Applied Accelerated Artificial Intelligence
Prof. Bharatkumar Sharma
Department of Computer Science and Engineering
Indian Institute of Technology, Palakkad

Lecture - 49
Scale Out with DASK

(Refer Slide Time: 00:14)

Why Dask?
DEPLOYABLE EASY SCALABILITY
» HPC: SLURM, PBS, LSF, SGE * Easy to install and use on a laptop
* Cloud: Kubernetes * Scales out to thousand node clusters
» Hadoop/Spark: Yarn * Modularly built for acceleration
PYDATA NATIVE POPULAR
» Easy Migration: Built on top of NumPy, » Most Common parallelism framework today in the
Pandas Scikit-Learn, etc PyData and SciPy community
» Easy Training: With the same API * Millions of monthly Downloads and Dozens of
Integrations
PYDATA DASK
9 pandas
NumPy, Pandas, Scikit-Lean, "=, n NumPy Wiy Multi-core and distributed PyData
Numba and many more '
NumPy -> Dask Array [/ DASK
Single CPU core] @ leawn Panqas -> Dask DataFrame
In-memory data N Scikit-Learn -> Dask-ML

.. -> Dask Futures

Scale Qut / Parallelize

We have covered this in our first lecture that the Dask basically helps us in scaling scale
out, not scale-up, but scale out across multiple nodes and it has all the right components,
because it takes its motivation from the existing HPC scenarios. It supports a cloud or
Hadoop-based deployable scenarios or the HPC traditional schedulers like SLURM, PBS

and all.

And, it is it supports all the built-in types which have been traditionally done on NumPy
and so, it practically uses the same APl and we are going to look at the demo of it as
well. It is very easy to scale. So, you can use Dask on your laptop or you can scale across
thousands of nodes in a cluster environment also. And it has, with because as we said we

have also supporting Dask for accelerating it on the GPU.

1171

(Refer Slide Time: 01:23)

Why OpenUCX?

Bringing Hardware Accelerated Communications to Dask

28 Comm Type
u DGX2 NV

> PN W W W W A
LRBLYLS

N
25> 3SRRYB

174

cuDF Merge Bandwidth GB/s

-
©
©

So, behind the scene actually Dask supports high-performance stack and it uses
something called as OpenUCX which kind of is standard for getting really really high

performance.

So, because, we did a session on networking as well and TCP sockets if you use
traditional methods, they might be slow. So, UCX provides a uniform access to not just
one kind of a transport layer, but it supports different ones like TCP, if you are having an

InfiniBand network then it will support InfiniBand.

And if within a network if you are using NVLink base and it supports NVLink as well.
And, there is a Python binding for UCX and you can very easily so far install ucx-py. So,
it kind of supports and you can see here that if you are running it on a normal system

versus a InfiniBand plus NVLink based system plus a UCX base system.

And you can see here how much what kind of performance jump that you can see when
you keep on improving and start using some of these features. So, the performance
would again be dependent on the hardware characteristics that we had seen earlier also.
And also, what kind of a package you have installed on that system and if it is able to use
those features like NVLink and all those other things also as much as possible.

1172

(Refer Slide Time: 02:55)

Scale Up with RAPIDS

RAPIDS AND OTHERS

Accelerated on single GPU

NumPy -> CuPy/PyTorch/..
Pandas -> cuDF
Scikit-Learn -> cuML
NetworkX -> cuGraph
Numba -> Numba

RAPIDS

PYDATA

NumPy, Pandas, Scikit-Learn,
NetworkX, Numba and many

Scale Up / Accelerate

e pandas
!'N"m'\]
more

Single CPU core v Q leawn
In-memory data

NetwarkX

But, with RAPIDS as we said, if you are using traditional environment with Numba,

Pandas and all and Scikit-Learn and all you can scale up by running it on a single GPU

and by using its equivalent RAPIDS line using cuDF or using cuML and all for cuGraph

for NetworkX and is and so and so forth.

(Refer Slide Time: 03:23)

Scale Out with RAPIDS + Dask with OpenUCX

RAPIDS AND OTHERS
Acceleratedon single GPU
NumPy -> CuPy/PyTorch/..

