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So, let us let get started and let us see so the missing data can be replaced by using the 

fillna method. So, you can see here that there might be a case where some of the data is 

missing, right. So, if you see in the thing below above there was a column which did not 

have any data it had not applicable or none. 

So, missing data is one of the most key feature which you will see in the real world. In 

fact, missing data is one of the most critical component which exist, right. So, here in 

this particular case you would see that there was a missing data here which had which 

was shown as none previously. 
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And let me just show you before you can see here. So, you can see here it was not 

applicable, because we have put it as none and you can filling those pieces by using the 

feature which is fill which we just showed it to you fillna. 

So, wherever there is not applicable you can fill those values with certain. You can in 

fact, fill those values with say average of that particular column or average of that 

particular row or median right; these kinds of techniques are very heavily used by the 

data scientist or you can drop that column altogether. 

So, if you find that particular column you do not need to use, because it will add some 

bias to your overall training then you can drop all of the not applicable columns. 
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So, from a stats perspective again you can calculate different kinds of statistics for a 

series, like you can see here I have a np arrange and it up to 10 and it is a type float and I 

am creating a new columnar set by calculating the mean variation standard deviation and 

you can add many many more functionalities like that. 

So, you can see here that if I had a series of data and so I can create the mean of it, the 

variation standard deviation and all and in fact, if you have a particular column like this 

you can basically just say describe and that describe basically gives you all the 

characteristics of about your columnar data like, how many values are there right for a, b 

and c, what is the mean? What is the standard deviation? What is the minimum value? 

Right. 

And where is 25 percent of the data 50 percent 75 percent what is the maximum value as 

well. So, you can use the describe feature where it will give you a lot of statistics about 

the overall table that you have. 
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In fact, to all of them you can use a particular feature which is s.applymap. This 

applymap will basically apply this particular formula which is if you are a programmer 

in Python you would know how to write lambda functions. 

So, what it is doing is that, it is basically doing this operation where I am applying to 

each and every row the this particular calculation. So, if I just apply the map. So, it will 

you will see that it has taken and it has basically applied this which is x2 + x/2. 

So, it takes that value and apply those element to them and then you can see here you in 

fact rather than writing a lambda function, you can define your own function like here 

saying that I want to add n to all of the numbers and I can say s.applymap which means I 

am going to apply this to every row a particular function which is add 10. 
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And then, it will apply those and you can see here that for every element it has basically 

added 10 to the original data frame. 
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So, like pandas cuDF provides string processing methods also and we are going to look 

to certain extent the string part you can see here cudf series A B C certain elements again 

there is a none here and if I just run this you can see here you have print s dot str lower. 

1114



So, what it does is kind of already known that we are taking the values and we are 

converting them into lower strings right or if you want to count the bytes of each and 

every string sometimes you may go out of bound in terms of the memory. 
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So, you can in fact count the number of bytes which were used for storing that particular 

string if required. You can write different kinds of regular expressions, like you can say 

see if my string contains this particular regex or not. 

So, it should either contain this or that and it will only print the values where that 

particular thing is said. So, you can see here in the first code it is saying false, because 

there is neither C nor dog and you will see that for the 3rd one it is basically true 

because, there is a C there, right. So, it consist of C and then there is a dog at the 7th 

location which is also being set to true. 

So, so if the dog value is also set to true which is the 7th row while there is a C as well in 

the 6th column and that is why even 6 has been marked as true. So, you can do different 

kinds of regular expressions using the data frame there, ok. 
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So, this is kind of easy one. So, I am going to skip that part and obviously, you can do 

things like concatenation. You can concatenate, so here you can see here I have a cudf 

series 1 2 3 and then a not applicable and 5 and then I am just concatenating it again with 

itself. 
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So, you can see here 1 2 3 4 5 and again 1 2 3 4 5. So, you can concatenate to it is self or 

you can append in the end if you would like to which is almost the same that we did later 

on as well. So, this is another example where we are trying to do a join operation so, it is 

more of like a SQL syntax. So, if you are a database person, you would understand the 

SQL like queries and but the main thing is because everything runs in parallel the order 

is not maintained. 

So, you do not get guarantee like if you do anything in the SQL database or your 

columns the rows are kind of the order is maintained. But, here whenever you fire a SQL 

like query the orders are not maintained because, they are basically they how should I 

say they are basically happening in parallel on the GPU, but if you want you can restore 

them post also. 

