Applied Accelerated Artificial Intelligence
Prof. Satyadhyan Chickerur
Department of Computer Science and Engineering
Indian Institute of Technology, Palakkad

Fundamentals of Accelerating Deployments
Lecture - 42
Accelerating neural network inference in PyTorch and TensorFlow Part 1

Good evening everyone. Today | will try to actually do some demos on Accelerating
deployments ok. And as | showed you yesterday some videos maybe today we will show
you the demonstration by again connecting a webcam there is some issue with the team
viewer, but we will anyway show you some more videos today in case that does not do

materialize right.

Because it is getting struck the team viewer video is getting stuck. So, no issues for that
but, let us start with certain things wherein we will try to show you the maximum demo
stuff ok.

(Refer Slide Time: 01:00)

Deploying a model with TensorRT

i i
vﬂnm

Optimized Plans

oy =)
Runtime. —

o e s e el Yot ey
1

So, yeah so, yesterday actually we ended up at this point right that how do you actually
deploy a model with TensorRT ok. And we showed you this particular concept we
showed you a demo and we actually discussed this yesterday that we have either a
TensorFlow or a caffe or any other framework which basically is written using python
ok.

997

And then you have a model importer which actually imports ok using a TensorRT ok
right. So, the idea is you basically come up with a model which is a universal framework
format or at present you can use ONNX as well right. So, | have got two options of

actually converting your actual model which you have trained it on a.
Students: Server.

Server right and then convert it into something which runs on a inferencing edge device
right. So, you can use UFF or you can use ONNX. So, we can show we will show you
ONNX also and we have done it using UFF also right. So, let us see how we can show
you both of this right. So, the basic idea what we discussed yesterday was you have a
trained neural network model you import that model and then try to use a TensorRT

optimizer right for trying to optimize it. So, that it runs on your edge device right.

So, for that reason you actually have this process which is internally done right. You
have to serialize it then you generate one or three optimized plans and then you get a
plan file right with actually schedules ok for the kernel to execute whatever it is to be

executed.

So, you take this optimized plan ok and then as shown you basically create a Tensor RT
engine object and then you run it using a Tensor RT runtime engine and that is how you
basically try to deploy on the edge device. So, basically you are trying to deploy the
runtime. So, this is the overall model which we discussed yesterday right.

998

(Refer Slide Time: 03:51)

TensorRT
TensorRT supports the following layer types.
¢ Convolution: 2D
o Activation: ReLU, tanh and sigmoid
e Pooling: max and average
o ElementWise: sum, product or max of two tensors
o LRN: cross-channel only .

o Fully-connected: with or without bias
o SoftMax: cross-channel only

o Deconvolution a
k | ;

So, now today we will try to understand that when we are trying to work with TensorRT,
TensorRT supports the following layer types. What does it mean? It means if you are
using convolution layers if you are using activation layers which involve ReLU, tanh,
sigmoid and you have this pooling max and average stuff. Elementwise sum, product or
max of two tensors ok and then LRN and then fully connected with or without bias

SoftMax, deconvolution.

All of these layers could be converted from TensorFlow or PyTorch to a Tensor RT
survey right this is what it means.

999

(Refer Slide Time: 04:40)

Steps for TensorRT application.

1. Convert the pretrained image segmentation PyTorch model into ONNX.
2. Import the ONNX model into TensorRT.
3. Apply optimizations and generate an engine.

4. Perform inference on the GPU.

And now that effectively means that whenever you are trying to convert ok any model
for inferencing the steps would be like something like this you actually convert for
example, if you are trying to do a image segmentation application deployment. So, you
convert the pretrained image that segmentation PyTorch model or for that matter the
tensor flow model into ONNX or ok or UFF anything.

And then you import the ONNX model into Tensor RT model ok this conversion needs
to be done and then you basically apply several more optimization generate an engine.
So, technically speaking once your model gets converted into a Tensor RT runtime ok
you can actually do the inferencing on that particular edge device right. So, we have
written it on the GPU. So, you can do it on GPU you can do it on edge device you can do

it on Jetson any of these right. So, this is how basically it is done ok.