Pandas ->2uDF
Scikit-Learn -> cuML

RAPIDS

NetworkX -> cuGraph
Numba -> Numba

PYDATA

NumPy, Pandas, Scikit-Leam, & 3 § ot
Numba and many more Numba NumPy i

Scale Up / Accelerate

Single CPU core
In-memory data 4 @ lean

NetworkX

RAPIDS + DASK RAP)DS
WITH OPENUCX

Molt-GPU ?a
On single Node (DGX)

Or acrossa cluster

17 DASK

DASK

Multi-core and distributed PyData

NumPy -> Dask Array
Pandas -> Dask DataFrame
Scikit-Learn -> Dask-ML

. -> Dask Futures

q DASK

»

Scale Qut / Parallelize

But if your data set requires a higher number of efforts and it is much more larger then

you can scale out. So, within the sequential world as in within even the CPU-World you

1173

can scale out using Dask which supports multi core and distributed PyData features. So,

you can scale across multiple CPUs across multiple nodes.

But the same Dask, if you use in a RAPIDS environment you can run it across multiple
GPUs or within multiple GPUs within the single node or across the whole cluster as
well. So, the best performance that you can get is here in this particular window where
you have taken care of both scale up and scale out together, which can give you really

really good speed ups.

(Refer Slide Time: 04:14)

680G e edco00¢cBEoRRBRBE<=¢eeea260cux + YT
C O localhost8889/lab/tree/START q * PO ﬁ‘s
I Pyen peomanc. [s b & con B Hacttion Custer [20 indatooca [Tt Bockamp.. [[et
— B+ X0 0> ncCw» Vacwy B Py 0
0.
Name w
* u
|]
0 sore o o

*

So, with that let us move on to another demo that, 1 would like to show you here. So, so,

far we have seen the cuML part.

1174

(Refer Slide Time: 04:19)

60| e0ce0e¢cERBBRRRBEaaae2608enx + Yo
FAVAY

€& C O localhost838%/1ab/tree/START_HERE Qe x POA \\‘5

L — & an 8 e [22] s [amsetona NpTEL

» EN- L b

X u] .
0.
Name a Last Modified
-

« I START_HER.. 20 minutes ago

We are going to now look at Dask.

(Refer Slide Time: 04:22)

68 0@ edco00¢cERoERBRBE==a22a260tax + S B
€ 5 C O locahosta89/abirefupyternotebook Dask/1-intro to,Dack Q¢ s PO*ROS
I Fytoon Peromane. & CUDAboskre [Hackathon Custer [2020 india Bootca_ [PM-Tool Bootcamp._ [Pratil Tinking - [2020 i Boot NP‘T“EL
] L a . "
X060 "]
0.
Name - Last Modified .
- Dask Overview !
 joppte ot . ing out your workfiow smooth and simple. On the CPU, Dask uses Pandas
‘opposed to Pandas DatsFrames.
ng cudiread csv(). Dask also

»
When to use Dask

Here is the list of modules in the lab:

So, | said Dask is a library which is more of a parallel computing library, it provides you
the scale out features, which means, you can go across multiple nodes, across multiple

cores and in case of GPUs you can go across multiple GPUs as well.

1175

(Refer Slide Time: 04:41)

68 CH¢edce00cERRBRERBR=aaaaaa60Lw + Voo X
VA

¢ C O localhosts ter ot Dask/01-Intro_to_Dask Q * PO \‘5

B oo . 6 g o G [EE R —

] B s . -

X
0 . =
Name - Last Modified
= : Here is the list of modules in the lab: I

-« [START_HER. 21 minutes ago

Creating a Local Cluster

So, in this particular lab, what |1 am going to show you very quickly is, how to create a

multiple how to use multiple GPUs using Dask. So, there is a concept of cluster and
everything.

(Refer Slide Time: 04:57)

8/8/C/E ee0c/00/0¢EEOBBRREREE == z22060LH + v - FX
FAVA
“ C O localhost838%/1ab/tree/jupyter notebook/Dask/01-Intro_to_Dask Q * P@xi‘g
B oo omanc. [I [Hacathon uster [2000 i Bootca (] PTo B [P 0 [20mdabooa TR
N PREIC "
[]
0. -
Name Last Modified
-
LI

-« IR START_HER. 22 minutes ago

So, we are going to use in this particular scenario, I am having a machine which is a
single node which means, | have 1 machine with 2 GPUs. There are different kinds of

clusters that you can create in Dask. The one that | am creating here is a

1176

Local CUDACIuster which means, | know that | am going to run only on one machine

which has multiple GPUs.