So, here you can see here we have created a data frame you have a key and value pair 

and then similarly you have another data frame b we have again a key and value pair and 

then, we are trying to tell to merge them. So, we are saying df a dot merge. 

So, merge is one of the most common operation that you find in your database and we 

are seeing it how to merge. So, we are defining the strategy how to merge it. Whenever 

there is a necessity of merging should I add it to left or should I do a left merge or should 

I do a right merge. 

1117



So, if you are familiar to SQL database you would understand some of the points which I 

am trying to mention here you can see here you have a here and you have a here as well. 

So, you have the value 10 and you have the value 100 here. 

So, we have done a left merge based on the key value and that is how it will work and 

you can see here if there is no value of certain components here, like there was no value 

for b here common and you will see that b have been populated with not applicable. 

So, only at the places where you got the values is kind of in the beginning and you can 

see here that the order was not maintained. In the beginning the order was a b c d e, but 

now you see a c e b d which is slightly a different order ah, but it is done something 

called as a left merge for you. 
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So, moving to the next one maybe so like pandas cuDF support split so this is another 

example of grouping.  Hence, here you have two columns here aggregate column 1, 

aggregate column 2 and we are saying set it to 1 if x is x % 2 = 0, which means if it is 

divisible by 2 then set it to 1 else set it to 0, right. So, that is what this particular logic 

actually means if it is divisible by 2 set it to 1 and set it to 0 and if you want you can do a 

summation of it. 

So, if so ideally yes for all of them you will get a summation of how many values are 

aggregated column how many values are 1 and how many values are 0 here, right. So, 

1118



there are different kinds of exercises that you can do this is another example of time 

series data. 
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So, here you can see a data frame supports datetime. So, datetime is another very 

common component used in the data sets and you can see here we are using p d dot data 

range. 

So, this is the data range. I am setting starting from this particular date; the period is kind 

of fine the frequency is defined and if I print the value you will see it. So, this is the date 

and you can see here we defined the range with a period of 72 and it keeps on moving 

forward here. So, you can define different kinds of dates as well, ok. 
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So, I think I kind of covered a large portion of what all functionalities are provided here. 
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As I told you there are other kinds of features also which exist like you can if you we had 

covered to certain extent prior something called as CuPy. So, in case you are writing 

your own GPU code using a package called as CuPy, you can basically convert your 

frames between CuPy to a data frame from so, CuPy has this concept of ndarray n 

dimensional array. 
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So, you can do those kinds of conversions if it is required or from pandas we have 

already told you about it. So, you can convert from pandas to cuDF or from cuDF we can 

convert it back to pandas. So, that you can utilize it on the CPU, say for different purpose 

like writing it to a file or something. 

(Refer Slide Time: 11:20) 

 

Same thing exist for numpy in case you want to convert a cuDF dataframe to a numpy 

arrays. You can say here you can say df dot as matrix and it will basically do the same 
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thing. So, there might be certain deprecated warning but it is fine, but you can convert 

them as an array. 
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So, you can see here you can convert them as an array from the data frame as well. So, 

that kind of a functionality is also provided. 

(Refer Slide Time: 11:49) 

 

We also talked about reading or writing from a file you can see here that we are reading 

from a CSV file here. So, it is quite easy if it exist. So, we are saying data frame dot to 

CSV. So, here we are actually writing to a file. 
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So, we are converting it and writing into a file or if you want again whatever we have 

written in form of a file the data frame we can read it back and it should ideally print the 

values that we had on our data frame of a, b and c. We can see here it is just printing the 

top values and then you see dot dot dot. 

Because, there are so many values it will not print all the values. So, the print will not 

print all the values, it will only print certain head values and in the end whatever values 

are there, but it will print the overall things it says. You have 10000 rows inside it out of 

which I am kind of presenting you only a few of them. 

(Refer Slide Time: 12:45) 

 

But, one of the critical reasons why I told so far I have been telling you about how to use 

cuDF, but what is missing so far is the part of a performance. I just told you that it is 

used for performance; so far we were reading 1000 rows 10000 rows and all. But, cuDF 

is all about performance and if only if you are doing certain complicated operations on it 

or if you have a large data that is where it will make sense. 

