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Welcome everyone to the next lecture on Accelerated Data Analytics. In the last lecture 

we went through some of the motivation of using accelerated data analytics, we went 

through the description of the job profiles for a data engineer, data scientist. What is the 

cycle, what are the activities that they do, we looked at the different stacks traditionally 

used. So, what we are going to do today is we are going to quickly go through some of 

the modules of RAPIDS and we will show you a demo of how to write the code. 
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So, let us get started so maybe a quick recap of the software stack of open source data 

science platform. We talked about the most popular ones being used on the CPU site of 

it. Pandas primarily used for analytics, scikit learn or sklearn being used for machine 

learning algorithms. 

And then we have other libraries or modules for networkX which is primarily for graph 

analytics deep learning. And then Matplotlib for visualization and we also talked about 

Dask, Dask basically helps us in making our computation go distributed. So, basically 

the responsibility is towards that side. 
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So, we also talked about the equivalent wrapped stack which is the accelerated GPU 

science stack. If you see we are replacing the bottom most layer with the help of use of 

apache arrow. So, that everything remains in memory in the GPU and the other 

advantages that we saw last time also removing the marshalling and unmarshalling 

serialization and deserialization across different modules and all. 

Today we are going to concentrate on cuDF and cuIO which is a replacement of Pandas 

equivalent it is like Pandas equivalent and we will be going through a demo of how you 

could utilize cuDF and cuIO. If possible if time permits we will also go through cuML 

show you a demo of also what machine learning algorithms exist. And how we can 

utilize them using cuML, which is cudaML and tomorrow we are going to go more into 

the task point of view. 
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So, let us get started with cuDF if you remember last time you said how the acronym cu 

comes into the picture cu basically stands for CUDA which is the GPU architecture 

Compute Unified Device Architecture and DF is the Data Frame. So, we are talk we are 

basically talking about having data frames which are accelerated on the GPU using 

CUDA. 

(Refer Slide Time: 03:28) 
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So, from a point of view of the ETL technology stack, which is the extract transform 

load part of it. This is how the overall wrappers are generally written inside RAPIDS 

first of all as you can see the bottom most layer is our architecture of GPU which is 

CUDA Compute Unified Device Architecture. Above that we have certain libraries 

which are part of the CUDA ecosystem like thrust is a library which is like C++ STL 

equivalent which is standard template library equivalent in GPUs. 

We have other kinds of libraries also which exist in the CUDA ecosystem which are 

primarily C, C++ or C based. Over that we have the RAPIDS ecosystem basically 

develops has developed a layer of cuDF functionality which is written in C++. So, all 

those calls of the libraries of CUDA which are also in C++ are basically done via this 

cuDF, C++ calls. 

But what a Python users basically they end up writing code in Python and for you for the 

binding or for the calling of C++ the internal usage goes via Cython. So, Cython is the 

one which is used for converting your Python poles to the C++ calls behind the scenes. 
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So, the first component in this pipeline in the ETL pipeline which is the backbone of the 

data sciences libcuDF. So, as I told you cuDF libcuDF is basically a C++ library and it is 

primarily meant for creating data frames which is what nothing but a structured data 

type. Right like in form of table which has rows and columns right behind the scene for 

all of the APIs, which are provided. 

There are CUDA kernels or CUDA functions which are running in parallel on the GPU. 

Like if you call a sorting function join group by reduction whatever those functions are 

they are basically exposed as C++ functions.  

You can see here like here we are calling the gather function. This gather function is the 

one which will do kind of a reduction operation on the columnar data that you have. So, 

there are various other kinds of function is as well and there are options to also scale 

them across multiple GPUs. 
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So, as I told you that there is a libcuDF is basically C++ libraries which primarily calls 

behind the scene CUDA libraries like crust. And all while cuDF is basically a Python 

wrapper over all of this there is a Python library for manipulating GPU data frames and it 

is primarily meant to look very similar to Pandas API. 

So, the idea is that if a user has already a sequential code using Pandas. It becomes very 

easy for them to just fit to this module and import cuDF instead of importing Pandas and 

rest all API should ideally look the same it also has APIs where you can import the data 

from Pandas or convert your GPU cuDF based data frame to Pandas equivalent. 

And behind the scene it calls the CUDA C++ library which we just saw some time back. 

And we can also define suppose as I told you that many of these functionalities should 

ideally run on the GPU and there are C++ functions which are written behind the scenes 

already for join for string operations and all, but what if you want a function which is 

kind of not present in the standard list right. What if you want a user defined function 

which does not exist and you want to do that on your corner database. 

So, cuDF basically provides JIT compilation just in time compilation of user defined 

function using another package called as Numba. In fact, we will be looking at how to 

use this to write your own accelerated functions to be run on the GPUs. So, this is one of 

the thing where you need to slightly understand some of the CUDA related details into 
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more to understand the architecture and we will be looking at it in a certain while when 

we start looking at the demo. 