So, there are various ways of doing it one of the ways what we are trying to tell you is
this ok you can actually see in literature and various other places there are various ways
of doing it one of the ways is you either convert your TensorFlow program into a
TensorRT program through UFF or ok through ONNX. So, this is the basic idea ok.

1000

(Refer Slide Time: 06:27)

contd..

The application uses the following components in TensorRT:

o ONNX parser: Takes a converted any trained model into the ONNX
format as input and populates a network object in TensorRT.

o Builder: Takes a network in TensorRT and generates an engine that is
optimized for the target platfo'rm.

o Engine: Takes input data, performs inferences, and emits inference
output.

o Logger: Associated with the builder and engine to capture errors,

warnings, and other information during the build and inference phase

So, you have got various components in TensorRT you have a ONNX parser which
basically converts ok or you have a UFF parser you basically take any trained model into
the ONNX format as input and you get a network object in tensor RT. This is possible ok
and then you take a network in Tensor RT and you generate an engine that is optimized

for the target platform.

So, this target platform can be anything. So, ultimately you basically take a network in
TensorRT and generate an engine similarly your engine takes an input data perform
inferences and then emits the inferencing output and logger basically tries to give you

warnings capture errors and how you run and everything right.

1001

(Refer Slide Time: 07:24)

Performance metrics

o TensorRT powered NVIDIA's wins across all performance tests in the
industry-standard ML Perf Inference benchmark.
o Itaccelerates every model across the data center and edge in computer
on, speech-to-text, natural language understanding (BERT), and
recommender systems.

Source: hitps./ideveloper.nvidia.comtensormt
e = e __________.4}

So, this basically is various component of a TensorRT. So, TensorRT powered NVIDIA
edge devices actually if you see their benchmarking performances they are quite good
they are very very good. So, you can accelerate every model across the data center and
edge in computer vision applications speech to text NLP for example, BERT and various
recommended systems right. So, all of this would actually be done ok on the edge

devices using TensorRT optimizations right.

(Refer Slide Time: 08:04)

g‘#\

Framework Integration.

st

Supports all major frameworks

. TensorRT is integrated with PyTorch and TensorFlow sn vt ran
achieve 6x faster inference with 1 line of code.

GLONNX ey

&
A\ MaTLas @xnet caier

TensorFIow

1002

So, it supports all major frameworks TensorRT is integrated with PyTorch TensorFlow
and you can achieve 6x faster inferencing with 1 line of code. So, this is the basic idea

you can actually integrate everything ok.

(Refer Slide Time: 08:26)

TensorFlow-TensorRT(TF-TRT)

TensorRT Integration Speeds Up TensorFlow Inference.

o TensorFlow™ integration with TensorRT™ (TF-TRT) optimizes and
executes compatible subgraphs, allowing TensorFlow to execute the
remaining graph.

o TensorRT will parse the model and apply optimizations to the portions of
the graph wherever possible. *

o TensorRT sped up TensorFlow inference by 8x for low latency runs of
the ResNet-50 benchmark.

o Note: These graph optimizations do not change the underlying
computation in the graph; instead, they look to restructure the graph to
perform the operations much faster and more efficiently

Fig : Workfow Diagram when using TensorRT within TensorFiow Duing ifes

Source : hitps:) rabon-spe oiow-inferencel
pm——ss = A

So, TensorRT then from TensorFlow: So, now, the idea is let us say we have a
TensorFlow program and this TensorFlow program needs to be converted into a

TensorRT program or a TRT program.

So, TF-TRT is what we generally call. So, TensorFlow integration with TensorRT ok;
so, when you do this you basically are trying to work with sub graphs ok and then trying
to understand how tensor flow ok graph can be converted into an optimized TensorRT
graph. So, the effective idea here is your TensorRT is going to generate a model a parse
model and then it applied optimizations to the portions of the graph wherever possible.

So, we will show you various graphs right in the next few seconds or minutes right.

So, we will show you how basically a saved model a TensorFlow graph is converted into
a optimized graph right that also you can visualize. So, technically speaking TensorFlow
RT speeds up your inferencing by 8x for a ResNet 50 benchmarks right. So, there are
certain things wherein you can see about graph optimizations ok do not change the
underlying computations in the graph. So, that is very very important see your

computations will not change ok, but the graph will be optimized.

