Applied Accelerated Artificial Intelligence
Prof. Bharatkumar Sharma
Department of Computer Science and Engineering
Indian Institute of Technology, Palakkad

Lecture - 47
Accelerated Data Analytics Part 4

(Refer Slide Time: 00:15)

P E0Q0edc000LEROHNRBRENC : TRORe 200 cEs2acaae2008 X
€ C O locahosts ter_not to_cubF Q
I Pyt p B HendsonGPUPro. @ CUDA book e B Hadathon [220inda s i@ ool
« EN- u . 5
~ +XB0r»ncw - B
0. Missing Data
Name o LastModifed g e
= R
- : e
- e

Operations

Stats

So, let us let get started and let us see so the missing data can be replaced by using the
fillna method. So, you can see here that there might be a case where some of the data is
missing, right. So, if you see in the thing below above there was a column which did not

have any data it had not applicable or none.

So, missing data is one of the most key feature which you will see in the real world. In
fact, missing data is one of the most critical component which exist, right. So, here in
this particular case you would see that there was a missing data here which had which

was shown as none previously.

1110

(Refer Slide Time: 01:10)

S-GeR00es 000 cEROERRREERC T HARS 005G/ ce=2000 x

€ C @ locahost t D 1 F

B Ha B fosoncube. & ok [aton st [0o [Tl

» IEN - . ‘ B
« i

0.

Viewing Data

And let me just show you before you can see here. So, you can see here it was not
applicable, because we have put it as none and you can filling those pieces by using the

feature which is fill which we just showed it to you fillna.

So, wherever there is not applicable you can fill those values with certain. You can in
fact, fill those values with say average of that particular column or average of that
particular row or median right; these kinds of techniques are very heavily used by the

data scientist or you can drop that column altogether.

So, if you find that particular column you do not need to use, because it will add some

bias to your overall training then you can drop all of the not applicable columns.

1111

(Refer Slide Time: 01:53)

A HERR0edc000cERERRRRRAC : 1RO =00 shceesaaca0L

€ C O localhost i D 170,

I pron pe B tandsonGuPro. & UoA B Hudation [220106 R PA-Tool oot

w EN - _ e)
Q — : E

0. Stats

Applymap

So, from a stats perspective again you can calculate different kinds of statistics for a
series, like you can see here | have a np arrange and it up to 10 and it is a type float and |
am creating a new columnar set by calculating the mean variation standard deviation and

you can add many many more functionalities like that.

So, you can see here that if | had a series of data and so | can create the mean of it, the
variation standard deviation and all and in fact, if you have a particular column like this
you can basically just say describe and that describe basically gives you all the
characteristics of about your columnar data like, how many values are there right for a, b
and c, what is the mean? What is the standard deviation? What is the minimum value?
Right.

And where is 25 percent of the data 50 percent 75 percent what is the maximum value as
well. So, you can use the describe feature where it will give you a lot of statistics about

the overall table that you have.

1112

(Refer Slide Time: 03:06)

A EYRR0edco0RLEHEBRREERC : TRRRe 00 cEc/eecalaaaOe

C O locahost

In fact, to all of them you can use a particular feature which is s.applymap. This
applymap will basically apply this particular formula which is if you are a programmer

in Python you would know how to write lambda functions.

So, what it is doing is that, it is basically doing this operation where | am applying to
each and every row the this particular calculation. So, if | just apply the map. So, it will

you will see that it has taken and it has basically applied this which is x? + x/2.

So, it takes that value and apply those element to them and then you can see here you in
fact rather than writing a lambda function, you can define your own function like here
saying that | want to add n to all of the numbers and | can say s.applymap which means |

am going to apply this to every row a particular function which is add 10.

1113

(Refer Slide Time: 04:09)

A EQR0edcoRRLEHEBRREERC TRRRe 200 cHc/eecaaea00L x + VAR

€ C O localhost8883/lab/tree

B #on Pedemanc. [Hndion GPUPra. @ CUDA bk B Hackathon Custr.. [2020 i Bootca [PM-ToolBoctcamp.. [g [0ndatooa NpTED
—|B+X0B0>» v B
Q
0.
Name - Last Modified
* ma
B jupyter not

W souce code s
« IR START_HER. an hour ago

String Methods

And then, it will apply those and you can see here that for every element it has basically

added 10 to the original data frame.

