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Welcome back everyone to the next lecture on the same topic that we have been working 

on, which is accelerated data analytics. Our previous lectures the last lecture that we did 

was dedicated towards using the cuDF which is the CUDA related data frame 

environment to accelerate the first stage of the overall data analytics pipeline. 

Today we are going to work on additional I would say the stages of the accelerated data 

analytics pipeline, the second one in this pipeline is acceleration of the machine learning 

algorithms themselves followed by the last one, which is which is the acceleration of 

overall task not just on 1 GPU, but across the whole system. 

So, let us get started. Hopefully you remember the overall stack that we saw last time 

and today we are going to concentrate on the second window as you can see here, which 

is the machine learning part of it. So, we had seen the overall scenarios under which we 

want acceleration we talked about relationship of the increasing data set size to the 

amount of computation power which is required. 
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And if I talk it from a point of view of data science perspective itself, it is generally 

recommended to start with as much as data as possible and then keep on reducing that 

data and explore possibilities to pre-process it or scale to meet the performance demands. 

Because it is a known fact that the datasets keep on increasing, but then we use different 

techniques to reach a particular level, where we are saying that we are able to meet the 

accuracy to the speed that we want to deploy it in the real world. 

So, we start with the larger data set, we apply certain pre-processing techniques maybe 

create histograms or distributions around it. We apply techniques which will reduce the 

overall dimensions, we only select the features which we feel are important which are 

giving us really good accuracy levels. We try to remove as many outliers as possible, we 

may in fact remove certain samples and only have at a particular frequency and if you 

see this is basically the whole objective is to reduce the overall time as much as possible. 
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But without having to sacrifice on the part of on the part of the on the part of the I would 

say. So, to get as much as accuracy as possible, without having to sacrifice on also taking 

a lot of time or the speed. But the critical thing here to understand is no matter what we 

say it is an iterative process and what you require is basically something which helps you 

in this iteration as fast as possible. So, what you are trying to do is you are trying to do 

basically validation and grid search and do a lot of iteration to go through this overall 

process. 
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So, to solve one of this problem, we are talking about accelerated ML technology stack, 

again at the bottommost layer what we have is CUDA which is compute unified device 

architecture which is the GPU architecture, which exposes parallelism. Over that we 

have a couple of libraries, as we said last time also like similar to cuDF these libraries 

are primarily written in C or C++ thrust which is the library for which is a STL 

equivalent on GPU standard template library running on the GPU. 

We have different other libraries like nvgraph for doing graph related problems and 

cuRand for random number generators and many more cuBlas for basic linear algebra 

operations and so on and so forth. 

All these basic libraries you have higher level libraries which kind of provides a cuML 

related primitives or algorithms, which are still C, C++ based and then these are exposed 

to the Python programmer which is the primary language in Python for all of the data 

scientist in form of wrappers. So, basically, they will internally use Cython to basically 

call the ML based algorithms which are there. 

So, the stack which we showed in cuDF here, it is kind of similar here as well, we are 

having the bottom most layer or parallel computing above is the C++ libraries, because it 

is the most prominent one giving the highest amount of performance. And then the 

Python basically is calling those C++ libraries using the Cython bindings. 
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So, let us look at an example of the RAPIDS and in this particular case we are still using 

C++ equivalent version which is sklearn. You can see here or scikit learn which is the 

most popular machine learning package and we are using pandas here. So, we are 

creating this is more of a clustering based thing. 

So, you can see here you are calling the, you are creating the pandas and then you call 

the sklearn clustering algorithm, here we are using DBSCAN and we do the fit predict 

which kind of highlights the two clusters which exist at this particular data set, that we 

have. But just to highlight, there is a small change we are going to look at a realistic 

example in the Jupyter Notebooks, like we showed it to you last time. 

But in short what we are trying to say here is that the idea behind RAPIDS is that there is 

minimal change in the libraries, calls or the source code that you write which are 

traditionally being written using sequential or a CPU based platform. And you just have 

to change, import and you have to change very minimal changes you have to do to your 

code to make use of GPU. So, only here you can see there are only 2-3 changes that you 

need to do. 
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So, over time cuML has evolved, I think it is still having a subset of things which exist in 

scikit learn, sklearn you have different examples for classification or regression you have 

APIs for inferencing, pre-processing, also you have the APIs or algorithms particularly 

in the clustering algorithm or dimensionally reduction or to handle time series data. 