1003

So, basically you are restructuring the graph to perform the operations much faster and
more efficient right efficiently right. So, this is the basic test software of it of why do you
do actually this and how is that it is going to speed up ok that is also what you are going
to actually see, ok.

(Refer Slide Time: 10:31)

Benefits of Integrating TensorFlow with TensorRT

. TensorRT optimizes the largest subgraphs possible in the TensorFlow
graph.

. The more compute in the subgraph, the greater benefit obtained from
TensorRT.

L]
. Most of the graph to be optimized and replaced with the fewest number of
TensorRT nodes for best performance.

So, now when you integrate the TensorFlow with Tensor RT ok. So, Tensor RT basically
optimizes the largest sub graph possible in the TensorFlow graph and if there is more
compute in the sub graph; obviously, the TensorFlow optimizes it more ok. So, more
computations are there in your model right more optimization you can expect out of
TensorRT.

So, most of the graphs which are to be optimized and replaced ok with the fewest
number of tensor node RT; so, you generate a TensorRT node actually. So, the idea is
you can optimize and replace ok with certain specific less number of nodes as compared
to your actual nodes in the graph right. So, that is what actually you are going to be

doing right.

1004

(Refer Slide Time: 11:36)

Workflow of TF-TRT

create and train o geta pretrained
an mi model mi model

l save the mode! \

i

Now, this is how it actually happens you create and train an ML model or you get a pre
trained ML model both are possible right you save that node; obviously, you are training
your model and then you are saving your model once you save that model you get a
TensorFlow save the model there is something which is called as TensorFlow frozen
model ok. Now this TensorFlow frozen model cannot be edited or it cannot be changed
that is what it means in model trainer right you can actually train a save model again and

again.

But once you freeze that model right it has got all the weights parameters everything
frozen right. So, you cannot actually use it for training again that is what it means and
that is what you are going to optimize ok. So, you are going to optimize that ok saved
model from the frozen model and then you deploy with either a train triton server or you
do it with TensorFlow.

So, now, this is what | told you that your actual thing of understanding at the first level
of complexity is this that you convert your TensorFlow program into a TensorRT
optimized programs right by converting it intermediately to a UFF or ONNX right. So,
open neural network exchange format ok. So, something like that. So, this is what it
means that you are converting your TensorFlow program to a TensorFlow RT, TensorRT

program right ok.

1005

(Refer Slide Time: 13:22)

You will need to create a SavedModel (or frozen graph) out of a trained TensorFlow model and give
that to the Python AP of TF-TRT, which then :

« returns the TensorRT optimized SavedModel (or frozen graph).
« replaces each supported subgraph with a TensorRT optimized node (called TRTEngineOp),
producing a new TensorFlow graph.

The following code snippets show how to use TF-TRT in TensorFlow 1.x (with default configuration)
on a given mode! for each of the formats: SavedModel or a frozen graph

SavedModel format:

from tensorflow.python.compiler.tensorrt import trt convert as trt

converter = trt.TrtGraphConverter(input_saved model dir=input saved model dir)
converter.convert()

converter.save(output_saved model dir)

Frozen graph:
from tensorflow.python.compiler.tensorrt import trt_convert as trt
converter = trt.TrtGraphConverter(
input_graph_def=frozen_qraph,
nodes blacklist=['logits', 'classes'])
frozen graph = converter.convert()

So, the idea is that you create a SavedModel or a frozen graph. Out of a trained
TensorFlow model and give that to the Python APl of TF-TRT which is going to return
TensorRT optimized model; replaces each supported sub graph with a TensorRT
optimized node or a TRTEngine operation producing a new TensorFlow graph.

So, this is how you actually convert ok I use the SavedModel format and this is how you
get a frozen graph format. So, if you see here ok. This basic a thing TensorRT import trt
converter as trt and then you are using a converter you are just trying to actually save a
saved model ok.

And then you actually get a frozen graph by using a converter convert ok and then you
get a frozen graph ok. So, this is how basically you would be using it in your program ok
this is just the idea of how you are basically using various converters which are available
ok. For converting your various models into various formats like a SavedModel format

or frozen graph format ok.