(Refer Slide Time: 04:21)

- EY0Qeedc00QLEROHNRERERC ! TRDEe 00 cEs s aae200L x + M S
€ 5 C O lochostsss ‘ aex e6»0@EAR)
B ython Performa [Hands-on GPUPro.. @ CUDA bookre B re Custer.. [202 Boot I8 PM-Tool Bootcar R . B 2020 india Bootea *&;‘E’L

8+X0

0. String Methods
Name - Last Modified s
* mo
iy ot
ek
« [START_HER. an hour ago

So, like pandas cuDF provides string processing methods also and we are going to look
to certain extent the string part you can see here cudf series A B C certain elements again

there is a none here and if I just run this you can see here you have print s dot str lower.

1114

So, what it does is kind of already known that we are taking the values and we are
converting them into lower strings right or if you want to count the bytes of each and

every string sometimes you may go out of bound in terms of the memory.

(Refer Slide Time: 04:52)

A ERR0edcoRRLEHEBRRRERC TRRRe =200 cEo/eacalaaa0L

€ © locahost v D t

I python p B tendsonGPUPro. @ CUDA B ruciathonC [220106 i@ ool

» EN - L X 0 .
v 8

0.

Exercise 3

So, you can in fact count the number of bytes which were used for storing that particular
string if required. You can write different kinds of regular expressions, like you can say

see if my string contains this particular regex or not.

So, it should either contain this or that and it will only print the values where that
particular thing is said. So, you can see here in the first code it is saying false, because
there is neither C nor dog and you will see that for the 3rd one it is basically true
because, there is a C there, right. So, it consist of C and then there is a dog at the 7th

location which is also being set to true.

So, so if the dog value is also set to true which is the 7th row while there is a C as well in
the 6th column and that is why even 6 has been marked as true. So, you can do different

kinds of regular expressions using the data frame there, ok.

1115

(Refer Slide Time: 05:56)

A EQR0edcoRRLEREBRREERC TRRERe 200 cHc/eecalaca00e x + G & 3*\
€ 3 C O locahostdss/bitee/upyte rotebook/Cub¥ ;,:zreauo\

T

Name - Last Modified 5
* mo anbour Exercise 3

« I START HER. anhour ago » Solution

Concat

Append

(Refer Slide Time: 06:01)

A ERR0edc00RLEHEBRREERC : TRRRe 200 cHc/eacaleaa00e x + VS NK

© localhost8385/labftree jupyter.notebook/CuDF/D1-Intro_to,cuDF ip :\:kr@’uokagi\

Q
>

Name - Last Modified
* wo an bour Concat

« [START HER. anhour ago

Append

So, this is kind of easy one. So, | am going to skip that part and obviously, you can do
things like concatenation. You can concatenate, so here you can see here | have a cudf
series 1 2 3 and then a not applicable and 5 and then | am just concatenating it again with

itself.

1116

(Refer Slide Time: 06:26)

- EYRR0edc000LEROENRERERC TRNEe 200 cHEs e2saeea008 x
C O locahost g t
B pyon g 2 B [H [H [t]
o« BN _ ')
Q N B
0. Join

Exercise 4

So, you can see here 12 34 5 and again 1 2 3 4 5. So, you can concatenate to it is self or
you can append in the end if you would like to which is almost the same that we did later
on as well. So, this is another example where we are trying to do a join operation so, it is
more of like a SQL syntax. So, if you are a database person, you would understand the
SQL like queries and but the main thing is because everything runs in parallel the order

is not maintained.

So, you do not get guarantee like if you do anything in the SQL database or your
columns the rows are kind of the order is maintained. But, here whenever you fire a SQL
like query the orders are not maintained because, they are basically they how should I
say they are basically happening in parallel on the GPU, but if you want you can restore

them post also.

So, here you can see here we have created a data frame you have a key and value pair
and then similarly you have another data frame b we have again a key and value pair and

then, we are trying to tell to merge them. So, we are saying df a dot merge.

So, merge is one of the most common operation that you find in your database and we
are seeing it how to merge. So, we are defining the strategy how to merge it. Whenever
there is a necessity of merging should | add it to left or should | do a left merge or should

| do a right merge.

1117

So, if you are familiar to SQL database you would understand some of the points which |
am trying to mention here you can see here you have a here and you have a here as well.

So, you have the value 10 and you have the value 100 here.

So, we have done a left merge based on the key value and that is how it will work and
you can see here if there is no value of certain components here, like there was no value

for b here common and you will see that b have been populated with not applicable.

So, only at the places where you got the values is kind of in the beginning and you can
see here that the order was not maintained. In the beginning the order was a b ¢ d e, but
now you see a ¢ e b d which is slightly a different order ah, but it is done something

called as a left merge for you.

