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So now, let us try to understand this inferencing at low precision ok. So, again here we 

will start with the premise that the weights and activations which we used in during the 

training of our model was floating point 32, FP32. And it can be represented using INT8 

without incurring significant loss in accuracy. This is a well known fact which people 

have been trying since long and it is possible to achieve this.  

So, assuming that we know that when we convert our weights and activations from FP32 

to INT8, we do not incur significant loss in accuracy ok. So, this is one way of trying to 

reduce in the memory; but it has got its disadvantages, we will see what are the 

disadvantages and what are the advantages, and how do we ensure that the accuracy is 

maintained ok.  

Now, what are the advantages actually of doing this conversion from FP32 to INT8? 

What actually happens is when you do this you can significantly reduce the bandwidth 

and the storage. And your integer compute sorry; there is a typo here, it is basically 

integer compute is faster than the FP compute ok, and this also saves energy and area. 
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So, these are very very important advantages or very very significant advantages you 

reduce the bandwidth, you reduce the storage, your integer compute is faster than your 

floating-point compute, and you save area and energy as well. So, let us try to understand 

if you do a ADD operation as a INT8 operation instead of a FP32 operation, you are 

going to save 30 x energy and 116x area as against doing it on a floating point 32. And if 

you do a multiply operation using INT8 you are going to save 18.5 x energy and 27 x 

area versus floating point 32 operation. 

So, now think of this just for one add and multiply like operation, you are saving so 

much energy so much area. And you are talking of deep neural networks which will use 

lot of such operations, you are talking of convolution neural networks right, they are 

deep neural networks we will have so many of such operations. And once you are able to 

reduce the energy the area ok, you will actually get ok lot of advantages in time as well 

ok. 

So, the idea is that we should actually significantly use ok and try to use INT8 

operations. So, there are so many other things wherein people talk of mixed precision, 

right automatically the software’s can actually take in the required precision values and 

all of that. But we are not going into that what I am trying to tell you is if we do INT 8 

operations at low precision, we can get good inferencing ok, as compared to if you just 

use FP32 right. 

Now, what does it mean when we say precision from FP32 to INT8, where is the issue 

here? The issue is basically you are trying to do something called as quantization. If you 

are working with FP32, your dynamic range actually varies from -3.4 x 1038 to 

+3.4x1038. This is the dynamic range in which your model would have got some values 

right, for the weights for the activation. 

So, that is the whole dynamic range which you are working with, and this is what is let 

us assume to be the training precision. So, the training precisions dynamic range varies 

from -3.4x1032 to +3.4x1038 sorry 38 right. So, minus 3.4x1038 to +3.4x1038, this is your 

training precision. Now, if you reduce it from FP32 to just FP16, your dynamic range 

changes from -65504 to +65504. 

What does it mean, the dynamic range of your information or the values which have 

varied from this particular range to this particular range has to be condensed into -65504 
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to +65504 ok. So, what does it mean, here you are changing your precision from FP32 to 

FP16, your dynamic range reduces right. So, this basically means whatever information 

was put in that particular range should be compressed to this range right. And there are 

software’s which are available which you try to use this particular step does not require 

any calibration. 

So, you do not require any calibration ok, we will tell you what a calibration means in 

brief ok, why is it required and when you convert the FP32 to INT8 ok. You basically 

have to work with the dynamic range of minus 128 to plus 127. So, you would have 

trained your model with FP32 thinking that you have got this much precision, this much 

accuracy right, and this is the model which is giving me accuracy because I am using 

floating point 32. 

And then now you try to convert it to INT8, you actually have to represent that 

information which you have thought from -128 to +127 and technically this is where 

some calibration is required right. We will not discuss it in today’s class maybe we will 

tell you something about that in tomorrow’s class. But the idea the next class the idea is 

this requires some calibration, because you will have to map it from a very very different 

dynamic range to a very small dynamic range of -128 to 127 right. 

So, this basically means when you are trying to do this precision calibration for INT8 

inferencing, it minimizes the information loss. Try understanding when you do the 

calibration what effectively happens is, we will minimize the information loss between 

FP32 and INT8 inference on a calibration data set. So, there has to be a specific 

calibration data set designed before you convert your FP32 into INT8. 

And that calibration data set is going to ensure that your precision your accuracy is not 

affected and this will be done automatically right; so, it is completely automatic ok. 

Now, let us try to understand the difference in the performance or accuracy of various 

networks ok. So, if you take FP32 and you consider top 1 results ok, whatever top results 

you consider for anything. This is the example where in Google net gives you 68.87 

percent accuracy, VGG gives you this Resnet 50 gives you 73.11, Resnet 152 gives you 

75.18. 

