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Good evening everyone. Today I will try to actually do some demos on Accelerating 

deployments ok. And as I showed you yesterday some videos maybe today we will show 

you the demonstration by again connecting a webcam there is some issue with the team 

viewer, but we will anyway show you some more videos today in case that does not do 

materialize right.  

Because it is getting struck the team viewer video is getting stuck. So, no issues for that 

but, let us start with certain things wherein we will try to show you the maximum demo 

stuff ok. 

(Refer Slide Time: 01:00) 

 

So, yeah so, yesterday actually we ended up at this point right that how do you actually 

deploy a model with TensorRT ok. And we showed you this particular concept we 

showed you a demo and we actually discussed this yesterday that we have either a 

TensorFlow or a caffe or any other framework which basically is written using python 

ok.  
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And then you have a model importer which actually imports ok using a TensorRT ok 

right. So, the idea is you basically come up with a model which is a universal framework 

format or at present you can use ONNX as well right. So, I have got two options of 

actually converting your actual model which you have trained it on a. 

Students: Server. 

Server right and then convert it into something which runs on a inferencing edge device 

right. So, you can use UFF or you can use ONNX. So, we can show we will show you 

ONNX also and we have done it using UFF also right. So, let us see how we can show 

you both of this right. So, the basic idea what we discussed yesterday was you have a 

trained neural network model you import that model and then try to use a TensorRT 

optimizer right for trying to optimize it. So, that it runs on your edge device right. 

So, for that reason you actually have this process which is internally done right. You 

have to serialize it then you generate one or three optimized plans and then you get a 

plan file right with actually schedules ok for the kernel to execute whatever it is to be 

executed.  

So, you take this optimized plan ok and then as shown you basically create a Tensor RT 

engine object and then you run it using a Tensor RT runtime engine and that is how you 

basically try to deploy on the edge device. So, basically you are trying to deploy the 

runtime. So, this is the overall model which we discussed yesterday right. 
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So, now today we will try to understand that when we are trying to work with TensorRT, 

TensorRT supports the following layer types. What does it mean? It means if you are 

using convolution layers if you are using activation layers which involve ReLU, tanh, 

sigmoid and you have this pooling max and average stuff. Elementwise sum, product or 

max of two tensors ok and then LRN and then fully connected with or without bias 

SoftMax, deconvolution. 

All of these layers could be converted from TensorFlow or PyTorch to a Tensor RT 

survey right this is what it means. 
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And now that effectively means that whenever you are trying to convert ok any model 

for inferencing the steps would be like something like this you actually convert for 

example, if you are trying to do a image segmentation application deployment. So, you 

convert the pretrained image that segmentation PyTorch model or for that matter the 

tensor flow model into ONNX or ok or UFF anything. 

And then you import the ONNX model into Tensor RT model ok this conversion needs 

to be done and then you basically apply several more optimization generate an engine. 

So, technically speaking once your model gets converted into a Tensor RT runtime ok 

you can actually do the inferencing on that particular edge device right. So, we have 

written it on the GPU. So, you can do it on GPU you can do it on edge device you can do 

it on Jetson any of these right. So, this is how basically it is done ok. 

So, there are various ways of doing it one of the ways what we are trying to tell you is 

this ok you can actually see in literature and various other places there are various ways 

of doing it one of the ways is you either convert your TensorFlow program into a 

TensorRT program through UFF or ok through ONNX. So, this is the basic idea ok. 
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So, you have got various components in TensorRT you have a ONNX parser which 

basically converts ok or you have a UFF parser you basically take any trained model into 

the ONNX format as input and you get a network object in tensor RT. This is possible ok 

and then you take a network in Tensor RT and you generate an engine that is optimized 

for the target platform.  

So, this target platform can be anything. So, ultimately you basically take a network in 

TensorRT and generate an engine similarly your engine takes an input data perform 

inferences and then emits the inferencing output and logger basically tries to give you 

warnings capture errors and how you run and everything right. 
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So, this basically is various component of a TensorRT. So, TensorRT powered NVIDIA 

edge devices actually if you see their benchmarking performances they are quite good 

they are very very good. So, you can accelerate every model across the data center and 

edge in computer vision applications speech to text NLP for example, BERT and various 

recommended systems right. So, all of this would actually be done ok on the edge 

devices using TensorRT optimizations right. 

(Refer Slide Time: 08:04) 
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So, it supports all major frameworks TensorRT is integrated with PyTorch TensorFlow 

and you can achieve 6x faster inferencing with 1 line of code. So, this is the basic idea 

you can actually integrate everything ok. 

(Refer Slide Time: 08:26) 

 

So, TensorRT then from TensorFlow: So, now, the idea is let us say we have a 

TensorFlow program and this TensorFlow program needs to be converted into a 

TensorRT program or a TRT program. 