(Refer Slide Time: 08:51)

P EY0Q0edc00QLEROHERERERC : TRDEe 200 cEs e 2ceee200L x + -
€ 3 C O lochost e D ¢ 0 4 O 0:‘3
. gan U)o 8 e (@ 20ida o [T[] P ik [20 itaoota NpTE
o EN- s e " 3
. + X80 » e C» Mekiowmv B

0. Grouping

Name o Last Modified ands, cuDF
= - i

W jupyter not »

» 3 x
* 53

So, moving to the next one maybe so like pandas cuDF support split so this is another
example of grouping. Hence, here you have two columns here aggregate column 1,
aggregate column 2 and we are saying set it to 1 if x is X % 2 = 0, which means if it is
divisible by 2 then set it to 1 else set it to O, right. So, that is what this particular logic
actually means if it is divisible by 2 set it to 1 and set it to 0 and if you want you can do a

summation of it.

So, if so ideally yes for all of them you will get a summation of how many values are

aggregated column how many values are 1 and how many values are 0 here, right. So,

1118

there are different kinds of exercises that you can do this is another example of time

series data.

(Refer Slide Time: 09:40)

A ERR0edc00RLERONBRRBERC : TRERe =00 shEs/eecaaea0Oe
€ C O locahost ter_rote 1 Q g
I Pyton Perormanc.. [Hands-on GPUPro.. @ CUDAbookre B Hxt +E 8 £ PM-Tool Boot [st T
o BN _ 5 3
= +X00 v 8
0 - » Solution
t Modified
=

i Time Series

Exercise 6

So, here you can see a data frame supports datetime. So, datetime is another very
common component used in the data sets and you can see here we are using p d dot data

range.

So, this is the data range. | am setting starting from this particular date; the period is kind
of fine the frequency is defined and if I print the value you will see it. So, this is the date
and you can see here we defined the range with a period of 72 and it keeps on moving

forward here. So, you can define different kinds of dates as well, ok.

1119

(Refer Slide Time: 10:24)

vo- PRX

-G R0ed 000 LERNNEEEERC T EEEe 00 cHceecaaa00e x + ¢
¢ C O localhost8389/lab/ree/jupyter_notebook/CuDF/D1-Intro_to_cuDF ipynb arw PO»O oa%g
>
B #ython Periomanc.. [Har GRU B & o " [Hacathon Custer_ [2020 indaBootea [PM-Tool Bootcamp_ [Par [+ R
- Bt c @ erming X B START HEREiowmd X BOLnwotocDfgmd @ 302 to cF UDFsiomtX %
= B+ X v Pyon3 O
0. o
Name a Last Modified
* ma an hour &
W jippernot. 26 minates Converting Data Representation
»

= CuPy

So, I think I kind of covered a large portion of what all functionalities are provided here.

(Refer Slide Time: 10:28)

P EY0Q0edc00QLEROHNRERERC : TRDEe 200 cEs s aaea00L x + Vo= PR
€ 5 C O locahost88E9/sbfree/upyter ot b agx OO {XS
I Froon peomonc. [Hondson PR, & CUDA ook [Hackathon uster {3 200 otn [Tl ok [Pt Torkng [200 otonka pTEL

Q L
0.
Name . Latodfed
* mo
Wi

taport cupy as cp

« [START_HER. an hour ago

*

As | told you there are other kinds of features also which exist like you can if you we had
covered to certain extent prior something called as CuPy. So, in case you are writing
your own GPU code using a package called as CuPy, you can basically convert your
frames between CuPy to a data frame from so, CuPy has this concept of ndarray n

dimensional array.

1120

(Refer Slide Time: 11:02)

- E0R0ed 00 LEROEBERERTC ! TREEe 200 chEceasaaca00e x + vo- PRX
€ 5 C O localhost8399/abfireefjupyter notebook/CuDF/01-Intro_to cuD aet £0»0QNAS
e
I Fyon et B HondsonGUPro. @ CUDAbookrevse .. [Hactathon Custer. [200indaBootca [ATl Bockcam. [PosilThirking . [2020 ndiaBocka \pTEL
sl : ¢ B . =
—la+xen
0. '
Name a Last Modified
==
. —
Pl g Pandas
, b
o
1
2
3
o
R

Numpy

So, you can do those kinds of conversions if it is required or from pandas we have
already told you about it. So, you can convert from pandas to cuDF or from cuDF we can
convert it back to pandas. So, that you can utilize it on the CPU, say for different purpose

like writing it to a file or something.

(Refer Slide Time: 11:20)

2P0ed 000 cEEEERREERC 1ORAe 200 sEs s aaea00e x + Y

A

oy
W
C O localhost8389/lab/tree/jupyter_notebook/CuD b Q @

o

Name » Last Modified

« [START HER... an hour ago

Getting Data In/Out

csv

Same thing exist for numpy in case you want to convert a cuDF dataframe to a numpy

arrays. You can say here you can say df dot as matrix and it will basically do the same

1121

thing. So, there might be certain deprecated warning but it is fine, but you can convert

them as an array.

