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So, this is kind of the summarization of the communication part of it which is the 

comparison of the methods. As you can see here, here in this particular case you have on 

the left hand side GPU 1 and 2 and you are using data parallelism. And, as you can see 

you are basically passing it as a new different data, but the same set of layers exist in 

both the GPUs. And, at every level what you are trying to do actually is you are 

averaging the gradient. 

So, you are basically communicating the gradients across and then finally, averaging 

them. On the right hand side what you see is the model itself where you will have, you 

are exchanging slightly different things right. So, you are exchanging the activations and 

you are basically the communication is of different type.  

You are basically not averaging, but you are actually exchanging the activations and the 

communication pattern is slightly different or actually it is much-much more different. 

The reason to understand this will also be explained in the next couple of slides for you. 
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So, I was also referring to you in the terms of synchronous and asynchronous 

communication. So, we will be focusing primarily on the data parallel approach in the 

couple of lectures that we are doing. But, within that also you have two types: 

synchronous and asynchronous. On the left hand side what you are seeing is the 

synchronous approach.  

And, as the name suggest the synchronous approach is an approach where all the workers 

are kept in sync which means every worker is in sync and they know the status and the 

values of the other workers. And, in the every step to make sure that they apply 

individual updates to the model. And, all of them at any point of time have the same 

copy of the model. This is very very important aspect of the synchronous 

communication.  

While, in the asynchronous data parallel approach, the workers basically obtain the 

variables from a parameter server. So, you can see there is one more component which 

has got added which is called as a server. As the name, you might have heard the server 

is basically responsible for talking and giving a updates to all the different basically 

clients. Who are the clients here in this particular case? The clients are the workers or the 

GPUs themselves. 

And, basically the workers obtain the variables from the parameter server and store the 

results back after processing. The parameter server would apply those updates and 
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update the variables. This allows the workers to work independently. Now, this is very-

very critical. If you see on the left hand side especially in the synchronous 

communication approach, since every worker needs to be in sync with the other workers 

they are always going to go in a step by step manner. 

So, even if one worker is lagging behind, it will affect the scalability of all the other 

workers because they have to wait till the time all the workers are at the same state. So, 

in the in case of load imbalance or if one worker is slower as compared to the other, you 

can get into scaling issues.  

While, in case of asynchronous communication with parameter server, the workers 

actually work independently of each other. And, we are going to in the next set of slide, 

we are going to focus on the synchronous data parallel approach. But, asynchronous has 

its own way and it kind of finds it own space to make the scaling go better.  

But, no matter what the we talked about so far, we talked about either using synchronous 

communication or using asynchronous communication using data parallelism or model 

parallelism and how to split that and everything. What is one thing which is common 

across all of them is communication. You need to communicate.  

The workers needs to communicate either with each other or with the parameter server or 

and at what level are you going to do averaging with each and every worker, are you 

going to do activation, sync activation communication. So, whatever is the approach that 

you are going to follow, it is going to be dependent on the machine. And, how GPUs are 

connected to each other and how the machines are connected to each other because 

finally, the communication is going to define if you can scale it or not. 
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So, what matters is in this case is the system topology. In the networking in the system in 

this computer architecture world, the definition of it is called as system topology. So, 

when what I when I talk about topology within a node how are these GPUs connected to 

each other, across the nodes how are these two nodes connected to each other, how are 

the GPUs connected to the interconnect.  

All of these is basically going to define the performance or the scaling of your model and 

that is what we are going to look at in this next couple of slides. 

(Refer Slide Time: 06:10) 

 

831



So, if I look at this particular example here, what you are seeing is an example of a 

system topology where you have a system which is having something called as the 

NVSwitch right. So, you are seeing here this is a baseline version and this is the version 

which is of a particular server which is referred to as NVIDIA DGX 2. 

Now, what you are seeing is in the system config, in the first one the baseline consist of a 

server which is of type DGX 1. DGX 1 is another server, this DGX 1 basically has 8 

GPUs. So, you have basically 8 GPUs and what you are doing is in the baseline version 

is basically that you have 2 GPU, 2 nodes which is 2 DGXs connected to each other via a 

interconnect like InfiniBand interconnects. 

In this case, the InfiniBand type is also given right. What is I am having a node which 

has 16 GPUs. So, instead of going across nodes, I am within the node and within the 

node I am using a specialized switch which is called as NVSwitch. And, when I do not 

go across and within the node you can see here that the amount of performance gain that 

you can get over the baseline version is much much higher. 

