
Applied Accelerated Artificial Intelligence 

 Prof. Bharatkumar Sharma 

Department of Computer Science and Engineering 

Indian Institute of Technology, Palakkad 

 

Lecture - 36 

Fundamentals of Distributed AI Computing Session 2 

Part 1 

 

(Refer Slide Time: 00:14) 

 

Welcome back everyone my name is Bharat and I am going to continue with our 

previous session. The session on the distributed deep learning the session is going to 

concentrate or continue with the concepts that we saw in the last lecture. So, again we 

will look at the concepts that we explained in a bit in terms of the query and then I will 

continue with hands on session where we are going to show you a demo of all the 

concepts that were explained. 

847



(Refer Slide Time: 01:04) 

 

So, the first thing that we talked about during the session was also the necessity of 

understanding the system topology. We introduced you to two particular concepts 

latency and throughput. Latency is nothing but the time taken for the transfer of a single 

packet of data how much time does it take for me to reach from one destination to the 

other. 

The second one is throughput is the quantity of data that can be transferred in one unit of 

time like can I transfer 1 KB of data 2 KB of data 3 KB and all and it is important from a 

point of view of scaling the scaling laws kind of define and they would be dependent on 

the system on which you are going to run the multi GPU or any kind of a distributed 

deep learning jobs. 

848



(Refer Slide Time: 02:07) 

 

And we saw a particular system architecture which I explained in the last call which is 

one of the NVIDIA system called as NVIDIA DGX. NVIDIA DGX system consists of 2 

CPUs CPU0 and CPU1 it consists of couple of PCs switches and it also has 8 GPUs this 

8 GPUs are connected to each other via interconnects like NVLink.  

If you want to go across nodes to different node you get connected via NIC cards or 

Infiniband which will connect to the other machines as well. We are going to do hands 

on in this particular session on a DGX machine itself. 

(Refer Slide Time: 02:54) 

 

849



There is a particular concept that we explained yesterday which is referred to as GPU 

direct. In this case you can see there is GPU0 and GPU1 no matter what kind of a 

communication method you use whether the data parallel or model parallel whenever 

you want to communicate. If you are able to do direct communication between GPU0 

and GPU1 referred to as peer to peer transfer directly without involving CPU. 

Hence, reducing the latency is referred to as GPU direct. It is only possible under certain 

scenarios which we will see in the hands on session again. 

(Refer Slide Time: 03:41) 

 

We also talked about NVIDIA collective communication library. NVIDIA collective 

communication library is a library or a framework which has been built by NVIDIA 

which helps in doing as the name says collective communications. It is a library which is 

integrated into all of the frameworks like PyTorch TensorFlow and all to effectively do 

the multi-GPU when you enable multi-GPU distributed training NCCL is called behind 

the scenes and we will look at how to see or how to even be assured that this is 

happening. 

850



(Refer Slide Time: 04:29) 

 

It has various advantages which we have talked about yesterday like it is basically 

something which does different kinds of detection graph, it does graph analysis to find 

the shortest path, the path having lowest latency and highest bandwidth it does automatic 

topology detections and it hence it helps in scaling pretty well on different kinds of 

clusters. 

We talked about two different kinds of parallelism whenever you want to go from 1 GPU 

to multiple GPUs. The first kind of a parallelism is referred to as the model parallelism, 

the second one is data parallelism. In the model parallelism you would split the model or 

the layers across different workers each worker accessing a particular separate GPU 

worker the model parallelism is particularly more difficult and it is primarily used 

especially when you cannot fit the whole model into one particular gpu. GPUs now a day 

come with almost 80 GB of memory.  

If you are talking about models nowadays you have models still few trillion parameters 

in that case, it is almost impossible to fit them into one GPU. So, you need to make use 

of model parallelism. Data parallelism is a way in which you take one model and 

replicate it across all the workers each having their separate GPU. What you are splitting 

basically is different batches of data input data which would be required for training. 

These two methods can be combined together into hybrid model. In a hybrid model you 

combine both worker parallelism and data parallelism together to enable real world 

851



problem solving especially when your model is large and the data set is also pretty large 

in that case you can combine both of them as well. 

(Refer Slide Time: 06:38) 

 

The next thing we also said is whether it is no matter what type of parallelism you can do 

it either in a synchronous fashion or asynchronous fashion. In a synchronous fashion 

point of view each variable in the model is mirrored across all the replicas and these 

variables are kept in sync with each other and by applying identical updates.  

So, at every step when you are given the respect to like in case of data parallelism 

whenever you are basically updating the gradients, they are basically at every step they 

gets exchanged with each and every worker in a synchronous fashion and then they 

continue to the next step. 