(Refer Slide Time: 11:39)

2 E0Q0eed 000 LEHONBRRREBEC : T DEMe =00 2ceae=00Lt x + Sk
€ 5 C O locahostsses/sbiee/upyer noe ‘ aew e6s0@ Y
I Pyton Perommanc.. [Handson GPUPro.. @ CUDAbaokre [Hackathon Custer. [2 Sooca. [PMTooiBoctcamp.. [Purste Thinking . [200 infaboota ypTEL
— 18 + X 0

0 Q ame.py: 3044, % as g method e

L]

Nome 4 LastModfed
* wa

B g

B

+ I8 START_HER. an hour ago

*

Getting Data In/Out

csv

So, you can see here you can convert them as an array from the data frame as well. So,

that kind of a functionality is also provided.

(Refer Slide Time: 11:49)

A HERR0edc00RLEHOERRRRRAC : TR =00 cHceasaacla

€ 3 C O locahostssey/labfiree/upyte KICD DF ipynb
I Pytion Peromanc. [HandsonGRUPro.. @ CUDA bookre B Hsckathon Custer_ [2020 i Bootca_ [PM-Tool Bootar
~—la+x00r08
0.
Name - Last Modified
* na
B jupyter_not

« [START_HER.. an hour ago

We also talked about reading or writing from a file you can see here that we are reading
from a CSV file here. So, it is quite easy if it exist. So, we are saying data frame dot to

CSV. So, here we are actually writing to a file.

1122

So, we are converting it and writing into a file or if you want again whatever we have
written in form of a file the data frame we can read it back and it should ideally print the
values that we had on our data frame of a, b and c. We can see here it is just printing the

top values and then you see dot dot dot.

Because, there are so many values it will not print all the values. So, the print will not
print all the values, it will only print certain head values and in the end whatever values
are there, but it will print the overall things it says. You have 10000 rows inside it out of

which I am kind of presenting you only a few of them.

(Refer Slide Time: 12:45)

A HEQR0edcORRLERCHRNREREEAC ! TERRe =00 sGseascaaea00L x + LA e
¢ © locahostB889/obirefony OF i aex eo»0@UR:
B 3

B o . [oo @ o B oo [oot [et R T

» EN - s : . "
vB L]

0.

- Performance

an be much faster than the CPU. Lets ilustrate thi

A More Realistic Example: Sensor Data Analytics

But, one of the critical reasons why | told so far | have been telling you about how to use
cuDF, but what is missing so far is the part of a performance. | just told you that it is
used for performance; so far we were reading 1000 rows 10000 rows and all. But, cuDF
is all about performance and if only if you are doing certain complicated operations on it

or if you have a large data that is where it will make sense.

And here as you can see here first we are going to run a numpy based thing pandas based
thing. So, so we have created so many 10 million values and those 10 million values we
are populating in the pandas data frame as well as in the CUDA Data Frame and we are
going to do a some operation on pandas as well as on cudf and we are printing the time

for it. So, let us see how much time it takes.

1123

(Refer Slide Time: 13:43)

P ERQ0eds000LERONBRERERC ! TRNEe 200 cHseecaae200L x + Vo= PRX
Fuy
€ 3 C O locahost8a89/abfireefupyter notebook/CuDF/O1-ntro,to_cubF Qg% PO 0 QA
S
B Pyton eromanc. B L B - @ socta NPTEL
. M- T T—T ‘ : 4
X . B
0 o g3 Datafram
Name a Last Modified
-
. e
W source coce e
= | ;
*

ample. though

A More Realistic Example: Sensor Data Analytics

So, you can see here it has taken 790 microseconds on the GPU and on the CPU let us
see how much time it takes for calculating a sum of 10 million elements. So, 790
microseconds on the GPU and it has taken 15 milliseconds on the CPU. So, you can
already see the amount of timing difference when | try to add only just one column, it is

it is really good right but, it is still a simple example.

(Refer Slide Time: 14:23)

A ERR0edco0RLERONBRRBEAC : TRRRe 00 chHseecaeea0Oe x + M o
€ 5 C O locahost Areefupytes ot b awt 0 s0@NaS
-] B t GRUP & CUdA bookre B ke " [+ dia B 8 PM-Tool Bootcan [PeateiT . T8 2020 india Boot ;;‘F‘;L

I LER
°.