I will use another kind of a cluster when | want to scale it across multiple nodes. But,
here in this particular case, I am going to use a cluster strategy which is

Local CUDACIuster which means, | will utilize different GPUs on one machine itself.

(Refer Slide Time: 05:40)

6 80F ¢ e0cl00ecEReHBRBRBE:e=aaa60tnx + Voo P

N
€ 5 C O lochostsssyfabiefopyte notebook s ; ae s+ PO»AQS
-] fomanc.. [Handson GUPro.. @ re B +E e £ #-Tool Boot [el T @ 2020 TE
» EN - = %
0.

Name dified
* ma |
= ai
S - Client
= Connection method: Clste object Chustertypesdask udi DAkt I

Dashboard:

*

vCluster Info
LocalCUDACluster

Dashboard: Workers:
Total threads: Total memory: | 8

Staus: Using processes: e

» Scheduler Info

So, when | run this, it is you can see it the one that we are doing is we are trying to
import dask and inside dask we are importing client and we are also including importing
the Local CUDAC luster, which is an extension for CUDA or the GPUs.

And you can see here that, what it returns you is basically we are creating a
Local CUDACIuster and we are seeing that every cluster will have only one worker,
which is 1 thread per worker, you can have more threads also per worker if you require.

But here we are explicitly stating that we are going to have 1 worker.

1177

(Refer Slide Time: 06:19)

G0 HEedcOOOCEGROHEBRRRRE

C O localhosts

Name - Last Modified

« [START_HER.. 23 minutes ago

Dashboard:

Total threads:

Status:

vScheduler Info

(7] Scheduler

Comm:

Dashboard:

Started: 15t

» Workers

But you can keep on going further and further down like you are saying that the strategy

the cluster is a Local CUDACIuster. And, | basically have 2 workers, you can see here it

has said that | have created 2 workers.

And both these workers are going to have total 2 threads and the status is running which
means my cluster is running at this point of time. Where does these 2 workers come

from? You can go further inside and you can see here that it has it will give you much

more information and you will see here the workers I have 2 workers.

(Refer Slide Time: 06:52)

G0 EEedcOOOCEGROHEBRRRARE

B oo
« BN
0.
Name a Last Modified

W STARTHER.. 23 minutes ago

C O localhost8s b/tree/jupyter_notebook/Dask

Started: Just
vWorkers

vWorker: 0
Comm: o
Dashboard:

Nanny:

GPU: Qo

vWorker: 1

Dashboard:

Nanny:

Local Grectory: workspace upyter notebookDask/dask-worker-space weeker-smaclous

2jalale|lalala|6|0)t]w + v =
Qe PO*AO
R NPTE
%
Total memry: 12554 G
Total threads:
Memory:
GPU memory:
Total threads:
Memory: -
[R————

1178

And the worker, each worker is basically accessing 2 Quadro GV 100s. So, worker 0;
used 1 thread, CPU thread and it is going to utilize the 1st GV 100 which I had on my
system. And, the 2nd worker is basically going to use another GV 100 and you can see

here how do you know this? You can see the communication is slightly different.

This is at 3353 and this is at 42857. And, both of them GPUs are having 32 GB of
memory which they have and on the CPU file both the workers can utilize 62 GB 6 to be
a GV each. So, once you create the cluster it is going to automatically figure out the
scenario like, how many of workers are there based on the number of GPUs you have.

And you can also define the some of these parameters can also be sent to define some of
the things that you would like it to change like how many workers do you need per
thread and stuff like that.

(Refer Slide Time: 08:06)

60 0H¢edc000¢cERHBRUNRBR=aaeaaas0twx + MR S
C O lah » LN ¥

B oen o] tonionrupr. @ ook B podtion s [it [Tt @ mnatona ppTE

» N = . - 3

-8

o,]

= u

|]

s

*

Distributed GPU Arrays

So, it will give you all of this information and the workers basically provides 2

functionality, basically it is going to perform tasks.

So, as the name itself says, these are workers who will be given some work and they will
perform certain tasks. Who will give the work to them? The scheduler will give the work
to them. And, basically it will serve multiple clients, right. So, the idea it is more of like
a client server model and your workers are going to complete the task provided to you by

the scheduler.

1179

And the scheduler gets it to work from the client themselves, right. And, you can create
multiple thread pools as | said to you can give multiple threads to a single worker if you

would like to do and so on and so forth.