1006

(Refer Slide Time: 14:59)

@
Installing TF-TRT

NVIDIA containers of TensorFlow are built with enabling TensorRT, which means TF-TRT is part of the
TensorFlow binary in the container and can be used out of the box. The container has all the software
dependencies required to run TF-TRT

RN

uuuuuuu

So, one of the things when you want to work with TF-TRT is that you need to install TF-
TRT you have NVIDIA containers as we told you in our previous sessions as to how do
you pull NGC docker container. So, you pull a NGC docker container and you actually
use ok for TensorRT enabled TensorFlow thing right. So, TF-TRT container ok and this
basically is supposed to be pulled or installed ok from a TF-TRT container ok from the
NGC cloud ok.

(Refer Slide Time: 15:45)

=~ Conversion Parameters in TF-TRT

Parameters that can be passed to saved_model_cli and TrtGraphConverter.

o precision_mode: The precision mode to use (FP32, FP16, or INT8)

o minimum_segment_size: The minimum number of TensorFlow nodes required for a
TensorRT subgraph to be valid.

o is_dynamic_op: TensorR[engines are converted and built at model run time instead of
during the converter.convert() call. This is required if there are tensors with unknown or
dynamic shapes.

o use_calibration: Only used if precision_mode='INT8'. If True, a calibration graph will be
created, and converter.calibrate() should be called. This is the recommended option. If False,
all tensors that will not be fused must have quantization nodes.

o max_batch_size: Used when is_dynamic_op=False. This is the maximum batch size for
TensorRT engines. At run time, smaller batch sizes can be used, but a larger batch size will
result in an error.

o maximum_cached_engines: Used when is_dynamic_op=True. This limits the number of
TensorRT engines that are cached, per TRTEngineOp.

1007

So, what are the various parameters when you try to actually use this ok? So, the
parameters which can be passed ok so, this is a command line interface option saved
model CLI to TRT graph converter you can work with any precision mode ok. So, the
precision mode which you can use is FP32, FP16 or INT8 ok.

What is the minimum segment size? So, that basically means the minimum number of
TensorFlow nodes required for a Tensor RT sub graph to be valid ok. This when you go
on practicing and running your programs you will try to understand ok all of these

particular parameters.

But just to have the completeness of trying to link ok. How these parameters are actually
connected we are just trying to give you a very very brief idea to this ok. And then you
can use calibration because calibration is needed yesterday | told you that when you are
converting from FP32 to FP16 ok, it is done. But when you convert something from
FP32 to FP16 to something like INT8 right there is a calibration required right. So, if the
precision mode is INT8 the calibration is needed. So, effectively a calibration graph will

be created ok.

So, this is what it means ok and then you have the maximum batch size and the
maximum cached engine thing right. So, the limit of the number of RT engines which
can be cached per TRT engine operation because it depends on the memory of your edge
device right based on that how much you can cache is going to actually make your
system slower and it can get stuck or something of that sort might happen. So, that is

why you are going to use some of these parameters ok.

1008

(Refer Slide Time: 17:56)

NPTEL

Benchmarking CPU , GPU (CUDA) ,
Tensor RT performance : (Demo) (
pytorch)

So, let us try to do some benchmarking ok.

(Refer Slide Time: 17:59)

Inference with CPU, CUDA and TensorRT
stepl. load a pre-yaned newral nemork

69 2 load an example image fr predoon
e T e T

P

So, let us try to understand the inferencing portion on just GPU, CUDA and TensorRT.
So, this particular thing is a very very simple example of trying to import ok a pre trained
neural network model. So, we are just trying to load an example image ok.

1009

(Refer Slide Time: 18:26)

Inference with CPU, CUDA and TensorRT

stepl: load a re-vained nesral reawork

et s
T i et s st

62 load an exampe image b predbon
e 1 et T

o D
-

5109 3 vt i rmoge (e grcessen)

For the prediction which we are able to see ok.

(Refer Slide Time: 18:32)

5109 2 ond an example image b predion

g T i)

r=m

s 3 varstom examgle image (e processig)

Now, what we are trying to show here is this is a image ok and then there is some

transform which is happening. So, we are trying to pre process this image ok.