(Refer Slide Time: 08:41) 

 

So, it has various functions including string support as well. It provides a lot of regular 

expressions you could do element wise operation, group by operations and there are 

various. So, as we are told last time that RAPIDS is basically open source project and 

everybody it is a large project there are so many models and packages inside it. 

So many contributors from around the world and it keeps on improving by the time you 

might start using it in your own project. You might see more functionalities, which we 

are seeing is futuristic might have already been added to the RAPIDS ecosystem. 
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There is another package which is very very key for faster data loading which is called as 

cuIO, cuIO is basically an API which provides you functionalities for reading files or 

doing a I/O operations like reading a CSV file. There are different kinds of readers like 

ORC reader if you are having a JSON file then read a JSON file. 

And behind the scene it supports a very high speed read functionality and low latency 

using certain features like GPU direct storage. It basically bypasses a large amount of 

bottlenecks, which are there behind the scenes when you read from a file and directly 

store it in the GPU and that is why it is called a GPU direct storage. So, it will take care 

of all the optimizations whenever you want to read large files onto the GPU. 

So, it does a lot of operations like parsing because like JSON you need to parse it does 

the parsing and decompress wherever possible. And cuIO is one of the most critical 

component in case you are reading from files as well. So, with that let me quickly move 

ahead and move towards the demo part of it. 
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So, behind the scenes what I have done is I am basically running a particular lab and just 

to again show you previously we had shown this to you that I have basically created a 

docker container. 
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And we have provided you some of the links on the slack channel, but along with that I 

am going to also provide the links. Again once more at the end of the lecture on the slack 

channel where you can find the source code that we are showing and if you want you can 

also run it on the cloud infrastructures which are free versions. Or if you have a GPU 

access you can use the container to run it on your own machine as well. 

So, you can see here I am running a docker container I am exposing it to all of the GPUs. 

And behind the scenes I am actually running on a particular port. 

(Refer Slide Time: 11:45) 
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So, you can see I already launched the lab and just to show you the lab is running on the 

machine. And this machine basically has primarily three cards GPU cards it is a slightly 

different card this is Quadro GV100 can see a Quadro GV100. This is a Volta card this 

one as you can see has so much of memory 32 GB of memory, which is present in this 

Volta card it is a desktop actually not a server. 

So, it is having a active cooling component with its own fan and all and it is sitting in a 

workstation at my desk at this point of time. So, as you can see here via mvidia-smi I can 
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see that I have the GPUs exposed to me inside the container. So, the lab that I am 

showing you here is basically a lab which has different components of RAPIDS and we 

are going to go through each one of them. 

(Refer Slide Time: 12:41) 
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So, the lab basically whatever I showed you in terms of RAPIDS ecosystem is kind of 

present in the theory section and what I am going to show you now is the part of cuDF. 
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So, the component that we are looking at here is cuDF and as I told you basically; so, I 

am going to keep on running some of those things. 

(Refer Slide Time: 13:17) 

 

So, some of you should be already familiar with the CPU equivalent which is Pandas. 

Generally you will have two types of data unstructured and structured when I say 

unstructured I am generally referring to data like text images or videos. When I talk 

about structured data I am generally talking about columnar structures like in form of 

CSVs and all. 

1098



There are various tools which exist in the Python environment to do a lot of things. But 

one of the most popular one out there is Pandas which is which represents data in form of 

a table. And it allows you to manipulate the data perform various kinds of operations that 

we are going to see in this particular lab. 

(Refer Slide Time: 14:06) 

 

So, the first thing that I am doing here is I am importing Pandas and after importing the 

Pandas you can see here. What I am doing is I am creating a data frame in the data frame 

what we are doing is I am creating certain key k value pair you can see here df of key. 

And df for value and then I am printing values you can see here it has created these 

values 0, 0, 2, 2, 3 as the key and the value is form of a range from starting from 10 

which is in type of float you can see and it goes till 10, 11, 12, 13, 14 right. So, this is 

how very easily you can actually create data frame and then you can perform different 

kinds of operation on this particular data. 
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So, here like one of the example is that what I am doing is I am telling that I want 

summation of all the columns of value and then print the finally, aggregated value right. 

So, you can see here if you just add up these values from 10, 11, 12, 13, 14 the value 

which will come is 60. So, what you are doing is you are trying to do operations on this 

data certain kind of operations on this data. 

Now, Pandas as you can see is very flexible and it is quite good, but when we talk about 

working on smaller data set it works really really fine and it can give you all the benefits 

that you have. But if you are talking about increasingly complex workloads where you 

want to do more complex functionalities on it and or if you have a large data set that you 

need to work on this data frames on. In that case we recommend you to go towards 

RAPIDS which is the equivalent of the Pandas. 
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So, you can see here what we are doing is we have imported cuDF. Instead of importing 

Pandas we have imported cuDF and rest all values remain the same. You can see here 

that we have cuDF data frame we have key and value there is literally no change apart 

from the fact that instead of importing Pandas. I have now imported cuDF and rest all 

things remain the same except for the fact that these values are getting created on the 

GPU. 