(Refer Slide Time: 08:49)

) &3 :c00QCEROEBRRABERA 2 aezaa60Lwx + MR
€ 5 C O loahossyn : 2 0%»003
B b B+ ho. @ [kot st [20t [o @ ammsstona T
» EN - . s
— +XBOrecCw e vE

0. Distributed GPU Arrays

Name ied &
*u

|]

D sz code i

*

So, as | told you that currently we have 2 GPUs, which are assigned to 1 worker each.

So, the first thing that we are going to do is that rather than creating a normal array, we
are creating a dask array. You can see here we are going to create a dask array here and
you can so instead of normal array we are creating a dask array. And we are creating

multiple you can see here | am saying that create random values.

And in these dimensions so, we are saying that | want to create so many values and they
would be split up into these many chunks, right. So, the so we | am saying that | need to
have. So, many values which is 1,00,000 and 1,000 in the respective dimensions and then

| am going to create multiple split of it, which is also referred to as chunk.

So, I am going to create multiple chunks of that larger split, larger value that | have. And,
then | am saying x dot persist y persist. So, one thing about Dask that, you have to
understand is that, Dask is more of asynchronous in nature or it does all of the operations
lazy. So, when you ask Dask to do something, they what it does it actually adds a

particular task into your graph.

1180

So, it creates a task graph and it will do the evaluation, it delays the evaluation until the
results are needed. So, until you are going to use the values which are going to call on
the Dask, it will not do any execution. So, it is lazy in nature. So, if you want it not to
wait you want the data or all of the things to have done previously you can just say
persist. Persist will kind of guarantee that your task has kind of finished before you move

on to the next thing.

(Refer Slide Time: 10:41)

o0 05000 ¢EGCHERBEER 50 ¢ + I
€5 C 0l * 0% 003
- noc. B ¢ 8 HE]] pTE
» M- : . !
-

0.
™ w o 2

S :

2 M | I P

e g
= Shape il

,,,,,

* P 1000

Otherwise, this asynchronous nature or lazy nature is the by default nature of Apache
Spark and Dask also. So, you just have to make sure that you are either waiting for it to
happen or you call persist to make sure that it is kind of indeed finished. So, it is what it
creates is basically a distributed array. So, you can see here that it has created an array.
The array total size is 762.94 MB, the shape is 1,00,000 by 10,000. But, you have

splitted it across multiple chunks.

So, each chunk is of size 72 MB and it is split in this particular form where, it is of size
10,000 by 1,000. So, basically if you see what you have done is you have basically
created 10 chunks, total chunks overall of the larger array. So, it is distributed across 10
chunks, 10 short and the type is of type cupy here, because and is of type cupy ndarray,
N-dimensional array which is primarily mentioning that it is being created on the GPU.

And after that, you can basically if you call anything on this particular array.

1181

(Refer Slide Time: 11:52)

60 0H¢edc@00cERRBRERBR=aaeaaea60Lw + Voo X

fy

C @ localhost838%/labtree/jupyter. notebook/Dask/01-Intro._to_ Dask Q * E@xﬂ,\ 5

B o rtomrc. B 6 g G S —

. KN : .
0.

Name » Last Modified

B STARTHER. 29 minutes ago

So, it shows us the information as | said of the distributed array, we can see the size of
the array and of the individual chunk. And after that, if you call anything on that
particular on the Dask array like here we are trying to do svd. So, we are trying to take
the svd and if you do any operation here, then you can see the output is also of same

type. So, the output of the svd is again you can see | am printing the characteristics of

you and it is also of 10 chunks value.

(Refer Slide Time: 12:33)

3Rt edcooecEROBRBREE

© localhost 838

Name Last Modified

1182

But, in order to persist it again, you have to basically call the persist API here. And, yes,

that is all you have to do to make use of Dask.

(Refer Slide Time: 12:46)

60 R edcooecEROERRBRARB=eaelaaale0Lnx + M
€ C @ localhost8889/labfreejupyter_notet X to_Dask At PON ﬁi‘ig
1 Frton Pedomanc. [o Pro. @ CUDAbookre [acathon uster. [200 indnotca () PTo Bockcamp.. [ParatlTirkng- [20 indinBotca. pTEL?
EMe o [ie : .
0.

Name Last Modified
-

|] e code X
Conclusion

*

Licensing

And you can do whatever activity that you would like to do with it, in terms of chunking

the data across the clusters that you have created and working on it.