1010

(Refer Slide Time: 18:49)

9
L]
| |
g
B
A
5

s Ooma(

And then we are trying to actually set a benchmark size to this example image ok. So,
you can do it using CPU you can do it using GPU and you can do it using TensorFlow
RT ok. So, we will get the prediction and probability for each class right. So, this is what
actually is a very very simple thing of where you are going to actually link it and link it

with the image net classes right that is what you are trying to do ok.
So, yeah. So, we will run this and we will extract the five top probabilities.

(Refer Slide Time: 19:22)

cas0Mm

Orie Giseok 8 AR Biseman O Crmbinel B Comilmd (o me O W IOWE 8 6x

1011

(Refer Slide Time: 19:26)

This is for that particular thing. So, it has detected that it is basically a Egyptian cat its

tabby, tiger cat semi stat and carton right; so, with these many prediction percentages
right.

(Refer Slide Time: 19:47)

So, now we will try to understand the speed test with the ResNet 50 ok example. So,
what we are trying to do is this is basically a TRT program ok and then we are trying to
we are trying to just show you ok that how basically for each of this ok.

1012

(Refer Slide Time: 20:05)

| step e cut CPU model speed beschgls

How much iterations it is taking how much time it is taking with conditions of whether
the device in the CPU whether the device is using CUDA and what when it basically

tries to develop a TensorRT model?

(Refer Slide Time: 20:23)

1013

(Refer Slide Time: 20:30)

s B DON S 3

L.
]
<

9
»

So, this is just a very very preliminary benchmarking thing which will help you to
appreciate the optimize stuff right. So, that is what we are trying to do now. So, here so,
if you run this ok which we have just now run it basically gives you 645.74 milliseconds
right the average batch time and we are running it for CUDA here, which is executing

which is telling you that it is giving you 91.85 milliseconds.

So, the idea here is you are trying to run the same model on a CPU which gives you
645.45 milliseconds 7 sorry 654 644.74 milliseconds. Whereas on CUDA ok the same
model gives you 91.85 milliseconds for actually training right now TensorRT model if

you see take a little bit of time yeah.

1014

(Refer Slide Time: 21:31)

So, you see this it takes about 70.33 milliseconds right.

(Refer Slide Time: 21:47)

So, the idea is from 91.85 milliseconds to 70.33 milliseconds right. So, this is basically
like a very very good what to say reduction in time optimize time ok because this is a
very very simple example nothing we have done too much ok. And if you see the
prediction right it gives you almost the same prediction right. 57 percent prediction gap
almost the same everything is same right.

1015

So, if you see here its 37 19 11 4 and 3. The same thing we get because we yesterday we
are talking of even if it is reduced prediction sorry reduced precision right to get almost

the same thing right there is nothing much of a difference ok right.

So, this is what we thought we will show you first. And then now so, now, once we have

done this.

(Refer Slide Time: 22:47)

V Show Vuda Contse ~=

= Benchmarking DEMO

The benchmarking demo let us try to understand right step by step of how we have done

it actually.

(Refer Slide Time: 22:49)

== Benchmarking CPU , GPU (CUDA) , Tensor RT
N performance : (Demo)
' - SN
. i NGC Catal
. -
c | J——]
5| =
2 Getting Started
» e 1 TensorFlow BT PyTorch <emenizg

1016

(Refer Slide Time: 22:52)

vvvvv

V e T

V SouVesa Cemsn

& RN I

ﬁ Benchmarking CPU , GPU (CUDA), Tensor RT
L performance : (Demo)

PyTorch

2203py3

YO a@ 8

20293

201913

s ®MHO

21293

So, what we do is we basically as | told you we are supposed to be pulling the docker
containers ok from the NGC site right. So, we are we have tried to download the
PyTorch this thing ok.

(Refer Slide Time: 23:14)

Om 6B

Benchmarking CPU , GPU (CUDA) , Tensor RT
e performance : (Demo)

Pull Docker Container :

Tra0a@ 8

vrlice + @DO

And then we basically pulled the docker container. So, we are actually telling you step
by step of how we did it right all of this is executed. So, whatever we try to do till now
we have actually tried to put it in the slide so, that tomorrow when you want to do it ok,

you can actually see it automatically and do it step by step right.