So, when you do it using INT8, you optimize your model run it for inferencing ok. The 

INT8 model gives you accuracy of 68.49 as again 68.87. So, this is just a difference of 
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0.38 percent right, the same is the case with VGG you get a difference of 0.11 percent, 

0.57 percent, for Resnet 50 and 0.61 percent for Resnet 152.  

So, the idea here is that there will not be much of a difference of course, you can still go 

on improving and optimize it further. But this is not that much of a difference right, 

when you get the advantages of so many things like energy, bandwidth, storage, faster 

compute ok and everything. So, this is what is basically the gist of inferencing at low 

precision right ok. So, in summary let us try to understand what I have talked till now. 

(Refer Slide Time: 11:19) 

 

So, in essence the summary is whatever we have done till now points to this, we are 

actually training this type of a model. Let us say it is trained with lot of labeled data and 

then you have got this forward propagation, and then the backward propagation, error 

propagation everything of that. And your training model is able to actually predict 

something right, when you test it, when you do validation and everything. 

Now, when you actually bring this model weights for that inferencing edge device or 

deploy the device or where you need to deploy. The inferencing is something like you 

give the input, it should give you the output this particular system right. For example, has 

to be implemented at traffic some traffic situation, right smart city situation. 

So, you have let us say a traffic camera, you have a gateway server, and you have a data 

center. So, the idea here is you have used and you have done training at the data center 
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with GPU’s and let us say that this is a 300-watt AI training processor. What it does? It 

trains our AI model basically which is used in basically traffic camera and the gate way 

servers; so, that is the work. 

Once it has trained it has to go for inferencing now right, and what does it process let us 

say it processes the traffic violations ok. Now, what does gateway server do? Gateway 

server is a 50-watt AI inference processor, here it is a inference processor with a 50-watt 

AI thing. What it does? It locates the license plate in vehicle image and it reads the 

license plate characters that is what a gateway server is going to do. What does a traffic 

camera do? So, a traffic camera is a 5-watt AI inference processor. 

So, see the same trained model ok is running on a 300-watt AI training processor it is 

running on a 50-watt AI inference processor and then it is running on a 5-watt AI 

inference processor. So, in a 5-watt AI inference processor; the same trained thing, what 

it does? It detects the vehicle which is entering the intersection, it identifies the image 

that includes the license plate. 

So, the inferencing here is done for this, the gateway server locates the license plate there 

and it detects the characters and here it detects the traffic violation. So, the idea is the 

level at which you are going to put in your model and the way in which it has to be used 

varies ok. And the idea is that here you are going to use something which is trained and 

something which has to be put or deployed for inferencing right. 

(Refer Slide Time: 14:24) 
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So, now, this is the actual example implementation, let us show you actually how we 

have implemented it in our lab right. So, what we have tried to do, we have tried to train 

our model right, let us say we have used Resnet 50. Here we are not using nvdia digits 

we are using Resnet 50, and Resnet 50 is basically trained ok on DGX 1. So, at this point 

in time we have got a trained deep neural network model which is a pre trained model 

ok, and we have NVIDIA jetson we have got NVIDIA jetson TX 1 TX 2; so, we will be 

showing you on TX 1 ok. 

Now, that basically is a edge device right, and this edge device basically is used for 

inferencing. What does it have, we have to be very very clear that we are using tensorRT 

ok, we will tell you what tensorRT does and we have cuDNN also installed on our end 

jet circuit.  

So, the idea is this model which has been trained for doing some classification tasks on 

the DGX is now to be converted optimized made smaller; so, that it can run on this 

jetson ok. Now, this jetson actually is able to classify the objects ok based on the inputs 

from the camera in the real-life setting. So, this is what is the situation right this is what 

we are going to actually do a implementation for ok. 

(Refer Slide Time: 16:29) 

 

So, now, let us try to understand the tensorRT thing right; so, what is tensor RT? I just 

showed you that we have something which is called as a tensorRT with cuDNN installed 

on our edge device, edge device is nothing, but our jetson ok. There are various other 
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edge devices also, but we are showing you with NVIDIA jetson ok. So, this NVIDIA 

tensorRT is a high-performance deep learning inference optimizer and a runtime that 

delivers low latency high throughput inference for deep learning applications right. 

So, what it means is we are trying to accelerate deep learning inferencing for production 

deployment, this is what is the basic essence. So, whatever we are; we were talking of all 

of this ok actually is taken care by this tensorRT. So, the goal is that we would be 

accelerating deep learning inference for production deployment.  

Now, what does it mean, see here this is our training framework on DGX and all, our 

neural network is trained. We use the precision; we use the batch size from this we 

optimize it using our tensorRT and then we generate a plan. Now, this plan gives us a 

serial plan of plan 1, plan 2, plan 3 something like this, and then once we can validate it 

using tensorRT we actually would be using it for actually predicting ok. 