While in asynchronous communication, there might be different methods you do not 

need to be always at a synchronous step. The variables are can be created on a separate 

server which can be also referred to as a parameter server and all the workers basically 

can read and update these variables independently without synchronizing with each other 

and that is what we saw is a method of asynchronous programming. 

852



(Refer Slide Time: 07:50) 

 

We said in the last session that no matter what method it is or whether we want to use 

GPUs all of the existing frameworks support the same. You have TensorFlow, you have 

HOROVOD, PyTorch, mxnet all of them supporting Multi-GPU and they all have 

different methods for doing data parallelism model parallelism and a hybrid parallelism 

approach as well today we will try to touch on one or more of them. 

(Refer Slide Time: 08:25) 

 

In the today’s demo again in the session 1 of this particular series we touched upon the 

usage of container and how we can utilize or download the containers from NVIDIA 

853



GPU cloud. In the today’s session again we are going to use containers and this container 

would be running on a DGX machine and we have built this container and we will be 

using Docker for running this container and it has been pulled from the NGC repository.  

So, in case you have missed that session we recommend you to definitely look at the 

NGC session which was delivered in session 1. 

(Refer Slide Time: 09:09) 

 

So, let me start by showing you a particular demo. 

(Refer Slide Time: 09:16) 

 

854



So, as you can see here I have already set up a particular server, in the server I am 

basically running a Docker container and I have already forwarded it to my machine. 

(Refer Slide Time: 09:27) 

 

(Refer Slide Time: 09:28) 

 

So, all of the materials that you are seeing here they are all been made open source and 

we will be putting the link to the material by the end of tomorrows session into the slack 

channel and you would be able to download this hands on material as well. If you have 

access to any of the multi-GPU machine you would be able to replicate it and run it in 

inside a container environment. 

855



(Refer Slide Time: 09:59) 

 

The first thing I would like to show you is the machine itself. 

(Refer Slide Time: 10:06) 

 

So, if I do nvidia-smi command which was showed you previously also you can see that 

this machine basically has 8 GPUs the 8 GPUs are of type Tesla V100 and they are all 

currently 0 percent utilized at this time. 

856



(Refer Slide Time: 10:22) 

 

So, let us get started and I am going to start with certain theory once more of distributed 

deep learning. 

(Refer Slide Time: 10:29) 

 

And then we will move towards the part of just give me a second I need to somehow 

yeah. 

857



(Refer Slide Time: 10:41) 

 

So, we already talked about some of these fundamentals. 

(Refer Slide Time: 10:42) 

 

858



(Refer Slide Time: 10:44) 

 

So, we will quickly skip that, but what I am going to do is I will give you an overview of 

some of the hyper parameters that you can do to improve the performance of your 

existing models. So, here I am basically running or calculating the throughput of training 

of a natural language processing model which is referred to as GPT here and we are 

going to try a hyper parameter called as batch size which will kind of define in terms of 

how much performance we can get by tuning this hyper parameters in self themselves.  

So, it will take some time to finish by the time it finishes you would see something like 

this. If I change the if I have a batch size of 32 the throughput for me is around 1050. 

The same if I change my batch size to 64, I will see that my throughput basically 

increases to 1498 and if I change my batch size to 128 which means I am able to give it a 

larger throughput in that particular case my throughput will increase from 1906 to 2192 

and it keeps on increasing till the time it saturates at 1280 batch size.  

What does it mean is something that you can try to get more performance on a single 

GPU by also trying out certain hyper parameters like the batch size. Generally, GPUs as 

we said earlier are basically massively parallel architectures and if you give them much 

more higher batch sizes or much more parallelism then in that case they will give you 

more performance within the single GPU environment itself. So, let us just wait for to 

see the 32 and then we will directly jump to 1024 to show you.  

859



So, you can see here the units per second is kind of consistent at 1058.55 which is the 

throughput of my current training. So, I am running a model called a GPT which is a 

national language processing model it is quite a large model actually if you do the same 

on a sequential processing unit you might end up maybe taking day to finish the same 

job. 

So, as you can see it kind of saturated at 1072. So, let me just change the batch size and 

make it as 1024 for training the model. 

(Refer Slide Time: 13:39) 

 

And let us see what happens. Can one of the organizers confirm if they are able to see 

my screen and they are able to see the Jupiter Notebook running? 

860



(Refer Slide Time: 14:07) 

 

Student: Yes sir, we can see it. 

Thank you right. You can see here previously when we are run it, it was around 1078 

when I increase the batch size you can see here that the overall time the throughput 

doubled it went to 2529 which itself is a very huge difference, but just by changing a 

hyper parameter called as batch size. 