(Refer Slide Time: 12:56)

60 Heedc000¢tEROERBRBRB

© localhost 888%/lab/tree/jupyter_notebook

B P e 6 an B
» B e X . %
X u} . o - | Y

0.

Name Last Modified
* mo

8 jupyter not .

s ag Random Forests Multi-node, Multi-GPU demo

« [START_HER. 29 minutes ago

Let us take an example again on using cuML along with it. So, we are going to use

random forest and we are going to run it across multiple GPUs

1183

(Refer Slide Time: 13:09)

600G edc000cEEeHRBRRBE<a2aa60tlax + B X

€ C O locahosts ter_ notebook/Dask ML and D b TR e » [i‘s

B Pyt Peromanc. [2 B v (3 2 P .) ;:

. - W Fermina = n "
B+XB0»a " =

0 . I

- "_“‘ : "“‘””"ff" Here is the list of contents in the lab: l

< W STARTHER. 29 minutes ago

(Refer Slide Time: 13:11)

60 0H ¢ edc000¢cERRRBRUERBR=aaeaaae0Lw + Voo X
§y

C O localhost888%/ab/reefjupyter.notebook/Dask/03-CuML.and D aer #0»RQJ

B e et B ¢ B v @ satoa NpTEL

Name - Last Modified

B STARTHER. 30 minutes ago

Start Dask cluster

So, again like previously that we have done, we are going to use Local CUDAC uster.
And, for we are going to do random forest hence we are calling or we are importing the

Random Forest Classifier like the way we have done it previously also in the cuML just

that this time we are importing the Dask version of it.

You can see here | am not doing cuml dot ensemble, | am basically saying cuml dot dask

dot ensemble. So, | am explicitly importing a Dask version of supported version of

Random Forest Classifier here.

1184

(Refer Slide Time: 13:50)

60 0H¢edc000cERRBRUNRBRA=aaaaaae0twx + Voo X
%
C O localhosts ? D and D aQ *x PO*O 5
BB pyen o] “ E G s
M o [iee : 5 ; a
X] . . -
0.
Name Last Modified Start Dask cluster
* ma
i
W souce coce

W STARTHER.. 30 minutes ago

Define Parameters

And then, yes, again | am going to create the CUDACIuster which is going to be the
same here, there is no change which will happen it is just that, I am explicitly calling the
number of workers that | need, the number of workers would be equivalent to the

number of GPUs which is going to be 2 again.

(Refer Slide Time: 14:08)

20 R¢edcoeecBRoEBRBBER22eaaaaae0tln + v,ey;‘}:
€ C @ localhostB38%/labytree/jupyter notebook/Dask/13-CuML_and_Daskipy Qe % r@*iiﬁ
v

= N [X mowmes | X - .

. B+ XAO 0> 8w Maidonw §

q
= Define Parameters

Last Modified .

Generate Data on host

So, here what we are doing is we are just defining certain parameters for our random
forest, 1 am not going to go into the details of the random forest itself that is not the

objective of this lecture. But we are just defining certain parameters to it; including the

1185

maximum depth of this particular forest that we want to evaluate it for once we have

defined it we are going to generate the data on the host.

(Refer Slide Time: 14:31)

& 80E ¢ e0c/000¢EReBERMBEBEE-::e<aa60ewx + T
€ 5 C O lcahostassybieeupyernotebook Dk ; Qv x PO*OROS
B Fyton e] & CUAbock e B @ m0indas {8 #M-Tool Boctaamp.. [Parate Thiking-. [202 ,"‘;;‘
« N . 5
0.

Name Last Mosdified
= .

i .

0 s code i
*

Distribute data to worker GPUs '

First as | said, we will use will create the data on the host itself which is on the CPU.
Then we will import it inside our Dask. So, we are creating a data set, we are initializing
it to certain values like random states. The number of classes we wanted for our random
forest and everything we are defining all of those parameters. Once we have defined it,
what we are going to do is we are going to distribute that data across the number of

workers.

1186

(Refer Slide Time: 14:57)

60 H¢edc00e¢cERHRRBRARB2aaeaaa60Lwx + LA 5

C O bahotsybeeine ; D e Po»i@S

B Ao e ¢ g8 R G [E T
» EN - . . 3
0.

Name Modified
- _

|]

P s

*

Build a scikit-learn model (single node)

For the number of workers in our case it is 2, we are going to basically as you can see
here, we are creating dask cudf from the cudf normal cudf. So, we have created our data

input here and we are importing it into a dask environment.