Name = Last Modified

« [START_HER. an hour ago

»

dite value hour mincte

So, let me now show you a more realistic example of sensor data analytics. So, what we

are trying to do here is that we are trying to mimic as if you are getting data from various

1124

sensors and it is getting from a series of sensors at every milliseconds and this sensors

are measuring say temperature pressure or something, right.

So, what we are doing is, we have a pandas data frame we are creating a date range it
starts at this particular date it ends at this date and the frequency is in milliseconds, right.
So, this is going to create a date range and the same we are creating the date the values it

is kind of a sample values and then, we are going to populate in hours and minutes also.

So, let us create them in the pandas side of it and then, what we are saying is that we are
going to just do certain analysis on it like here in this case we are just saying | want to
group by the based on hours and minutes | want to do a aggregation and the aggregation

type is of max. So, | want to find the max, right.

(Refer Slide Time: 15:29)

A E2000edcORRLEROERNRREEEC ! TEBRe200cGseacaeea00L x + - :}.‘7"{(

€ © localhost eefjupyter_note Ay PO»0 oz\ﬁ

] p B+ b 6 B HE & £ PM-Tool Boot T 1@ 220mda

s IEN - L s %
a ~ B

0.

So, | want to do aggregation and | want to do a max value of it. So, you can see here
creation took around 19 seconds and then | am going to do a performer operation on it.
So, I am going to do a group by on hours and minutes and do aggregation based on the
max value here and it is going to take some time to finish it, right. So, if the wall clock

time is took around 4 seconds to do that aggregation that we just talked about, right.

1125

(Refer Slide Time: 16:01)

A EYRR0esco0RLEREBRREEAC TRERe 200 cHceecaleaa00L x + voo- PRX
€ 35 C O localhost8889/labftreefjupyter notebook/CuDF/U1-Intro_to_cubF ipynb aex @60 »0 Q@ %A
B Python Performanc.. [Hands-onGPUPro.. @ CUDA bockre [Hschathon Custer_ [2020 indiaBootca [PMTool Boctcamp.. g Par g [2020 ndia bootea Np‘;‘EL
» M- s y
0.

Name a Last Modified
=

.

So, let us do the same thing on the GPU and see. So, you can see here on the GPU it has
already finished and it is not even in seconds it is actually 23 milliseconds versus 4
seconds.

(Refer Slide Time: 16:09)

A HeRRCedc00RLEHERRRRRAC : TR 200 sHceasaaca00e x + voo- PRX
- C O localhost8883/lab/tree/jupyter notebook/CuD Q@ % n@’aog\, 3]
B Pyton Promanc. [Handson GPUPro.. @ CUDA bk B Hackathon Custer_] 2020iniaBoorca { PATool Bootcamp_ [P 3 [mwsatea NprEp
s EN - L] . e
a8 v 8
0. =
Name - Last Modified
* o an hour
B jupyter not 2 minutes &
< » s oS 3 howr minute second
= 4 3 L]
“ H
* 3 n 6
s & n
and e
Conclusion

So, the group by of this particular case took around 4 seconds and on the GPU it took
around 34 milliseconds right and this is one of the part which | wanted to show was that

even though there are so many functionalities.

1126

(Refer Slide Time: 16:31)

L)
€
B

« [START_HER. an hour ago

© localhost8883/lab/tree;

thon, Peromanc... [E] Hands-on GPU Pro

G000 edc000LERNNEERREC ! TEE@e 200 cHceecaeca00L x + voo- PRX

Q@ ¢]
aex eeaao{v;s

(8 ot (@ st D

But one of the most critical thing also to understand is the part that, the primary reason

where you will use it is when you want to do certain complicated operations or you have

large data set which may take a few hours to few days also to do these kinds of operation

and that is why cuDF makes it is impact.

(Refer Slide Time: 17:00)

L)
B et

H2000edc000cERHNERREAC TRRRe 200 cEc e

g cleelee00e x + ¥ -¢$“’\X

awx ©60»0@LAS
S
otcamp.. [Paratel Thinking - [2020 india Bootca

NPTEL

1127

(Refer Slide Time: 17:02)

H2000edc000LERHNBERREAC TRRARe =00 cEceacaaaa

© localhosts

)

—la

0.

Name - Last Modified

o

et - 3y

0 soweecace s User Defined Functions with cuDF

« [N START_HER... an hour ago

Here is the list of contents in the lab:

Now, what if now what if this particular functionality which I just talked to you about is
not present, like | showed you so many functions here string functions this function that

function.