(Refer Slide Time: 18:40) 

 

So, now why tensor RT, and why it would is why it is required, and how do we use it 

maybe we will see it in tomorrow’s class. Now, we can do a video demonstration of what 

we have done I will just explain you in brief what we have done. 
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And let me just show you the images first ok. 

(Refer Slide Time: 19:11) 

 

So, see here this is the output from the screen of our jetson device ok, this basically tells 

us about what are our video output arguments, what is the codec we are using, what is 

the width size ok, what are my image files and all of that right. 
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And this is being shown on a setup like this ok; so, this is our NVIDIA jetson TX 1, this 

is how it is running the program ok of various types right. We have done some semantic 

segmentation programs, we have done classification, we have done detection there are 

so, many things which run on this ok. Now, the idea is once you start working on a edge 

device, you will try to understand that there is a difference in which there is a way there 

is a difference in way your DGX does inferencing and the inferencing which this 

particular type of edge device does ok. So, there are three videos which I will show you 

today and maybe tomorrow we will see as to how that is to be achieved right. 

(Refer Slide Time: 20:37) 
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So, let us start with this video which talks of ok how you can get the information from 

the camera ok. 

(Refer Slide Time: 20:45) 

 

And then do things and optimized from the tensorRT thing right, we are using tensorRT 

version 7.1.3. 

(Refer Slide Time: 20:58) 

 

And there are various things which you will use. 
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So, this is basically trying to do some object detection ok; now here the idea is we have 

tried to link the hand to a person ok. So, that is what we did some modification just 

wanted to show you like if you change the model, if you do the training in such a way 

right it can affect your inferencing a lot. So, this is our jetson TX 1 which we are 

working with. 

(Refer Slide Time: 21:33) 

 

Now, this is another video which talks of trying to do detection ok of person chair ok 

everything. So, see the way in which it is detecting right; the throughput rate, the speed 
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at which it is detecting, the speed at which it is inferencing right, all of this actually is 

being executed on this jetson TX 1 ok so, right. So, this has got a small camera ok which 

basically we will show you tomorrow in detail, but this is the camera here which is trying 

to capture the image right of the person sitting here and here. So, this is how actually we 

are trying to do this thing ok. 

(Refer Slide Time: 22:33) 

 

So, then there is another video which actually does how this convolution ok, 0 Relu and 

everything actually ok gets converted. And how much time it takes right all of that I am 

just trying to show you today. 
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So, that the context is built; so, that you can actually try to understand things tomorrow 

in a better way right. 

(Refer Slide Time: 22:59) 

 

When we start working on trying to show you these executions ok. So, this is how 

actually it will be processed and that particular video is actually going to be predicted 

right. 
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So, that is how actually it is; so, I should have maybe shown you this before than the 

other video which I show you just now. So, that is how actually it is going to basically be 

executed ok and that is how you can develop in your own applications and put it on the 

edge device right this is how actually it is going to pan out ok. So, we have done it for 

cats, dogs we will show you tomorrow cats and dogs maybe; so, let us see, so yeah. 

So, I suppose we are done with today’s session yeah, maybe any questions if you have 

we can start; so, maybe yeah; so, I will just wind off with y tensorRT just to complete the 

whole thing. So, what is actually tensor RT, and why we should use tensorRT is it is a 

software platform for high performance deep learning inferencing. You actually get a 

trained neural network, you optimize it using tensorRT optimizer, and then you use a 

tensorRT runtime engine to actually run right. 

So, basically it is a software platform for high performance deep learning inference, it 

processes images faster that is what will happen right. So, often you need to trade off 

between speed and accuracy; obviously, as we discussed, tensorRT based applications 

perform up to 40x faster than CPU only platforms during inferencing. So, if you have a 

tensorRT based application developed, it is going to perform 40 x faster than just the 

CPU only platforms. 

You can deploy to hyper scale data centers, embedded or automotive product platforms 

as shown here. So, you have jetson which we are working with, we have drive AGX 
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which you can work with for automotive, and then you have tesla right basically on the 

data center. So, this tensorRT you can actually optimize your model and deploy it 

anywhere that is what it means right; so, it will be optimized according to where it 

basically is running right. 

So, you can use the tensorRT for speeding up the recommender systems, speech 

processing, video translation. Now, you can use actually this tensorRT to take advantage 

of tools like DeepStream, and NVIDIA inference engines. You can do edge processing 

with NVIDIA Xavier’s as I told you jetson TX 1, TX 2 and Jetson Nano all three ok; so, 

you can do everything using tensor RT. So, it is a deep learning inferencing software 

platform which we will show you tomorrow in the next class right.  

So, yeah I think I am done now and we stop here yeah. 
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