And how many of that it is going to be split across is the number of partitions the number
of partitions are equivalent to a number of workers. In our case, we have 2 GPUs. So, the
number of workers are 2. So, basically, we are saying that from our cudf we are going to
split into number of partitions across dask, which is 2 in our particular case, because we
have 2 GPUs.

And we are calling the distribute API for both the training set as well as the task set. So,
the output of distribute is basically that we have distributed our data across the Dask

which is going to run across multiple workers here.

1187

(Refer Slide Time: 16:04)

600 E¢edc000¢cERoHBRRRAERAa22a260Lhx + V- X
€ 5 C O locahost8asy/ablireefupyter.not X D ALt PON i‘s
I python P B HandsonGPuPo. & cub B Haciathon [2020inda Bootea [PM-Tool Bootaan B 220 mdaboota pTE:
« M- . = .
a = W &

O & Build a scikit-learn model (single node)

Name Modified
- . ;

£l

™ source code .

* |

Train the distributed cuML model

And then, yes, initially we are going to run this on scikit-learn. This scikit-learn by
default is going to run on multiple CPUs ok. So, scikit-learn by default supports multiple
CPU cores. So, when you run it, you will see that you can enable certain parts and you

will see that it is going to run it across multiple CPUs as well.

So, let us see how much time it takes across multiple CPU cores? So, you see that it took
20 seconds in general, but the CPU time is 10 minutes. What does it mean is that, even
though your wall clock time for us was 20 seconds, it actually ran across multiple cores,
where the total CPU time across multiple cores was 10 minutes and 9 seconds.

So, it distributed the work across multiple CPU cores and for us it was Wall clock time
was only 20 seconds overall for these many depths and all that we did. So, how do we
define it? How to use all the cores in the scikit-learn? You have to just set number of
jobs as -1, what -1 tells to scikit-learn is that, I want to utilize all the cores which are
available to me that is how you can distribute the work even in the scikit-learn use

utilizing all the CPU cores.

1188

(Refer Slide Time: 17:32)

6L Heedco0eCcEROERRBBRARB == aeaa260cCy i V= X
3

C O localhost888%/labtree/jupyter_notebook/Dask ML_and Dask Qg % I‘@&&‘g

B e . 5 ¢ g8 G @ NPTE

» M- = v

Xoo»s
0.
- JMTTZN Train the distributed cuML model

« [START_HER.. 34 minutes ago

Predict and check accuracy

The same thing using cuML, you can see in the cuML we are doing the same thing, but
using Dask version of it. You can see here we are calling cuMLDaskRF. So, we are
passing it the Dask repository and that is why we are calling it cuMLDaskRF and we are

passing it the Dask arrays.

And you can see here instead of taking 20 seconds, it took around 5 seconds overall, and

the total time actually on the CPU was only 400 microseconds.

(Refer Slide Time: 18:05)

68 CQ¢eedc000¢cEROBRBRBE=<¢aaea260tlnx + Y %
€ 3 C O locahostsss 7 Dask Qe r FPON &‘5
I ytoon Peomanc.. [Hor ; B Hactathon Custr_. [2020 ininBooca. [PM-Tool Bookcamp.. [Parael T E “.p‘;ﬂ
BN . $ ®
0.
Name s Last Modified
*
Predict and check accuracy

*

1189

So, that is how we were able to run it across Dask across multiple GPUs without having
to change a lot of things cuML used, sorry, the scikit-learn used practically all of the
CPU cores by passing number of jobs as -1 and for cuML basically we use the predict
option for the cuML we basically split it across the Dask API and the split the job across
2 GPUs in short.

And you can hear both SKLearn and cuML are practically giving almost the same
accuracy SKLearn being slightly higher 875 and cuML having a slightly lower accuracy
at the third decimal place, which is negligible | would say.

(Refer Slide Time: 18:51)

Conclusion

Licensing

So, with that, we are done with this session on the RAPIDS. We have finished three

components of RAPIDS here.

1190

(Refer Slide Time: 19:00)

Community

We covered the part of cuDF, we covered the part of cuML, we also showed how to

distribute the work across multiple GPUs using the Dask APIs.