So, TF-TRT is what we generally call. So, TensorFlow integration with TensorRT ok; 

so, when you do this you basically are trying to work with sub graphs ok and then trying 

to understand how tensor flow ok graph can be converted into an optimized TensorRT 

graph. So, the effective idea here is your TensorRT is going to generate a model a parse 

model and then it applied optimizations to the portions of the graph wherever possible. 

So, we will show you various graphs right in the next few seconds or minutes right. 

So, we will show you how basically a saved model a TensorFlow graph is converted into 

a optimized graph right that also you can visualize. So, technically speaking TensorFlow 

RT speeds up your inferencing by 8x for a ResNet 50 benchmarks right. So, there are 

certain things wherein you can see about graph optimizations ok do not change the 

underlying computations in the graph. So, that is very very important see your 

computations will not change ok, but the graph will be optimized.  
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So, basically you are restructuring the graph to perform the operations much faster and 

more efficient right efficiently right. So, this is the basic test software of it of why do you 

do actually this and how is that it is going to speed up ok that is also what you are going 

to actually see, ok. 

(Refer Slide Time: 10:31) 

 

So, now when you integrate the TensorFlow with Tensor RT ok. So, Tensor RT basically 

optimizes the largest sub graph possible in the TensorFlow graph and if there is more 

compute in the sub graph; obviously, the TensorFlow optimizes it more ok. So, more 

computations are there in your model right more optimization you can expect out of 

TensorRT.  

So, most of the graphs which are to be optimized and replaced ok with the fewest 

number of tensor node RT; so, you generate a TensorRT node actually. So, the idea is 

you can optimize and replace ok with certain specific less number of nodes as compared 

to your actual nodes in the graph right. So, that is what actually you are going to be 

doing right. 
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Now, this is how it actually happens you create and train an ML model or you get a pre 

trained ML model both are possible right you save that node; obviously, you are training 

your model and then you are saving your model once you save that model you get a 

TensorFlow save the model there is something which is called as TensorFlow frozen 

model ok. Now this TensorFlow frozen model cannot be edited or it cannot be changed 

that is what it means in model trainer right you can actually train a save model again and 

again. 

But once you freeze that model right it has got all the weights parameters everything 

frozen right. So, you cannot actually use it for training again that is what it means and 

that is what you are going to optimize ok. So, you are going to optimize that ok saved 

model from the frozen model and then you deploy with either a train triton server or you 

do it with TensorFlow.  

So, now, this is what I told you that your actual thing of understanding at the first level 

of complexity is this that you convert your TensorFlow program into a TensorRT 

optimized programs right by converting it intermediately to a UFF or ONNX right. So, 

open neural network exchange format ok. So, something like that. So, this is what it 

means that you are converting your TensorFlow program to a TensorFlow RT, TensorRT 

program right ok. 
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So, the idea is that you create a SavedModel or a frozen graph. Out of a trained 

TensorFlow model and give that to the Python API of TF-TRT which is going to return 

TensorRT optimized model; replaces each supported sub graph with a TensorRT 

optimized node or a TRTEngine operation producing a new TensorFlow graph. 

So, this is how you actually convert ok I use the SavedModel format and this is how you 

get a frozen graph format. So, if you see here ok. This basic a thing TensorRT import trt 

converter as trt and then you are using a converter you are just trying to actually save a 

saved model ok.  

And then you actually get a frozen graph by using a converter convert ok and then you 

get a frozen graph ok. So, this is how basically you would be using it in your program ok 

this is just the idea of how you are basically using various converters which are available 

ok. For converting your various models into various formats like a SavedModel format 

or frozen graph format ok. 
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So, one of the things when you want to work with TF-TRT is that you need to install TF-

TRT you have NVIDIA containers as we told you in our previous sessions as to how do 

you pull NGC docker container. So, you pull a NGC docker container and you actually 

use ok for TensorRT enabled TensorFlow thing right. So, TF-TRT container ok and this 

basically is supposed to be pulled or installed ok from a TF-TRT container ok from the 

NGC cloud ok. 

(Refer Slide Time: 15:45) 
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So, what are the various parameters when you try to actually use this ok? So, the 

parameters which can be passed ok so, this is a command line interface option saved 

model CLI to TRT graph converter you can work with any precision mode ok. So, the 

precision mode which you can use is FP32, FP16 or INT8 ok.  

What is the minimum segment size? So, that basically means the minimum number of 

TensorFlow nodes required for a Tensor RT sub graph to be valid ok. This when you go 

on practicing and running your programs you will try to understand ok all of these 

particular parameters. 