(Refer Slide Time: 16:38) 
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And when I run any of the activity on this particular data frame like summation here it is 

actually going to run this on the GPU and not on the CPU. So, this is the only thing 

which means you start using the GPU functionality on by using the data frame cuDF 

instead of using partners. So, now, we are going to look at different kinds of 

functionalities which are provided on the Pandas on the cuDF part of it. And it is based 

on the guide of 10 minutes to cuDF and we can see some of the activities, which will 

give you an idea. 

(Refer Slide Time: 17:22) 

 

In the end we will end up will showing you when can you actually get the benefit of 

cuDF. Ending with that in this particular notebook followed by writing your custom 

defined functions. So, you can see here we are actually creating object instead of creating 

a normal one we are creating a series and you can see here in this particular series you 

have certain objects which are also null. 

So, you can also specify values for each column. Now you can see here you are creating 

a DataFrame which is of size 20 and you can see here the a column basically has the 

range till 20, while b is actually a reverse range and c is again the normal range here. 
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So, when you print the value of df you can see here you have basically three columns a b 

and c, a and c being a normal range, b being starting a reverse range and you can see here 

the value starts from 0 and goes till 19 and for the PDF also. So, this is another version 

which I just told you that cuDF is kind of compatible with pandas which means you can 

actually create a pandas DataFrame. 

You can see here I am creating a pandas DataFrame, which actually means this is going 

to create the data frame on the CPU and not on the GPU and then I say get cuDF dot 

DataFrame from pandas. So, which means I am importing the data which was created on 

the CPU to the GPU. 
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So, it in it takes the values of data frame created on the CPU using Pandas and transfers 

them behind the scene to the GPU to be used in a cuDF environment to be run on the 

GPU. 

(Refer Slide Time: 19:19) 

 

So, there are different kinds of visualization techniques which are also available like this 

will just print the head values which are the first two rows primarily. You can also sort 

the values based on a particular column like here we are saying I want to sort the values 

based on b and if you remember b was kind of inverted in nature. 
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So, if the value started from 19 and it went on till 1, but when I sort the values of b the 

values of b are getting sorted, but at the same time its equivalent row values are also 

getting changed accordingly. So, you are doing sort based on this particular value here 

right. 

(Refer Slide Time: 20:03) 

 

You can print a single column if you want like this or. So, I just do not need to go to that 

part or what you can do is you can select rows particularly. Like here you are saying I 

want rows from index 2 to index 5 right, and the columns that I want those for is a and b 

and I do not want it for c particularly. 
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So, you can see here it starts from 2 and it goes on till 5. And we are only getting the data 

which is of column a and b. So, df dot loc loc locate and then we are giving it the range 

the rows and columns that we want to be exported as. We can also select via a particular 

location using the iloc function and you can see here that I want only the location 0. 

So, in that particular case it is giving me all the three values of the columns at the zeroth 

row. So, a having 0, c having 0 and the b column having the value 19, so it is giving me 

the zeroth row of all the three columns and you would have guessed it by now what does 

this do. 

So, you can see that it is basically saying I want the rows 0, 1 and 2. And I want it for 

column 0 and 1. So, if you can see here when I give a range in this particular fashion it 

excludes the last part right, so I am saying I want 0, 1 and 2. So, it is taking from 0, 1 and 

2 and this one is also 0 and 1. So, it is giving the first two columns and the first three 

rows primarily here. 
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Similarly, I think by now you would have guessed it what does this do. So, it will give 

me the third row and the fourth row for all the columns which is a b and c. Because we 

did not explicitly state the column part of it excluding the last excluding the last one here 

yeah right; so this is how it is. 

(Refer Slide Time: 22:25) 

 

And so, let me just not give you this exercise this is kind of very simple. So, we will give 

you much more tougher exercise in a bit where you would be able to select something. 
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So, selection of rows in a data frame of series by direct Boolean indexing. So, Boolean 

indexing is another feature where you have your data frame and what you are saying is 

that only if the value of b is greater than 15 then only put it then only print it right. So, 

only the values of only the rows where the b value is greater than 15 becomes part of the 

new frame right or if the b value is only 3.  

In that particular case so if you see here I am using a particular API called as query. So, 

we can use the query to get this details. So, here I use the conditional statement in form 

of logic. While here I am using another API which is the query and query basically states 

that only if the b’s value is 3 then only select that particular value. 
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You can also assign certain variables if you are writing Python codes you are taking your 

data from somewhere else you can do the same thing by using component inside Python. 

So, at the rate basically refers to a variable which has been previously assigned. So, this 

is all fine. 
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