1017

(Refer Slide Time: 23:35)

FE—
Ve T

V Soutiga Cemesn

Dm0 -

!

s Benchmarking CPU , GPU (CUDA) , Tensor RT
— performance : (Demo)

D= a0 a@ &

So, this is how when you run it you basically try to run that program ok.

(Refer Slide Time: 23:41)

Benchmarking CPU , GPU (CUDA), Tensor RT
performance : (Demo)

Inference with CPU, CUDA and TensorRT
stepl: load a pre-trained neural network

isport torch
fron torchvision iport sodels, transforas

nodel = models. resnet5d{pretrained=True) .to| “cuda’)

Then you know the pre trained network.

1018

(Refer Slide Time: 23:44)

V)

e,
S
s

/

™
VP o

8 V/ tne T

et

o

V/ Dot Comen.

1

3
]
P |
m
fu

L ——

= Benchmarking CPU , GPU (CUDA) , Tensor RT
 [Be B performance : (Demo)

step 2: load an example image for predition

from PIL isport Image

1ag = Inage.open(*isg1.Jpg")
isg

You get the image for production.

(Refer Slide Time: 23:46)

Home
= N7 — .
B b R 7
" cimea e ou V senuca o o
NPTEL
=
&/ Benchmarking CPU, GPU (CUDA), Tensor RT
s performance : (Demo)
R e e
===) .
gl step 3: transform example image (pre-processing)
— transfor = transforms. Conpose([
transforns Resize(256),
transforms. CenterCrop(224),
transforns. ToTensor(),
gl » O =—="—— transforms. Normalize((8.4), (8 %)) r
et 1}
ing = transforn(isg)
O print (ing. shape)
2 Oz o e
torch.Size([3, 224, 24])

ek ket ke

Then this is the transformed image.

1019

(Refer Slide Time: 23:49)

L4t A

Benchmarking CPU , GPU (CUDA), Tensor RT
performance : (Demo)

step 4: set a batch size to example image

using cpu
#1mg batch = torch.unsqueeze(ing, 6)

#using gpu

img_batch = torch.unsqueeze(ing, 8).to("cuda®)
img_batch.shape

torch.Size([1, 3, 224, 224])
step 5: make a prediction and get probabilities for each class

model.eval()
with torch.no_grad():
outputs = model (img_batch)
== prob = torch.nn. functional.softmax(outputs(8], dim=6)

s+ @O

v] OB

ik et e

Then you see the batch size probability prediction for CPU ok.

(Refer Slide Time: 23:53)

! ome lnsert D sqn o Rev
— VP s
s v B
R e Ve T
Py Payrom Prsarter
PR s comesie v V/ Sou v Cameon.

Benchmarking CPU , GPU (CUDA), Tensor RT
- performance : (Demo)

&

isport pandas as pd

categories = pd.read_csv(https://rav.githubusercontent
categories(8][2]

/hub/master/inagenetclasses. txt', header=None)
great white shark’

m step 7: extract top 5 probabilities and map them to the appropriate class name

el Y
|
|

topk = 5

probs, classes = torch. topk(prob, topk)
for i dn range(topk):

probability = probs[i].itea()

class_label = categories[6][int(classes[i])]
= - print{*8{} (}*.format(int (probability*169), class label))

s ®Mo
\
|

37 Egyptian cat
= 19 tabby
SO Al tiger cat
M Siamese cat
A3 carton

v i 0

ekt e ek

1020

(Refer Slide Time: 23:54)

' Benchmarking CPU, GPU (CUDA) , Tensor RT
performance : (Demo)

‘step 8: define a speed test benchmark function & adjust it
B ——

P

oyt ey o8 0

fapert tarch.backends cudwn a8 cudnn
cuten. benchmark « Trve

d, iaput shapes(32, 3, 23, Z24), Gtypes' o3, mvaraupess, nres<io0)
corch. randn{ input shape)
data.ta(device)

4L Aruns, . sesn(timings]*1000))

o))
473 (np.mes(tinings) 1800)

ek 0 3t e

And then you do it for GPU.