And we are also going to look at an example of hyper parameter tuning and cross 

validation also in the demo, that I am going to show you. So, RAPIDS is the evolving I 

would say initiative, open source initiative there are many algorithms which are already 

existing and many keep on getting added over time. So, this might not be the complete 

list by the time you are actually going to use it or by the time I am showcasing it to you 

and more algorithms would have been added by this time. 

So, it is always recommended to go to the open source project and see which all machine 

learning algorithms are supported. 
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But in to show you certain examples, like we showed it to you last time also this is an 

example of forest inferencing and you can see here this work is basically an output of a 

100 million forest inferencing done for different data sets. And you can see here the time 

taken by the GPU versus the CPU on how much speedups you can expect while running 

only the machine learning part, I am not talking about the overall pipeline. 

Yesterday we saw the initial part of data frame and how you can do those pre-processing 

quite efficiently using cuDF, this is accelerating only the cuML or the machine learning 

algorithm part in general. 
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The good part about of RAPIDS an is also that it is integrated with most of the cloud ML 

frameworks. So, if you are using any of the cloud frameworks you can go to 

rapids.ai/hpo and you can basically look at where all this acceleration has happened on 

say Amazon SageMaker, Azure ML or Google AI platform. 

And you can go to github dot io rapids ai cloud ML examples to see how to use these in 

different platforms or primarily here you can see the three key platforms which are there. 

So, there is an integration of RAPIDS which is already happened in all of these platforms 

also. 
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So, this is another example again this is a 100-job Random Forest Airline Model, you 

can see here one of the critical thing that I mentioned sometime back also to you is the 

artificial intelligence is not just about improving accuracy, but showing the return on 

investment overall. 

And this is one of the most critical thing, is to see that if you were to do a particular 

training for different, here you can see the airline model of 100 job random forest and if 

you were to do it on a platform which is pure sequential and you were to charge on say 

the same on a cloud based scenario and then they may be in different cloud models. 

Here you are seeing an example of azure ML versus if you are spending the same effort 

and running the same thing on a GPU based system, what kind of a return on investment 

that you can do or how much money you can save when you are deploying your model. 

And that is one of the most critical thing which is very very much prominent why 

accelerated computing is also required about having a real world impact. 
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And as I told you from a point of view of ML algorithms, this is just a list of some of 

those. When I talk about the functionality some of those functionalities are primarily 

supported on single GPU, which means it will run only on a single GPU, while some of 

them are supported on multi node multi GPU environment. 

So, even if algorithm support is there, it is always good idea to see if the functionality 

supports single GPU or multi node multi GPU kind of environment also and this list 

keeps on changing. As I said we are in 2022 and this already this particular support for 

other cuML based framework and also multi node support might have already been 

established at this particular point of time. 
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I also wanted to highlight one more part here which is cuGraph. So, if you remember 

some I we showed you the overall, there are different components inside RAPIDS one of 

the component there is also in case you are working in graph analytics, in that case there 

is a support inside RAPIDS for cuGraph library. 
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And the idea is basically to make use of GPU computing to for solving graph problems 

and you can see here that you can do 500 million edges calculation on a 1 single GPU of 

32 GB and it can support billions of edges in a multi GPU environment as well. And it is 

seamlessly integrated with cuDF and cuML also. 

And there are various algorithms which are happening, but it is equivalent to the network 

X API, which is one of the most popular ones for graph analytics in the sequential world 

and again it has the Python equivalent for networkX, but lower level at the lower level it 

calls the C++ API. 
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Same thing like we saw cuML, there is the same stack which exists at the lower level 

you have CUDA architecture you have the CUDA libraries. 

Which are primarily C, C++ libraries and then there are a DASK based or cuDF based 

extension for the graph, which finally uses Python to call the C, C++, APIs that we have. 
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And there are various things, you can do with it, it is again community based and you 

can create different kinds of components like strongly connected, weakly connected, you 

can do various kinds of analysis, which if you are working in this field you know like 
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creating page ranks right or if you would like to do traversals like shortest path breadth 

first search and various other kinds of things are possible. 

