostly accessed by IT administrators, software developers access the platform as service

because you want to access the Google app engine or AWS elastic beanstalk or maybe

Heroku.

So, basically from the applications point of view users want to access Gmail, let us say

CRM service or maybe Office 365, Google docs; all these will be provided as

applications as service. So, these are some examples of usage, but we have talked about

the operating system, the computing system stack, the virtualization, different types of

virtualizations available.

And, you can have actually virtualization in all resource, all levels of resources and you

can have the cloud and different cloud providers will provide you different levels of the

access.

113

(Refer Slide Time: 30:37)

As for the reading this piece of PDF, you can download from internet and you can read

it. It will be very useful to understand part of the virtual machines that are available and

how they operate.

So, broad that level of things that we have talked about here will be is actually written

here very elaboratively by Smith and Nair. So, this is very useful document, if you want

to keep it in your tool chest. So, that is all about it.

Thank you.

114