(Refer Slide Time: 23:59)

L ——

Benchmarking CPU , GPU (CUDA), Tensor RT
performance : (Demo)

step 9: find out CPU model speed benchmarks

#CPU benchmarks
benchmark(model, device="cpu®)

Warm up ...

Start timing ...

Iteration 16/160, ave batch time 640.36 ms
s Iteration 20/160, ave batch time 642.35 ms
Tteration 30/160, ave batch time 645.49 ms N
Iteration 46/160, ave batch time 646.09 ms
Tteration 50/160, ave batch time 645.95 ms
Iteration 66/160, ave batch time 645.85 ms
Tteration 70/160, ave batch time 646.04 ms
— Tteration 86/160, ave batch time 646.32 ms
e Tteration 99/160, ave batch time 646.03 ms
Iteration 186/109, ave batch time 645.74 ms
Input shape: torch.Size([32, 3, 224, 224])
Output features size: torch.Size([32, 1000))
Average batch time: 645.74 ms

Y # &

+®Mo

v J OB

ek 0 3 ke

The CPU benchmarking, the GPU benchmarking.

1021

(Refer Slide Time: 24:01)

s+ Mo

Benchmarking CPU , GPU (CUDA), Tensor RT
performance : (Demo)

step 10: find out CUDA model speed benchmarks

: #CUDA benchmarks
model = model.to("cuda®)
benchmark(model)

Warm up ...

Start timing ...
Iteration 10/168,
Iteration 26/160,
Iteration 30/106,
Iteration 46/100,
Iteration 50/168,
Iteration 66/168,
Iteration 70/168,

ave batch time 92.37 ms
ave batch time 92.42 ms L]
ave batch time 92.32 ms
ave batch time 94.92 ms
ave batch time 97.94 ms
ave batch time 97.61 ms
ave batch time 99.83 ms
Iteration 80/168, ave batch time 101.69 ms
Iteration 96/106, ave batch time 104.36 ms
Iteration 106/100, ave batch time 186.73 ms
Input shape: torch.Size([32, 3, 224, 224])
Output features size: torch.Size([32, 1000])
Average batch time: 106.73 ms

v Jl OB

ik 0 3k e

Benchmarking CPU , GPU (CUDA), Tensor RT
performance : (Demo)

step 11: trace and compile CUDA model into a TensorRT model

: traced model = torch.jit.trace(model, [torch.randn((32, 3, 224, 224)).to("cuda")])

: ismport torch_tensorrt

trt_model = torch tensorrt.compile(\
traced model,
inputs = [torch_tensorrt.Input((32, 3, 224, 224), dtype=torch.float32)],
enabled precisions = {torch.float32}

)

ik 0 3k e

1022

(Refer Slide Time: 24:04)

Vo e
s T B
= x v/ tnn T
Py o Paytrom Paseter
Sot CumeaSite Ve V Sou s Comeo.

== Benchmarking CPU , GPU (CUDA) , Tensor RT
performance : (Demo)

benchmark(trt_model)

Warm up ...
Start timing ...

= Iteration 10/108, ave batch time 76.66 ms
Iteration 20/168,
Iteration 30/168,
Iteration 46/100,
Iteration 50/108,
Iteration 60/100,
Iteration 76/1689,
Iteration 806/100,
Iteration 90/168,

ave batch time 75.95 ms
ave batch time 73.84 ms
ave batch time 72.74 ms
ave batch time 72.09 ms
ave batch time 71.67 ms
ave batch time 71.44 ms
ave batch time 71.20 ms
ave batch time 71.67 ms

=T Iteration 100/160, ave batch time 71.52 ms

= Input shape: torch.Size([32, 3, 224, 224])
Output features size: torch.Size([32, 1060))
Average batch time: 71.52 ms

+®Mo

v J 0

ik et e

And then TRT model benchmarking ok.

(Refer Slide Time: 24:07)

Demo of Workflow for optimizing
Tensorflow model to TensorRT
(Tensorflow) - Reduced Pregision
graph generation

s+ ®Mo
\
|

v i O
T
|
ifl

ek et ke

Something like this.

1023

= o
oF .
m
fu