So, if your baseline version is this you can get up to 2.5X speedup by using a network 

topology of a machine which can do faster communication with a lower latency. And, we 

are going to talk about that in a bit. So, you can get a large amount of difference based on 

the machine which you are running it on. 

(Refer Slide Time: 08:04) 
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So, one concept that we need to understand is the definition of throughput and latency. 

And, it is very important to understand it because it is not just about how much speed 

network I have in terms of bandwidth, but also latency matters a lot right. Because, if 

you would have seen in the previous set of slides, the communication is happening quite 

frequently. 

Now, the gradients are actually maybe very small. So, you do not need a network which 

is having very high bandwidth, but you might require a network which is having very 

low latency. So, one concept that we are going to look at is this. So, latency is the time 

taken for the transfer of a single packet of data which means if I were to just send, if I 

just were to go from here to the airport alone right. 

So, a based on the kind of a bus or whatever method I use I can reach faster or slower. I 

am not confined, let us see the number of people who are going to go with me. So, it is 

like latency. So, whenever you are testing your networks, if you do a speed test of your 

network, you always get two numbers. Latency would be given in terms of how many 

milliseconds or microsecond it takes to do a ping. 

So, it is the ping latency right. In this case, we are talking about the latency of the data 

being sent from one place to the other. The throughput is basically measuring the amount 

of data, that can be transferred in 1 unit of time. Like can I transfer 10, 10 of them 

together in one shot, can I transfer 1 kB of data, 1 MB of data or much more amount of 

data? 

So, how much can I transfer in one shot? So, these are two different things and they are 

kind of related to each other. They can they are basically related by equation that you see 

there right. The throughput is basically nothing but the bus width divided by the latency. 

A interconnect is the way the two systems are connected. So, basically the two systems 

are connected to each other via one or the other form of interconnects. 

For example, two systems may be connected via LAN which is your normal Ethernet or 

they can be connected to each other via say a PCIe bus, if they are within the same node. 

2 GPUs can be connected within the node using some other interconnect called as PCIe. 
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To give you an example of our latest generation architectures like A100, A100 basically 

has a specialized interconnect which is called as NVLink. If you look at the ampere cards 

which are present the later generation, they have a particular interconnect called as 

NVLink. And, this is a third generation NVLink and you can see here that each and 

every; so, you get up to 50 gigabit per second per signal pair. 

So, you have different number of signals and you can get up to 50 gigabit per second per 

signal pair and you have 12 of them right. So, if you divide it by 2, because you can do 

both in and out in parallel. So, you basically have 12 links which can run at in and out 

speed of 25 gigabytes per second. A total amount which comes to is 600 gigabytes per 

second of total which is twice more than a previous generation which was V100. 

So, based on the type of GPU you are going to use, the communication across and the 

NVLink bandwidth or sometimes you might be using like if you use the pre sensors on 

the Google Cloud or the other instances out there, it does not even have a NVLink. And, 

when you start using multiple GPUs, you may not get the scaling that you expect out of 

it because, it does not have this specialized network protocol which is there in A100 

called as NVLink. 
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And, based on the types of system topology that you have, you may or may not have 

these kinds of features. Like here we are talking about a feature called a GPUDIRECT. 

What the GPUDIRECT basically means is that if one GPU is connected to the other 

GPU in a friendly peer to peer manner or which can allow GPUDIRECT; the GPUs can 

directly talk to each other, which means one GPU can directly transfer the data to the 

other GPU.  

And, it does not need to depend on any other thing to do the transfer, that kind of 

matters. And, it is dependent completely on the kind of system that you are having GPU 

in. 
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The other method is also the communication concept which I was showing sometime to 

you right. So, if the communication interconnect in the previous slide that I showed you, 

we noticed some basic terminologies that happen in an interconnect right. We can also 

have multiple types of interconnects.  

Like on the left hand side you are seeing a method which is called as a Host Staging. The 

data which is being transferred from different GPUs, the data is traversing from GPU 0; 

as you can see here it is traversing via the PCIe bus to the CPU first. And, then from the 

CPU it is staged in a buffer before being copied into GPU 1 right. So, based on the type 

of system topology or the method that you have, you are going to basically have these 

things right.  