(Refer Slide Time: 17:11)

A HERRCedc00QCERERRRRRAC : TRREe 200 sHceesaaca00e x + Voo PN
TN
¢ C @ localhost8889/lab/treejupyter_notebook/CuDF/D1-Intro_to_cuDF ipynt Q@ % E@;ae“@g
B Aon Peomarc.] HandsonGPUPre. @ CUDA ook [Hacathon Custer. [2020 indaootca [PTok Boccamp.. [P B mosata. ypTEL
» IEN - Wi . .
= X] . v B

0. Exercise 2

Name - Last Modified
* x

& ot o ¥ Solution
7 W source coce morihs ag
*

Missing Data

What if you had a custom operation that you wanted to do on the data which exist. In that
case, you can also define something called as user defined functions and you can define
your own complicated functions and you can use one of the features which is either

apply rows or apply chunks.

1128

(Refer Slide Time: 17:29)

G2000edcR0RLEHoHBREBRAC :TORDe =00 chEc e acaaae

C O localhosts

]
B oo] ot an AP Clbockrse - aton s 20t T

So, either we will use apply row or apply chunks and | am going to show you very
quickly on what that means. So, apply row basically processes each of the row
independently in parallel. So, if you remember GPU computing is all about being in
parallel, running things in parallel, right.

So, if | call apply row to a particular data frame and if | define what is going to happen
inside that apply row that method that row calculation will be independently happening
in parallel on the GPU, right. And it will optimally divide the columns into chunks and
assign those chunks to different GPU blocks.

1129

(Refer Slide Time: 18:21)

A EYRR0edcO0RLERENRREEAC : TRRRe =00 cEc/eacaaaaOe
C @ locahost ’ v t D
I Aren? g 2 g @ 2]
» EN - . E
v B

0 . -

Name
*u

. ,

8 s code o

*

And what are these blocks and all | will talk about that in a bit, but one of the most
critical thing that I have to say and again repeat that | told in the last thing also is that

that the execution order of row is arbitrary.

So, each execution of the function must be independent of each other which means, that
you cannot be saying that I am dependent on a value on row 1 and only once | have that

value then | can change the row 5 or so.

So, if you have a dependency among the rows you cannot use that. So, cuDF under the
hood as | said would depend on CUDA behind the scene and it is going to run it on the
CUDA architecture and what happens behind the scene it is run across multiple blocks
and threads | will quickly say what a block and thread concept is in a bit for now you can
assume that something runs in parallel in terms of blocks and threads and then it makes
use of a package called a numba.

So, numba is the one which what it will do is it will actually do a JIT compilation just in
10 compilation of your of your function which is supposed to run on GPU which you
have defined to be used in apply in the apply rows and it compiles it to lower level
CUDA code which finally is given to the GPU.

And how does the function look like, it will basically look like this. Whenever you are

defining a function that needs to run on GPU in parallel, you will have certain input

1130

columns like this, you will have certain output columns and then you will have certain
additional arguments that you want to pass through your function that needs to run in

parallel.

And then, you will have for i and then you will do the operation that you want to do in
parallel across all the rows. So and how do you call it? So, you will call it in this fashion
you will say apply rows you will define the name of the function which in this case is

kernel and then, you will say what are the input columns.

So, you will create an array of it. So, you will say in columns in 1 in 2 in 3 the number of
columns that you want, then you will define your out columns and you can see here for

the out columns you are also defining the data type.

Like you are saying that the output 1 is of type float 64 and the output 2 is of type integer
8 bit and you will also define the input additional argument that you would like it to
have, right. So, the outputs are not returned back outputs are also passed as an argument
in case of CUDA world and that is why even to apply rows you pass it as an as a

argument here, right.

(Refer Slide Time: 21:05)

0-GeR00es 5000 EROHBEEEENC 1HENe 00sEseasaaea00e x + v - PX
¢ © lcahost 8889 abveefupyt ' e e % EO*0O o‘y*}
0 lec Qe €O G

m

So, this is an example of in case you for a data frame if you wanted to represent the pairs

of longitude, latitude and longitude here and you wanted to calculate the haversine

1131

distance. So, you can if you click on this it will take you to the Wikipedia definition of it,

but you can see here basically what we are trying to do for the latitude and longitude.

So, we are trying to do here certain sine and cosine functionality here where we have
these variables as latitudes and we have the gamma variables as the longitudes here. So,

you can see here from math we are importing cos, sin and different functionalities here.

(Refer Slide Time: 21:47)

ACEERR0ed/5000cEROHREERRAC tEORS 200G saaa
€ C O localhosts: ter_not v F
1B Python, Performar Bt GPUPro.. @ CUDAbookre = Guster. [2 GaB BB #ATool o
s EN: : ¢ B femina X B START HEREpynb S o e o 0 et W] 8 2. 0 o0 LiFsiog® | 3
]ﬂ~“«”j,>|:~»‘cc;, o -

0. -
Name Last Moifed
* ma

. e code X

i
*

And then, we are creating those latitudes and longitudes and then we are defining our

function which 1 just told you about.

