Applied Accelerated Artificial Intelligence
Dr. Tosin Adesuyi
Department of Computer Science and Engineering
Indian Institute of Technology, Palakkad

End to End Accelerated Date Learning
Lecture - 31
Optimizing Deep Learning Training: Automatic Mixed Precision Part - 2

(Refer Slide Time: 00:18)

DEMO

So, ok let us look at the DEMO here. So, | will go to demo here alright.

(Refer Slide Time: 00:25)

661

So, the first one | will be dealing with is the Mixed Precision. So, for mixed precision
you have to use TensorFlow version, because | will be dealing with tensorflow first
tensorflow version 2. So, | have pulled my so this is the tensorflow this is 21.12-tf2 this
tf2 shows that this version 2. So, | will be running that because I am running my

workstation.

(Refer Slide Time: 00:58)

So, I am just using ok.

(Refer Slide Time: 01:09)

So, I am gonna connect here, you may not have to go through all this process.

662

(Refer Slide Time: 01:18)

If you have your tensorflow on your workstation or on your laptop maybe via conda or
virtual environment it is because | am using a container that is why | am going through

this process ok.

(Refer Slide Time: 01:35)

@ANVIDIA. NGC | CATALOG NPTEL

TensorFlow e

19.07-py3
19.07-py2
19.06-py2
19.06py3
19.05py2

10 N8

663

(Refer Slide Time: 01:41)

~ Home

So, here I have local host ok. So, I will be dealing with version 2 first of all

e

’
p
I

T Yy,

5
>

<

» 1
z il
3 & %
-

110

(Refer Slide Time: 01:48)

X O locabost
— Jupyter mixed_precision_tfv2 astCheckpoint: 3hous ago (sutosaves

B+ x80 4V PRmBECH

So, this is just | just put these together adapted from tensor flow website, | hope you can

see my screen.
Student: Yes Tosin we can see the Jupyter Notebook.

Thank you very much. So, | just speak a simple example that so that we can actually
understand very well, then on our own we can later on do complex example because of

664

our time. So, the first thing here is that we import our tensorflow and then we from
tensorflow we get our keras and then we import the layers we wanted to use here, then

from tensorflow keras we import the mixed precision.

Now, please note what we are trying to do here is actually we are using mixed precision,
it is not the automatic mixed precision. Mixed precision and automatic mixed precision
are the same thing. So, the difference is that automatic mixed precision you do not need
to do some manual job you just with 1 line or 2 everything is sets its done for you. But
with mixed precision you have to do some level of manual stuff yourself. So, we are
dealing with mixed precision here because, mixed precision only is possible with

tensorflow version 2. So, let me comment this one out first.

(Refer Slide Time: 03:16)

_ Jupyter mixed_precision_tfv2 Lastchec

2 + x30B 4V PRmEBCH v 3

So, the first thing you do is that because we are dealing with mixed precision we need to
work with a float16, fp 16. So, you have to what use your mixed precision library | have
imported the class then you call this method Policy. So, we set policy for one mixed
precision that is you use what mixed of what float 16. So, when you set that into the
policy then you can take your word you make your mixed precision set global policy
then you put the policy in there.

So, when you put the policy in there you need to confirm if it is actually sets. So, for us

to confirm we need to get the word the policy.compute_dtype what is the type is going to

665

use for computation and also policy.variable_dtype that is what is the variable type.

Remember mixed precision is the use of fp16 and fp32.

(Refer Slide Time: 04:18)

X | W aoA-ue X | W Segepeos X | W Hatpriso X | @ PR X | W Datepee X msoon] ' X | C Homerae X 9 s x 4

— Jupyter mixed_precision_tfv2 Last Checkpoint: 3hours ago. (unsaved changes| [

8 + x30B 4V PRm B CH v =2

So, I will run this notes book here. So, let us see what happened oh good. So, it is
showing us that you can see this is a version that is version is what tensorflow version 2,
then we say tensorflow mixed precision compatibility check that is mixed precision that
is it is ok it is compatible. We can use also your GPU will likely to run quickly with this
policy of mixed float 16, also if the compatibility is at least that is your computes

capacity must be at least 7.0 which I have told you before.

666

2y

n
» 1
S,
mml/ ><

,
)
\
3
L%

»”

(Refer Slide Time: 04:54)

o,
[oe— seon,
oane

Qusdro, WS
x

So, you have to you know if you go to Wikipedia you can see from here that from Volta.

(Refer Slide Time: 04:56)
G gt X W X WS —s\&;\x
C & envicpedaog &?f's
NP?EL

This is where we have 7.0 Pascal is lesser than the compute.

667

(Refer Slide Time: 05:04)

gpucampete X W X W Smeprmis X | W Habprisor X

X | W Otlepes x | @ Temoion]! X | Homespe- X

C & enwikpedaorg

" Tegak1,
S i
Jesn K
50
- Tesa 4 Tesa M, T
5 27X o C
Tegas
T =

G goe X W CLOA-Wke X W Seglepecs X | W Hafprdso X | @ P X | W Double-prec: X | @ Tensofiow|! X x| . + v = X
A

c i 2 % *F 3
'S

« CUDA SDK 6.0 supportfor compute capabiy 1.0 - 35 (Testa, Ferm, Kepler) il
« CUDA SDK 6.5 support for compute capabilty 1.1 - 5.x (Testa, Fermi, Kepler, Maxwel). Last version with support for compute capabilty 1.x (Testa) NPTEL

« CUDA SDK 7.0~ 7.5 support for compute capability 2.0 - 5.x (Fermi, Kepler, Mawel)
'+ CUDA SDK 8.0 support for compute capabiy 2.0 - 6.x (Fermi, Kepler, Maxwell, Pascal). Last version with support for compute capabiity 2.x (Fermi) (Pascal GTX 10707i Not Supporied|
+ CUDA SDK 9.0 - 8.2 support for compute capabllty 3.0 - 7.2 (Kepler, Maxwed, Pascal, Vola) (Pascal GTX 1070Ti Not Supported. CUDA SDK 9.0 and support CUDA SDK 9.2)

 CUDA SDK 10.0 - 10.2 support for compute capabilty 30 - 7.5 (Kepler, Maxwell, Pascal, Voa, Tuing). Last version wih suppart for compute capablity 3. (Keplerl. 10.2s the ast ofical release for
MacOS, as support wil not be avaltade for MacOS I newer releases.