And here as you can see here first we are going to run a numpy based thing pandas based 

thing. So, so we have created so many 10 million values and those 10 million values we 

are populating in the pandas data frame as well as in the CUDA Data Frame and we are 

going to do a some operation on pandas as well as on cudf and we are printing the time 

for it. So, let us see how much time it takes. 
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So, you can see here it has taken 790 microseconds on the GPU and on the CPU let us 

see how much time it takes for calculating a sum of 10 million elements. So, 790 

microseconds on the GPU and it has taken 15 milliseconds on the CPU. So, you can 

already see the amount of timing difference when I try to add only just one column, it is 

it is really good right but, it is still a simple example. 
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So, let me now show you a more realistic example of sensor data analytics. So, what we 

are trying to do here is that we are trying to mimic as if you are getting data from various 
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sensors and it is getting from a series of sensors at every milliseconds and this sensors 

are measuring say temperature pressure or something, right. 

So, what we are doing is, we have a pandas data frame we are creating a date range it 

starts at this particular date it ends at this date and the frequency is in milliseconds, right. 

So, this is going to create a date range and the same we are creating the date the values it 

is kind of a sample values and then, we are going to populate in hours and minutes also. 

So, let us create them in the pandas side of it and then, what we are saying is that we are 

going to just do certain analysis on it like here in this case we are just saying I want to 

group by the based on hours and minutes I want to do a aggregation and the aggregation 

type is of max. So, I want to find the max, right. 
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So, I want to do aggregation and I want to do a max value of it. So, you can see here 

creation took around 19 seconds and then I am going to do a performer operation on it. 

So, I am going to do a group by on hours and minutes and do aggregation based on the 

max value here and it is going to take some time to finish it, right. So, if the wall clock 

time is took around 4 seconds to do that aggregation that we just talked about, right. 

1125



(Refer Slide Time: 16:01) 

 

So, let us do the same thing on the GPU and see. So, you can see here on the GPU it has 

already finished and it is not even in seconds it is actually 23 milliseconds versus 4 

seconds. 

(Refer Slide Time: 16:09) 

 

So, the group by of this particular case took around 4 seconds and on the GPU it took 

around 34 milliseconds right and this is one of the part which I wanted to show was that 

even though there are so many functionalities. 
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But one of the most critical thing also to understand is the part that, the primary reason 

where you will use it is when you want to do certain complicated operations or you have 

large data set which may take a few hours to few days also to do these kinds of operation 

and that is why cuDF makes it is impact. 

(Refer Slide Time: 17:00) 
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Now, what if now what if this particular functionality which I just talked to you about is 

not present, like I showed you so many functions here string functions this function that 

function. 
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What if you had a custom operation that you wanted to do on the data which exist. In that 

case, you can also define something called as user defined functions and you can define 

your own complicated functions and you can use one of the features which is either 

apply rows or apply chunks. 
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So, either we will use apply row or apply chunks and I am going to show you very 

quickly on what that means. So, apply row basically processes each of the row 

independently in parallel. So, if you remember GPU computing is all about being in 

parallel, running things in parallel, right. 

So, if I call apply row to a particular data frame and if I define what is going to happen 

inside that apply row that method that row calculation will be independently happening 

in parallel on the GPU, right. And it will optimally divide the columns into chunks and 

assign those chunks to different GPU blocks. 
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And what are these blocks and all I will talk about that in a bit, but one of the most 

critical thing that I have to say and again repeat that I told in the last thing also is that 

that the execution order of row is arbitrary. 

So, each execution of the function must be independent of each other which means, that 

you cannot be saying that I am dependent on a value on row 1 and only once I have that 

value then I can change the row 5 or so. 

So, if you have a dependency among the rows you cannot use that. So, cuDF under the 

hood as I said would depend on CUDA behind the scene and it is going to run it on the 

CUDA architecture and what happens behind the scene it is run across multiple blocks 

and threads I will quickly say what a block and thread concept is in a bit for now you can 

assume that something runs in parallel in terms of blocks and threads and then it makes 

use of a package called a numba. 

So, numba is the one which what it will do is it will actually do a JIT compilation just in 

10 compilation of your of your function which is supposed to run on GPU which you 

have defined to be used in apply in the apply rows and it compiles it to lower level 

CUDA code which finally is given to the GPU. 