(Refer Slide Time: 21:55)

M ERR0edc00RLEREBRREEAC ! TAEDe =00 shEseecaaea00e x + voo- PRX
fe ¥
¢ C @ localhost8889/labftree/jupyter_notebook/CuDF/D2-Intro,to_cuDF_UD Q© % i‘@;go‘;ﬂﬁg
e
I Pytvon Peromanc. [HandsonGPUPro.. & CUDAbookre B Hactathon Guster. [2020 i Booea [PM-Tool Boctamp.. [P [220mdatecta NpTE|

1132

So, we are doing the we want to do haversine distance function and you can see here we
have couple of inputs latitude 1, longitude 1, latitude 2, longitude 2 and we are trying to
find the haversine distance between them and this is where the output or the or the

haversine distance is actually put and given as an written back as a output.

And you can see here we are saying for the x1, y1, x2, y2 which is latitude 1, longitude
1, latitude 2, longitude 2 and | am doing certain additional calculation here I will go

through certain details of CUDA tomorrow.

So, that you get an idea of what | am trying to say here what is it is thread id and block id
maybe | will show it to you tomorrow in the not in the tomorrow session, but the next
session which is happening on Wednesday; and what | am doing is | am getting this
value x1, y1, x2, y2 calculating those just as the sine and the cosine transforms and
finally, storing the value here, right. So, what | am saying is that, | want to take this
function and | want to calculate this haversine distance in parallel for which I am doing

something called as apply rows.

(Refer Slide Time: 23:12)

A HEQRCedco0RCcERHRRRRREC : TREEe =00 cHceacaac200L x + M s
C O locahost eefjupyter_not Q¥ % p@,geg,’ig
R
-] mac.. [HandsonGPUPro. & . B re HE E £ P-Tool Book T [220indias PTE
» .; t B X W START HERE X B 01-intro,to_ cuDF. X ® 10 QUOF UDFsipynt ® %
B+X0O0»uecCcw»cCee vB 3
0.
Name Last Modified
* o 2
F— g i
. . .

e Q4 OLDrEGQPsQ -8 0 asw

When | do the apply row, | am giving it the input columns which I just had | am telling it
for all the columns in parallel I am going to calculate this haversine distance. The output
is of type dictionary and it is having a data type float 64 and this is the part which | am
just passing to it and | just need to run this and | am going to again run this and it is

going to do it in parallel you can see here they just calculated in 698 milliseconds and in

1133

fact the second time it becomes much faster 14 milliseconds and it is basically going to
print out.

(Refer Slide Time: 23:51)

P EY0Q0edc00QLEROHBRERERC ! TRDEe =00 cEs e s aee2008 x + e

€ 5 C O locahost8869abfiee/upyter. notebook/CubF/02Inroto cuDF. UDF ag# e %»0@ a3

I Pyton Pefomanc.. [Hondson GPUPra.. @ CUDA book B Hcathon Custer [2020 Bootca. [PA-TookBootcamp.. [Paatel Thinking . [2020 i oot NP??L

™ I: t C B Termina Fsipmt® %
—la+xo

0.

Name . LatModfied
* mo

Wi

W source code

« [START_HER. 2hours ago I

So, if this is your latitude 1, longitude 1, latitude 2, longitude 2 this is the haversine
distance which is calculated as the output here.

(Refer Slide Time: 24:10)

P EQ00edc000LERONNRBREEC ! TROMe 200 cEc2acaae200L x + A
€ 3 C O locahost888%/labftreefjupyter notebook/CudF/N2-Intro_to_cuF UDF: arww ©0»0@R&RS
I Pyton Perfomanc.. [Hancson GPUPro.. & CUDA bock e B tactation Custer. [2020 i ooca. [] #AHTool Boctamp.. [P g [#indatoska NpYEY
» N - v : v
XogQo»s
0 1] thread id: @ block id: 4 array size: 1 block threads: 64
N % (o Modiied thread id: 1 block id: 4 array size: 1 block threads: 64
- : : 1 block threads: 64
wo
B jupyter_not 40 minutes ¢ thread id: 61 block id: 4 array size: 1 block threads: 64
B sowee code montis o3 thread id: 62 block id: e: 1 block threads: 64
< . thread id: 63 block id: y size: 1 block threads: 64
CEENETYT B
= thread dd: 29 block id: @ array size: 2 block threads: 64
thread id: 30 block id: @ array size: 2 block threads: 64 I
*

apply_rows. hand!