But just to have the completeness of trying to link ok. How these parameters are actually 

connected we are just trying to give you a very very brief idea to this ok. And then you 

can use calibration because calibration is needed yesterday I told you that when you are 

converting from FP32 to FP16 ok, it is done. But when you convert something from 

FP32 to FP16 to something like INT8 right there is a calibration required right. So, if the 

precision mode is INT8 the calibration is needed. So, effectively a calibration graph will 

be created ok. 

So, this is what it means ok and then you have the maximum batch size and the 

maximum cached engine thing right. So, the limit of the number of RT engines which 

can be cached per TRT engine operation because it depends on the memory of your edge 

device right based on that how much you can cache is going to actually make your 

system slower and it can get stuck or something of that sort might happen. So, that is 

why you are going to use some of these parameters ok. 
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So, let us try to do some benchmarking ok. 

(Refer Slide Time: 17:59) 

 

So, let us try to understand the inferencing portion on just GPU, CUDA and TensorRT. 

So, this particular thing is a very very simple example of trying to import ok a pre trained 

neural network model. So, we are just trying to load an example image ok. 
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For the prediction which we are able to see ok. 

(Refer Slide Time: 18:32) 

 

Now, what we are trying to show here is this is a image ok and then there is some 

transform which is happening. So, we are trying to pre process this image ok. 
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And then we are trying to actually set a benchmark size to this example image ok. So, 

you can do it using CPU you can do it using GPU and you can do it using TensorFlow 

RT ok. So, we will get the prediction and probability for each class right. So, this is what 

actually is a very very simple thing of where you are going to actually link it and link it 

with the image net classes right that is what you are trying to do ok. 

So, yeah. So, we will run this and we will extract the five top probabilities. 

(Refer Slide Time: 19:22) 
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This is for that particular thing. So, it has detected that it is basically a Egyptian cat its 

tabby, tiger cat semi stat and carton right; so, with these many prediction percentages 

right. 

(Refer Slide Time: 19:47) 

 

So, now we will try to understand the speed test with the ResNet 50 ok example. So, 

what we are trying to do is this is basically a TRT program ok and then we are trying to 

we are trying to just show you ok that how basically for each of this ok. 
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How much iterations it is taking how much time it is taking with conditions of whether 

the device in the CPU whether the device is using CUDA and what when it basically 

tries to develop a TensorRT model? 

(Refer Slide Time: 20:23) 
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So, this is just a very very preliminary benchmarking thing which will help you to 

appreciate the optimize stuff right. So, that is what we are trying to do now. So, here so, 

if you run this ok which we have just now run it basically gives you 645.74 milliseconds 

right the average batch time and we are running it for CUDA here, which is executing 

which is telling you that it is giving you 91.85 milliseconds.  

So, the idea here is you are trying to run the same model on a CPU which gives you 

645.45 milliseconds 7 sorry 654 644.74 milliseconds. Whereas on CUDA ok the same 

model gives you 91.85 milliseconds for actually training right now TensorRT model if 

you see take a little bit of time yeah. 
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So, you see this it takes about 70.33 milliseconds right. 

(Refer Slide Time: 21:47) 

 

So, the idea is from 91.85 milliseconds to 70.33 milliseconds right. So, this is basically 

like a very very good what to say reduction in time optimize time ok because this is a 

very very simple example nothing we have done too much ok. And if you see the 

prediction right it gives you almost the same prediction right. 57 percent prediction gap 

almost the same everything is same right.  
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So, if you see here its 37 19 11 4 and 3. The same thing we get because we yesterday we 

are talking of even if it is reduced prediction sorry reduced precision right to get almost 

the same thing right there is nothing much of a difference ok right. 

So, this is what we thought we will show you first. And then now so, now, once we have 

done this. 

(Refer Slide Time: 22:47) 

 

The benchmarking demo let us try to understand right step by step of how we have done 

it actually. 

(Refer Slide Time: 22:49) 
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So, what we do is we basically as I told you we are supposed to be pulling the docker 

containers ok from the NGC site right. So, we are we have tried to download the 

PyTorch this thing ok. 

(Refer Slide Time: 23:14) 

 

And then we basically pulled the docker container. So, we are actually telling you step 

by step of how we did it right all of this is executed. So, whatever we try to do till now 

we have actually tried to put it in the slide so, that tomorrow when you want to do it ok, 

you can actually see it automatically and do it step by step right. 
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So, this is how when you run it you basically try to run that program ok. 

(Refer Slide Time: 23:41) 

 

Then you know the pre trained network. 
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You get the image for production. 

(Refer Slide Time: 23:46) 

 

Then this is the transformed image. 
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Then you see the batch size probability prediction for CPU ok. 

(Refer Slide Time: 23:53) 
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And then you do it for GPU. 

(Refer Slide Time: 23:59) 

 

The CPU benchmarking, the GPU benchmarking. 
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And then TRT model benchmarking ok.  

(Refer Slide Time: 24:07) 

 

Something like this. 
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