For doing graph analytics there are various things which are already there are more 

which are coming and it will be supported in the future as well. 
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But you can see the kind of speedup that we are expecting here, for different kinds of 

routines which are present in the networkX and you can see here that we are talking 

about speedup numbers performance speedup numbers in few thousands as compared to 

few hundreds also. So, we are looking at numbers which can accelerate the graph 

analytics at you can see here up to 11000 also for certain data sets which are available. 
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And again, the same thing there are various kinds of algorithms available, sorry for the 

font, which may not be visible to you, but it kind of highlights various kinds of 

algorithms used in graph analytics like page ranking breadth first search and spectral 

clustering and various other kinds of methods which are there. 

And again there are support for some of them on single GPU, some of them are 

supported on multi GPU within the same node or some of them are also supported on 

multi GPU multi node. So, with that let me quickly just highlight the part of showing you 

a demo. 
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So, just give me a second and I can bring it back to you. So, like last time, I have already 

run the container the same container, which I had run last time and it is running inside 

the docker container and I am exposing it to two GPUs. So, I am going to just go ahead 

and just refresh the scene, just to make sure that it is still connected. 
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So yes, it is still connected I have my Jupyter Notebook and let me see, how many GPUs 

I have at my disposal. You can see here currently, I have exposed only two GPUs to it 

which is of volta architecture Quadro GV 100 and there is currently no process running 

on it at this time. 
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So, yesterday we saw hands on of particularly cuDF, today I am going to show you 

certain characteristics of how to use cuML. 
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So, for cuML as I said it is primarily a replacement or the accelerated version of scikit 

learn and it is what I am going to show you. 
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So, the example that I am going to show you first is a simple linear regression example, 

then we will enhance it and we will end up the cuML documentation with how to do 

hyper parameter tuning using say a grid search algorithm as well. 

So, again here, this is a simple example of CPU where you have imported numpy 

matplotlib for visualization. And if you can see here what we are doing is we are trying 
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to create a data set which kind of adheres to the linear relationship and. So, we are just 

creating some random values, but it they are kind of linear in nature, having a linear 

relationship to each other. 
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And let us just plot the values. So, you can see here this is our actual true relationship 

and we have also added some noise to it also. So, you can see here we have added some 

noise to it also. So, you will see the empirical data points around it, but this is the true 

nature of the relationship that is existing, based on which we created the dataset. 
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So, what we are looking at is; obviously, we know it is a linear relationship and that is 

why we are going to use the linear regression which is primarily a class, which is 

implemented both in the CPU version of it, which is the scikit learn and also the cuML 

version of it. But what we have to understand is whenever we are using any package 

behind the scene, every module can offer different kinds of algorithms to solve the same 

thing, even for linear regression just to give an example. 

Like for cuML we basically provide 3 algorithms to find the relationship, it may use 

singular value decomposition, it may use eigen method or it may use a coordinate decent 

method to fit the linear model right. And this is very very critical to know because when 

you start moving your model from say a scikit base to a cuML, the default algorithm 

which are chosen by the cuML might be different from the sequential version. 

And you might get certain different results as compared to what you would see in the 

sequential algorithm, that you are using. Like for cuML basically we find that SVD is 

more stable generally found out, but eigen is the one which is the default right. Because 

it is much more faster as compared to say doing a SVD based thing, right. So, these are 

just certain examples of what happens behind the scene, by default you are going to use 

some default versions, but you can override it, to use the same algorithm behind the 

scene which you have been traditionally using, right. 
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So, here as you can see we are importing sklearn dot linear model and importing it as 

linear regression, we are creating an object of it. And in if you have been working in this 

field of machine learning, generally we call a fit function, the fit function is the one 

which is going to basically find out the relationship or the parameters and it is going to 

do the training part of your cycle of artificial intelligence. 

So, you do the fit function first and then you use predict for seeing how well your model 

have actually learned. So, you can see here we are calling the fit function on the data set 

that we have and in the end if you want to see. So, what we are doing is we are creating a 

new data again for inferencing or for testing the relationship. 