Exercise 1

So, we have done certain print up statements also and | am not putting those print up
statements here at this point of time there are certain outputs it would not display them in

the Jupyter notebook because, the print up statement will only appear in the terminal

1134

output. So, only if you run it on the terminal these values are going to be output it does

not get output on the on the Jupyter notebook.

(Refer Slide Time: 24:39)

- Ee0R0es 00RO EERERERC 1 BERe 00 cEs s aea00e x + N
€ 5 C O hostiss et to.cuDF.UDF RN RN N-1%3)
I o Peomanc. [HandeonGPUPro. @ CUDAbockreve . [Hackthon Gt [2020 indfooca [ATt Bt [Pael Thinking [2000idaBoota \pTEL
sl ¢ oo x ~
z B+Xx6a0 c v B 0

0. Exercise 2

Name - Last Modified
* o

B ot A1 oo atan2(sin(4s — 4,) cos(@n). cosley) sin(@2) = sinl@;) cos(@y) cosl iz = &)

W source code x

where agan @y. gy are the latitudes and 4. i» are the longitude:

« I START HER. 2boursago

= » Solution

But, 1 am going to talk about it later on, but once you run this you would understand that
it is running something called as CUDA blocks within each block it was running 64
threads and how many rows and number of threads were basically done. So, this is this is

the part of the 1st exercise.

(Refer Slide Time: 24:57)

P EYQReedc00QLEROHERBERERC ! TRDEe 00 cEs s aae200L x + ey
€5 C 0 abonsss . notbook to.clf U0 agx €6 s0@iHY
B Python, Perdormar [Hands-on GPUPro.. @ CUDA bookre B re Custer.. [202 8 {8 PM-Tool Bootcan [PacatelT " [2020 india Bootea ‘(‘P?‘E.L
s EN: : ¢ Bremna x Fiomnt® %
ol LR - 30

0.

Name - Last Modified
* max 2housag

B, - 4t apply_chunks

« [START_HER. 2hours ago

1135

The 2nd part is if you want to take more control on the chunks values and how you want
to so, in the previous case we left it up to the numba and up to the apply rows to basically
define at what chunk level the data gets divided ah. So, tomorrow what we are going to
do is, we are going to first understand how to data gets divided among the CUDA blocks
or CUDA threads.

(Refer Slide Time: 25:27)

P HERR0edc00QLERCHRBRBEDBC TRER® =00 cHceacaeea00L x + = ek
€ 5 C O locahostassy/abitree/upyte notebook : ; aewx £0%0@EHS
B Pytoon Peromanc.. [Hands-on GPUPro.. & CUDA bookre B ockathon Guster.. [2020 i Bootca. [PM-ToolBootcamp.. [Paatel Thinking - 2020 idiaBoct NP‘;‘EL
« M- : = =
0.

Name = Last Modified
* mo

8 sowce.code .
*

And then, we will look at the applied chunks button.
(Refer Slide Time: 25:28)
P ERReedc000LEROHNRERERC ! TROEe 200 cEse2caee200L x + N e
¢ C @ localhost8389/lab/ree/jupyter_notebook 2-intro ¢ DF ARt PO uea%ﬁg‘
I Pyton Pefomanc.. [Hondson GPUPra.. @ CUDA book B tackathon Gistr_. [2020indi8 B P-Tool Boctcamp.. [Prati Thinking - [2020 i Boot r.‘P‘:EL
=1 Bt C B Termina X r ~
Jlg+xo0 - B

0.

Name 2 Last Modified
LIy premmm The execution time has clearly decreased from 530 ms to 492 ms by using apply_chunks, but the

™ ioyter ot emphasis is on the increased control over manner of execution

W e coce

« ¥ START HER. 2boursago
= Exercise 3
* Use your bearing formula unction from Exercise 2with apply_chunks instead of apply_rows: (f you did not complete the enercses, click solution

» Solution

1136

Which is which is much more which will give you more performance as compared to

blindly just calling apply rows.

(Refer Slide Time: 25:35)

P E0Q0edc000LEROHNRERERC : TRDEe 200 cEs s aae200L x + S
. ! Dk awt 0 s0@Nas

€ C O localhost8ss yter_notebook 2
B #ytron Periommanc.. [Hands-on GRU P & CUDAbookre [Haciathon Custer. [202 Sootea. [PM-ToolBoctaamp.. [Paalel T @ monseba. NpTEL
B+ X u]
0. ¥
Name 4 Last Modified » Solution
* mo
8 jupyter ot 4¥ iaates X from math daport atan2
W source code
- [START_HER. 2hours ag0 rtata
= on1,
*

So, with that we are kind of done with the first part and | will look at if there are.

1137