(Refer Slide Time: 15:05) 

 

But as we had discussed last time that the models are becoming larger and larger and we 

are able to not able to train it on a single GPU because of the memory constraints or time 

861



constraints and we would like to utilize many many GPUs and you can see here an 

example of a weak scaling in terms of images per second across so many GPUs. We are 

reaching almost utilizing 30,000 GPUs for this particular example here for running a 

particular a training. 

(Refer Slide Time: 15:42) 

 

Now, we talked about distributed deep learning, but distributed deep learning particularly 

is not just limited to training phase of artificial intelligence the same can be done at the 

inferencing stage also. Just to recap in an artificial deep learning space you have two 

stages the first one is the training phase where you are trying to learn the parameters and 

then finally, once you have the model trained you are going to deploy it and inference.  

You can use distributed deep learning for both training as well as for inferencing like for 

inferencing we have another systems like NVIDIA deep stream which can help you in 

scaling your inferencing part of it. Today we are going to focus just on the training part 

of it using two frameworks and cover some of the fundamentals. 

862



(Refer Slide Time: 16:38) 

 

We talked about the model parallelism part and we also talked about the data parallelism 

part. 

(Refer Slide Time: 16:41) 

 

We talked about synchronous and asynchronous communication as well. 

863



(Refer Slide Time: 16:45) 

 

So, all of the frameworks as I said kind of support this and we are going to look into 

those details later on. 

(Refer Slide Time: 16:52) 

 

But let us define what do we mean by a when I start using more number of GPUs am I 

efficient or not efficient or the definition of scalability or scaling efficiency. So, here we 

are defining the scaling efficiency as the total number of process per unit time. So, how 

many of the samples are we processing per unit of time divided by the number of GPUs 

and the overall thing divided by the samples process per unit per GPU.  

864



Which means, I am trying to do the processing for a GPU which has lesser amount of 

load because you have scaled it across divided by the number of samples that you would 

have done in a single GPU when you had only one single GPU and that kind of defines 

the efficiency, am I scaling at 85 percent efficiency to give an example. 

Suppose I was able to do 1000 samples per second in a single GPU when I go to two 

GPU ideally in a 100 percent scaling I should do 2000 samples per second, but if I am 

not doing 2000 samples per second if it reduced, it will reduce to 85 percent or 95 

percent based on this particular formula that we have. 

(Refer Slide Time: 18:14) 

 

So, here we are showing you the concept of scaling for the fashion MNIST data set using 

synchronous training using a framework called as Horovod we are going to see how to 

use Horovod later on also, but here what we are talking about is the efficiency. The first 

thing I am doing is we are going to run one GPU and I have enabled certain logs to make 

sure that we are able to get more details when we are running this.  

And also as you can see there are certain additional parameters we will talk about those 

additional parameters later on, but we are running it on a Fashion MNIST for a 

synchronous data set. And we have converged on the batch size we are using the same 

batch size which is 2048. So, I am going to run using only 1 GPU even though I have 8 

GPUs with me. 

865



(Refer Slide Time: 19:15) 

 

So, you can see here when I use 1 GPU to train a fashion MNIST data set on a GPU it is 

giving a throughput of images per second of 67,758 right. 

(Refer Slide Time: 19:33) 

 

Now, without changing anything I am just going to provided it with more GPUs in this 

case I am talking about running it across 2 GPUs and ideally I expect it to give double 

the images per second to mean. So, you can see here it has gone to almost 1,42,000 

images per second and I can train much more faster when I added one more GPU to it. 

866



(Refer Slide Time: 20:04) 

 

What if I had 4? So, you can see here it increased from 1,42,704 to 2,35,271. 

(Refer Slide Time: 20:33) 

 

And it kind of continues and I am now utilizing all of the 8 GPUs which are there. So, in 

general this number would change from one machine to the other based on the kind of 

topology you have and we are going to go into the details of how that works. So, it 

increases from 2,35,000 to 3,81,000. 

867



(Refer Slide Time: 20:55) 

 

By now you would have observed that ideally if it was scaling at 100 percentage 

efficiency I should have got some 4,00,000 something right, but it is not scaling at that 

rate and that is what we were referring to above. So, the numbers the scaling efficiency 

when you go from 1 GPU to 2 GPU to 4 to 8 is scaling at a particular efficiency.  

And this is how you can also measure how well you are able to scale when you keep on 

adding more and more and with more and more GPUs being added the idea is that you 

end up for doing faster training without having to compromise on the accuracy. Now 

there are cases where your accuracy gets compromised and that is what we will cover in 

the last session. 

868