And how does the function look like, it will basically look like this. Whenever you are 

defining a function that needs to run on GPU in parallel, you will have certain input 
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columns like this, you will have certain output columns and then you will have certain 

additional arguments that you want to pass through your function that needs to run in 

parallel. 

And then, you will have for i and then you will do the operation that you want to do in 

parallel across all the rows. So and how do you call it? So, you will call it in this fashion 

you will say apply rows you will define the name of the function which in this case is 

kernel and then, you will say what are the input columns. 

So, you will create an array of it. So, you will say in columns in 1 in 2 in 3 the number of 

columns that you want, then you will define your out columns and you can see here for 

the out columns you are also defining the data type. 

Like you are saying that the output 1 is of type float 64 and the output 2 is of type integer 

8 bit and you will also define the input additional argument that you would like it to 

have, right. So, the outputs are not returned back outputs are also passed as an argument 

in case of CUDA world and that is why even to apply rows you pass it as an as a 

argument here, right. 
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So, this is an example of in case you for a data frame if you wanted to represent the pairs 

of longitude, latitude and longitude here and you wanted to calculate the haversine 
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distance. So, you can if you click on this it will take you to the Wikipedia definition of it, 

but you can see here basically what we are trying to do for the latitude and longitude. 

So, we are trying to do here certain sine and cosine functionality here where we have 

these variables as latitudes and we have the gamma variables as the longitudes here. So, 

you can see here from math we are importing cos, sin and different functionalities here. 

(Refer Slide Time: 21:47) 

 

And then, we are creating those latitudes and longitudes and then we are defining our 

function which I just told you about. 

(Refer Slide Time: 21:55) 
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So, we are doing the we want to do haversine distance function and you can see here we 

have couple of inputs latitude 1, longitude 1, latitude 2, longitude 2 and we are trying to 

find the haversine distance between them and this is where the output or the or the 

haversine distance is actually put and given as an written back as a output. 

And you can see here we are saying for the x1, y1, x2, y2 which is latitude 1, longitude 

1, latitude 2, longitude 2 and I am doing certain additional calculation here I will go 

through certain details of CUDA tomorrow. 

So, that you get an idea of what I am trying to say here what is it is thread id and block id 

maybe I will show it to you tomorrow in the not in the tomorrow session, but the next 

session which is happening on Wednesday; and what I am doing is I am getting this 

value x1, y1, x2, y2 calculating those just as the sine and the cosine transforms and 

finally, storing the value here, right. So, what I am saying is that, I want to take this 

function and I want to calculate this haversine distance in parallel for which I am doing 

something called as apply rows. 
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When I do the apply row, I am giving it the input columns which I just had I am telling it 

for all the columns in parallel I am going to calculate this haversine distance. The output 

is of type dictionary and it is having a data type float 64 and this is the part which I am 

just passing to it and I just need to run this and I am going to again run this and it is 

going to do it in parallel you can see here they just calculated in 698 milliseconds and in 
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fact the second time it becomes much faster 14 milliseconds and it is basically going to 

print out. 
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So, if this is your latitude 1, longitude 1, latitude 2, longitude 2 this is the haversine 

distance which is calculated as the output here. 
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So, we have done certain print up statements also and I am not putting those print up 

statements here at this point of time there are certain outputs it would not display them in 

the Jupyter notebook because, the print up statement will only appear in the terminal 
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output. So, only if you run it on the terminal these values are going to be output it does 

not get output on the on the Jupyter notebook. 
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But, I am going to talk about it later on, but once you run this you would understand that 

it is running something called as CUDA blocks within each block it was running 64 

threads and how many rows and number of threads were basically done. So, this is this is 

the part of the 1st exercise. 
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The 2nd part is if you want to take more control on the chunks values and how you want 

to so, in the previous case we left it up to the numba and up to the apply rows to basically 

define at what chunk level the data gets divided ah. So, tomorrow what we are going to 

do is, we are going to first understand how to data gets divided among the CUDA blocks 

or CUDA threads. 
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And then, we will look at the applied chunks button. 
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Which is which is much more which will give you more performance as compared to 

blindly just calling apply rows. 
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So, with that we are kind of done with the first part and I will look at if there are. 
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