And so once you have created the new data. So, we are using the linear regression dot 

predict to see how well our data can predict the newer data set that we are exposing it to. 

So, we have predicted the value and finally in the end what we will do is to use 

matplotlib to scatter and see how well our sklearn is able to predict. 
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So, as you can see here there are three things, one is the empirical data points, the second 

one is the true relationship that we know already exist which we had proposed earlier 

which is the black line, which is kind of almost completely hidden with the predicted 

relationship, which is the sklearn based predict value. 
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So, you can see here the predicted value and the true relationship is kind of almost 

overlapping with each other, hence we can say that that they are actually doing a good 

job in terms of predicting the for the test for the inferencing part of it. 
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Now, let us move towards the; so far we have been running it on the CPU. Now let us do 

the same thing on the GPU, the idea is to have the code which you have seen earlier 

almost similar as much similar to the sequential world and let us. So, we are importing 

cuDF that we have seen last time also. So, we are creating a cuDF data frame. Why do 

we create in cuDF? Again as we have told earlier cuDF will basically allocate the 

memory on the GPU and you will be basically doing stuff on the GPU. 
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So, ideally, we should be passing it a cudf expression and again like sklearn, instead of 

using sklearn dot linear model we are using cuML dot linear model and we are basically 

importing it. And as I told you earlier it accepts various parameters, but where you are 

going to use the default version, but you can override it like the algorithm that you can 

use is the eigenvalue or the SVD 1, the default one is eigen. 

If you want to set certain additional parameter like normal do you want to normalize the 

data or if you want to do fit intercept and all by default it is true, if you want to if you 

want to correct it then you can also set it to false. So, there are different parameters by 

default we are using the default ones, but if you would see that your linear regression of 

scikit learn may use something else, while ours will use a different version and you 

might see different accuracy levels. 
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So, just take a note of it while you start putting your data to this right. So, we have kind 

of trained the model and what we are doing here is we just want to basically set the 

points and we want to just visualize it. So, I am going to not spend some effort in 

explaining. So, what we are doing is we are just predicting the values. 

So, we are creating the new data set for it to be predicted and then we are doing the 

prediction here, for the test data set that we created and again we are going to just to 

move a visualization just to see how good or bad our inferencing is doing. 
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So, again you can see here. Now, so we have 4 data set points now, the blue dots are 

basically the empirical data points, the black is the true relationship based on which we 

know we created the data set on. You can see here that the predicted relationship of the 

CPU, which is the red and the green one which is the predicted relationship with respect 

to GPU are almost overlapping with each other. In fact, I do not even see the red bar 

which is the CPU version it is behind the green bar. 

So, in short that the red and green lines are identical, which kind of states at both cuML 

and the CPU version which is the scikit learn both ended up with the identical models 

exactly, what you would have expected just that it was running on the GPU and it will be 

much much more faster. 
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So, this is the ridge expression which is a extended version of linear regression and it 

kind of helps by providing you L2 regularization and it can predict linear combinations 

quite well, because it basically reduces the variation. And so we are not going to cover 

the part of what ridge expression is how is it good. 

We are not going to cover that part, but the reason why we wanted to show this to you is 

to tell you that with there are so many parameters which exist and how the relationship 

of parameters can change the accuracy levels when you move from one framework to the 

other. 

So, here again we are importing sklearn and we are loading a particular data set which is 

a diabetes dataset, which comes with it. The diabetes data set basically consists of 10 

base variables, it consist of age, sex, body mass, index, average values. And it also 

consists of 6 blood serum measurements which are there and it has basically 442 rows 

for different diabetes patients. And also, it has the value for the response of interest and 

what we are trying to do is to see we what we are trying to do is to find a quantitative 

measure of the disease progression one year after the baseline. 

So, that is what we want to predict for this particular dataset. So, again it has 442 

different patient it has 10 attributes the 10 columns are basically the numeric values of 

predicted values and also you have the 11th column which is the quantitative measure of 
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the disease progression one year after the baseline. So, this is the data set and you can 

find more details of the data set if you require here in this particular link. 
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But let us let us get the data set and then we split the data set into training and the testing 

part as well. So, we are just doing a train test split. 