Whereas, if you see the second method, if the GPU direct was enabled and if you are 

using a better system topology in the peer to peer communication approach, they can 

directly be connected via interconnect right. Here, you can see here the interconnect is 

PCIe switch and GPU 0 is directly talking to the other GPU via the PCIe switch or it can 

use a switch the NVLink protocol that I just talked to you about, directly using much 

more higher bandwidth and lower latency as compared to using a PCIe switch. 

Now, why am I telling this, because some of the numbers which I am showing you based 

on the kind of hardware that you use, based on the kind of network topology or the kind 

of system you have, you will get different performance numbers. 
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So, here you can see the system topology, now either question you might ask is how do I 

know what kind of a system topology I have? The good thing is if on the end, when you 

install the NVIDIA drivers; you can use this particular command here. Like in this case, 

it has nvidia- smi topo -m. This nvidia-smi topo - m topo is topology - m stands for 

matrix format. 

So, you can see here this is a particular output of a system which is DGX 1. What it is 

showing you is from GPU 0 to GPU 7. And, then it also has the InfiniBand adapters of 

Mellanox 4 of them. And, then if I were to go from GPU 0 to GPU 0, it is X because I 

am within the same GPU. But, if I were to talk from GPU 0 or transfer the data from 

GPU 0 to GPU 1, I can use NV1.  

NV1 is what? It is nothing, but NVLink which sorry it is the NVLink 1 right. Same, a 

GPU 0 to GPU 2, I can use NVLink and you can see I can use NVLink from GPU 0 to 

GPU 4. But, when I want to talk from GPU 0 to GPU 5, it says that the communication 

protocol is SYS, SYS. What does SYS mean? It is connecting or traversing PCIe as well 

as SMP interconnect which means it is going to basically do the host staging. 

So, it is going to take the it is going to take the larger path, the lower bandwidth part, the 

higher latency part. And, the CPU comes into the picture, resulting into really-really low 

performance between GPU 0 to GPU 5, 6 and 7. Now, that is how the overall topology 

can be found out very efficiently.  
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A network topologies which do not have a really good interconnect pattern, they may 

result into not so much of good performance numbers when you are trying to scale 

across. So, you can use this command nvidia-smi topo -m to see the network topology. 

(Refer Slide Time: 17:21) 

 

So, this is the topology that I was talking to you about which is there in DGX 1. You can 

see here that there are 2 CPUs, both the CPUs have PCIe switch via the PCIe switch. So, 

the CPUs and GPUs are connected to each other via the PCIe bus. And within the GPUs 

so, you have like here you can see here you have total 8 GPUs and those GPUs are 

connected to each other via also the NVLink. So, you can see here these ones are the 

NVLink protocols, while these ones are the PCIe buses right.  

So, as I was showing you sometime back I said from GPU 0 to GPU 5, you can see here 

there is no NVLink, that is why it has to go from here to PCIe, then to CPU and then 

come to GPU 5. Now, you can see here that, this is what I was just trying to show you 

previously in the nvidia-smi topo -m. 
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So, why does it matter for us right? Now, that is what we will see in this particular slide, 

where when we are trying to do this communication how does it matter. Suppose, if you 

had a system where you had this PCIe bus, you did not have NVLink. So, if you 

remember there are different kinds of communications which are happening.  

So, the first thing you are going to do is that you are going to load the data from the file 

system to GPU to the CPU to the GPU. So, you are basically doing the data loading over 

the PCIe bus. So, you load from file to CPU to PCIe to the GPU. 

(Refer Slide Time: 19:08) 
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And, when you are running it in parallel, you are also doing at the same time gradient 

averaging and that also you will do via the PCIe. So, you are using the same PCIe for 

reading the data or transferring the data to the GPU. And, also you are using it for the 

gradient averaging part which will basically result into choking of the PCIe bus alone 

right. 

(Refer Slide Time: 19:31) 

 

So, the data loading and gradient averaging are basically sharing the same 

communication resources leading into congestion right. 

(Refer Slide Time: 19:41) 
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What if you had a different system and that system basically had NVLink inside it? In 

that particular case, you can basically do this, that the data loading actually happens 

while the PCIe bus from the CPU taking this particular paths. While, the gradient 

averaging can basically happen via the NVLink. 

(Refer Slide Time: 19:58) 

 

So, the GPUs can talk to each other via the NVLink rather than via the via the PCIe, 

same PCIe bus which is being used for the data transfer as well. 