(Refer Slide Time: 19:13)

CONTRIBUTORS () ANACONDA

Ecosystem Partners

ADOPTERS Boaz | ten | Hamiton

T & ey —:.'-.‘ — QUANSIGHT Walmart
kel §
v dabids Qouphisry HO iuozio nada—
Kinztica MR omni-sci Disferyd PyTorch ¥
(LTI S e o, 18
] o grunbs Qe

OPENSOURCE ARrowM))

)
our”

%

NPTEL

And as | said that, RAPIDS is open-source project and it has contributions and it has

APIs to integrate various different open-source projects as well. There are various

adapters out there including enterprise segments like Uber and all.

They are using it in the production environment. And there are various open-source

contributors as well who are contributing to the RAPIDS project.

1191

(Refer Slide Time: 19:43)

Join the Conversation

: \
& Y i 8

https:/ /groups.google.com/ https: / /twitter.com/RAPIDSai https://rapids-goai.slack.com/join https:/ /stackoverflow.com

forum/#!forum/rapidsai Itags/rapids

So, you can also join the Google Group, which exists for RAPIDS Al is a Twitter group,
there is a Slack Channel which you can go to and ask any questions related to slack
related to RAPIDS and there is a slack Stack Overflow part also for the RAPIDS.

(Refer Slide Time: 19:59)

»
Y,
e
'l /
s

=
3,
=
m

Contribute Back

Issues, Feature Requests, PRs, Blogs, Tutorials, Videos, QA...Bring Your Best!

Getting Started with cuDF (RAPIDS)

notel ntril
Darven Bamsaok
. + TRLR n

And as | said, its open-source project, you can anytime go ahead and start contributing if
you had particular thing.

1192

(Refer Slide Time: 20:09)

RAPIDS Notices

Communicate and document changes to RAPIDS for contributors, core developers, users, and
the community

e Tepe DS Veion Updated
ox

pRocAEsS

PROGAESS

oy

S

hetps: | /docs.rapids.ail notices

And, you can go through different videos and all also. You can be part of a forum where
if there are any changes which are happening you can go to the notice section and
basically see if there are any primary changes that you are interested in is happening or if

there are any deprecations which are happen like you can see here.

In the dask xgboost there was a deprecation, which happened from the previous

generation which existed. So, you can basically be aware of what changes are happening.

(Refer Slide Time: 20:39)

NPTEL

5 Steps to Getting Started with RAPIDS

1. Install RAPIDS on Docker, Conda, deploy in your favorite cloud instance, or quick start with
2. Explore our walk through videos, blog content, our github, the tutorial notebooks, and our example
workflows.

tions on Slack, Google, and Twitter.

5. Contribute back. Don't forget to ask and answer questions on Stack Overflow.

1193

As | told you can download RAPIDS from in form of Conda environment or you can go
to any of the cloud environment and run RAPIDS or you can use either a Docker or

singularity or different versions of it also.

(Refer Slide Time: 20:55)

= i,
3 N
A b2
o "Ilnll’/

Easy Installation
Interactive Installation Guide

RAPIDS RELEASE SELECTOR

| o

https://rapids.ai/start.html

So, they are all installation guides present on the rapids dot ai platform you can go ahead

and see how to install it.

(Refer Slide Time: 21:06)

Sy,
ke
“agps”

=
]
=
m
m

RAPIDS Docs

Up to Date and Easy to Use

t

https:/docs.rapids ai

In your own environment also.

1194

(Refer Slide Time: 21:09)

RAPIDS Docs

Easier than Ever to Get Started with cuDF

[e———_

hetps:/ /docs rapids.ai

And you can keep yourself updated as well.

(Refer Slide Time: 21:10)

ittty
“: 0 /’{
st

=
]
p |
m
ful

Explore: RAPIDS Code and Blogs

Check out our Code and How We Use It

RAPDS A
cuDF - GPU DataFrames 1
[==

NOTE o et st

i

hitps: //github. com/ rapidsai https: //medium. com/ rapids-al

1195

(Refer Slide Time: 21:10)

Explore: RAPIDS Github

Q Ragostor ™
. . .
. . .

htps: //github.com/rapidsai

RAPDS %

(Refer Slide Time: 21:10)

RAPIDS

How Do | Get the Software?
A;’ri
459 > .
% NVIDIA
GPUCLOUD

https: //github.com/ rapidsai https: //anaconda.org/rapidsai/ https: //ngc. nvidia.com/ registry/ https: //hub.docker.com/r/

nvidia-rapidsai-rapidsai rapidsai/rapidsai/
RPOS | @

So, with that, I am done with this session on these three topics.

1196