And as you can see here, instead of just importing a normal linear regression we are 

importing the ridge algorithm here. And the ridge as I said kind of does a lot of thing; it 

has various classes inside, like the alpha value can be the float or double. 

It kind of defines the regularization strength and you can define it as a positive value, the 

larger the value specifies the stronger regularization right; you can define the solver to be 

either eigen SVD or CD like the linear regression. And you can also define other things 

like whether the predicted values are normalized or not normalized by default it is kind 

of false. 
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So, so, once we have defined this, let us try to create the thing and just try to make it 

work on the CPU as well as on the GPU. So, what I am doing is I am just copying 

pasting the solution for scikit learn again. So, you can see here I am calling an API called 

as skRidge and I am giving it certain parameters which are by default or I am over 

overwriting it. So, you can see here, I am giving it a particular alpha value which I have 

taken, which is 1.0. 
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And I am also saying the solver that I am going to use is cholesky, instead of the default 

one which is used and I can just do that expression and the same thing I am going to do 

for a cuML, but I am going to use different parameters here in the cuML space. 
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So, in the cuML my alpha value is the same, but I am saying that I am going to use a 

different solver, which is eigen instead of using a solver which was cholesky here. So, let 

me just run this particular part and then what we are going to do is we are going to just, 

we are going to measure the accuracy levels at which we are able to predict the values. 

And for which basically there is a class which is called as score, which is used to 

measure the performance of the ridge expression. 
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So, let me just try to do the same thing for both sklearn as well as to do to calculate the 

score basically kind of saying how well our model does on the test data set. So, in this 

particular case, you can see the scikit learn accuracy the score is 0.1586 let us do the 

same thing for cuML as well and see how well it performs; I am sorry on this part. 
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So, you can see here it is almost the same, you can see here it gives 0.15868073 to a 

large extent both of them are giving the same results. But if I change the value for 

something else maybe instead of using eigen, if I say use SVD we might start getting 
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different results here. So, let me again run this ridge expression, I have run it for 

specifically for the cuML part of it. 

And let me just again create this and you can see here it has slightly changed at the few 

decimal places later on also. So, but just to show that there are different kinds of hyper 

parameters which exist, but the good part is that you can actually select the hyper 

parameters or you can do a search for the hyper parameters and improve the accuracy of 

your models. 
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And for this particular case, we are using a method which exists in scikit learn which is 

the GridsearchCV it is present in the scikit learn as the name suggests it will do a great 

search for values. For the parameters that we specify, like in this particular case I am 

saying that I would like to search within a parameter space for only alpha. 

So, I am saying that I want to do a great search which alpha values is more better for me 

and there are different methods you can also add other parameters also like you can 

choose whether you want to try out different versions of the solver or you want to just try 

out alpha. 
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So, you can add as many parameters as you need, that you would like your grid search to 

basically figure out to and spit out what is the best method for, what is the best value 

which it is going to give out. 

So, you can see here that I am I am trying to do the gridsearchCV and it is going to split 

out what is the best score for which particular alpha value. So, you here you can see here 

that it did a search for a different alpha values and it figured out that 0.001 is the one 

which is having a much more better score as compared to what we saw earlier. 

If you remember the score there was 0.1 something, here the score is much higher which 

is 0.48 and then we can do the final fit to see that in fact, for all the test data, if you are 

getting the best results or not. 
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So, this is the same thing that you can do, once you are done with the grid search then if 

you want you can provide the same to cuML as well, do the grid search for cuML and 

find out if it is indeed giving the. So, it can see here the same grid search 0.01 is the best 

alpha value according to it and it is providing your score of 0.18. 

So, like in Deep Learning even for Machine Learning you can use some of this hyper 

parameter tuning methods like grid search and try to find out which hyper parameter 

works the best for the problem statement that you have in mind. So, this was a very quick 

demo for you to understand the cuML and how cuML is very similar to if you were 

running on a on a sequential environment using scikit learn, you just have to import the 

right package. 

And you have to take care of additional things like if you are using the right hyper 

parameters or not, because if you because there will be certain changes in accuracy 

which can happen. 
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