(Refer Slide Time: 20:17) 
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So, there is no sharing of communication happening across the resources. And, hence 

resulting into almost no congestion and resulting into much more better a scaling; as I 

would say or the performance part of it. Now, the question you might ask is should I 

worry about it, should I not worry about it? It is always a good idea to look at the system 

and then understand on whether you are going to get good scaling or not. 

But, from a point of view of the frameworks like PyTorch, TensorFlow and all of them, 

they basically take care of all of this communication behind the scenes for you or, but 

you might or might not get good performance. 

(Refer Slide Time: 21:09) 

 

But, NVIDIA has provided libraries which can result into better performance. It tries to 

find a lot of things like a all of your frameworks like PyTorch, TensorFlow and all; they 

use our library when you activate multi-GPU computation. A library called as NVIDIA 

Collective Communication Library or NCCL. Basically, NCCL is a library which 

provides you many things. It provides you fast multi-GPU and multi-node 

communication. 

So, it provides you fast collective communication routines for multi-GPU, multi-node 

acceleration. NCCL improves the application performance by maximizing inter GPU 

bandwidth utilization. And, also it is very easy to integrate or optimize for high 

bandwidth kind of networks. And, it is basically integrated into all of the major deep 
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learning frameworks like Caffe, Microsoft Cognitive Toolkit, MXNet and PyTorch 

TensorFlow and all. 

So, you can see here it enables multi-GPU NVLink or PCIe based. It enables multi-node 

InfiniBand based topology. It also does automatic topology detection. So, let me just take 

you to another slide. 

(Refer Slide Time: 22:22) 

 

So, as I was saying that basically NCCL provides a lot of things. It does the lot of behind 

the scene things, like the first thing that it will do is to do topology detection. What it 

does is it looks at the overall system. It builds a graph including where all our GPUs, 

NIC cards, InfiniBand cards, CPUs; should I be traversing PCIe switch or does it have 

NVLink or does it have NVSwitch. 

So, it does a topology injection for different settings. It does a graph extensive search to 

find the optimal set of rings or trees. So, it tries to find what is the best traversal path. It 

does a graph traversal and tries to find the best path, whenever you want to communicate 

across. And, it does the graph connection based on that right and finally, then it will it 

runs all of this.  

The communication happens not via the CPU, but it actually runs inside the GPU as 

small small GPU kernels and the CPU threads are basically for network communication. 

So, it uses a smaller amount of GPU for basically doing these kinds of things. So, you 
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can see here, it does the lot of things behind the scene for you so, that you do not have to 

worry about it. The only thing is if you have a system which has better system topology, 

it will help you in doing it so. 

(Refer Slide Time: 23:43) 

 

So, if I were to use NCCL separately, not within this frameworks. It basically does 

something like this. You will write a code like first is to create a unique Id or the 

communicator. You are going to create communicator and then you are going to do a 

different communication in forms of like ncclSend or receive or you can do collective 

communications like all radio, broadcast which are particularly very well known in the 

MPI world. 

But, the good thing is basically all of these frameworks behind the scene, whenever you 

want to do this gradient averaging across and you want to communicate. All of this code 

has been written behind the scenes so, that you do not have to worry about this. But, the 

library NCCL is in general present and you can utilize it if needed. 
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And, as I said all of this frameworks TensorFlow, Horovod, mxnet, PyTorch, all of them 

are it is important to know that how this framework basically implement this. And, each 

of them have a different basically way of using multiple GPUs and they call it as 

strategy. Like in PyTorch, you will have torch load distributed. It has three main 

components. While, in Horovod is a very popular distributed framework that works with 

TensorFlow and PyTorch or mxnet, it is a completely different framework. 

(Refer Slide Time: 25:19) 
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And, as we had shown you previously also, all of this is present on our NGC. So, NGC 

as you remember sometime back NVIDIA HTTP cloud, all of these containers 

supporting multi-GPU and the right version of NCCL and all are contained into one 

particular unit. If you do it manually, it is very very error prone. So, rather than that you 

can actually use the NGC and make sure that you have all the dependencies which are 

set.  

So, with that I am done with this session today. Today, what we covered was the 

requirement of how to use multiple GPUs, what are the effect of using multiple GPUs 

when you have different kinds of systems and also how you can check the different 

parameters. 
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