+ CUDASDK 1.0 support for compu capabity 3.5 - 8.0 (Keger i pa), Maxwel, Pascai, Vo, Tring, Ampere inpar), " New dat types: Bt
+ CUDASDK 1.1~ 1.5 supportfor compute capabity 35 - 86 (Kepler i part], Mamwel, Pascal, Vola, Turing, Amere)

6 and TF32 00 tirs generations Tensor Cox

The computes are capacity capability this is compute capability here the first column. So,
you can see for Pascal is less than that then from Volta you can access if your GPU is

between these 7.5 this turing here. If you are using GeForce RTX 380 and all the lights.

668

(Refer Slide Time: 05:25)

So, you can check the architecture of your GPU here. So, we can proceed from there. So,

we know that so the next thing we do is that we want to work with mnist.

(Refer Slide Time: 05:35)

X | W ana-we x | WSk x | W Rtpeiso X | @ PHPRE X | W Dmbepme X

» 1
3 2N
",

3,
-4
m

P
>
»
@)
eargs0

_ Jupyter mixed_precision_tfv2 vas:Creckpoint: 3hous ago (usaved changes;

8+ x808 4V PRmBCH

Which is like the hello world for training, which will make things simpler for us. So we
create our inputs here, so the shape of the input is just 784 and then we check here if we
have a GPU on this machine. So, if this GPU on this machine we want to sets our layers

number of units to 4096 and if it is not we reduce it to the size this size of 64. So, these

are the reflecting through dense layer here.

669

(Refer Slide Time: 06:07)

+

LN

BB 4% PR B C W oo v B
densel = layers.Dense(fum_units, activations'relu’, names'dense 1')
X = densel(inputs)
dense2 = layers.Dense(num_units, activation='relu’, name='dense 2

x = dense2(x)
The model will run with 4096 units on a GPU

2022-03-14 12:97:12.864583: 1 tensorflow/core/common_runtine/gpu/gpu_device.cc:1518) Created device /job:localhost/replica:
/task:0/device:6PU:0 with 30934 MB mesory: -> device: @, name: Quadro GVI09, pci bus id: 0090:12:09.0, compute capability:

-63-14 12:07:12.865223: T tensorflow/core/common_runtine/gpu/gpu_device.cc:1519] Created device /job:localhost/replica:
0/task:0/device:GPU:1 with 30638 MB memory: -> device: 1, name: Quadro GV100, pei bus id: 8000:68:00.0, compute capability:

7.0

e_policy)
% x.dtype.nase)

t(*densel. kernel.dtype: %' ¥ densel.kernel.dtype..nane)

Dense(10, activation
X outputs. dtype.nane)

X = layers.Dense(10, name="dense_logits')(x)
, dtype="Float32’, name="predictions’)(x)
% outputs.dtype.nase)

»

Y
2

(24

/lﬁ
'tagg

Y
u,

So, | can run this through dense layer and see that ok it has to detect that it has a GPU
which is running and it is we are going to use this units here, this is the same as putting
4096 is the same as writing it to row directly here. And then we want to be show that ok

each of the dense layer what policy are they using is the dense layer is it using the fp16

policy and is the kernel on fp32.

(Refer Slide Time: 06:37)

G gpucompet: X | W CLDA- Wik

X O locahost308

Watieg o ecaiost

x| W Sngepress: x | W Harprecser X | @ PRPREF X | W Dobepec X | @ Tnsorul X | 2 X+
O
" Jupyter mixed_precision_tfv2 Las Creckpor: shoursage. (unsved changes)
Fie A Cel Kemel e Mot Tusted Pythen 3 (ipysemel) O
2+ 4 % PR B C W e v =3

The model will run with 4896 units on 2 GPU

+12,864583: 1 tensorlow core/common_runtine/gou/gpu_device.cc:1516] Created device fjob: localhost/replica

2022-83-14 12
B/task:/devil 6 with 30994 MG menory: -> dewice: B, name: Quadro GVIO, pri bus id: 0909:12:90.9, conpute capsbility:
7.8

865223: 1 tensorflow/core/conman_runtine/gpu/gpu_device. cc:1518] Created device fjob:localhost/replica:

1 with 30638 ME memory: -> device: 1, name: Quadro V109, pci bus id: 9000:68:00.0, compute capability:

ensel.dtype_policy)
ftype: %s° % x.dtype.name)

%' % densel.kernel .dtype.nane)

670

So, we need to check that because mixed precision is the use of fp16 and fp32. So, we
will check that again. So, we can see saying yes the policies is mixed float 16 which was

the type is float 16 and a dense kernel float 32. So, we are on the right track here.

(Refer Slide Time: 06:59)

x + W %
o)

~ Jupyter mixed_precision_tfv2 LastCheckpoint: 3hous ago (unsaved changes A

8 + x38 44 PRmBCH v B

So, the next one here is what to do after the 2 layer then we get our last layer dense layer
which is where we supply this softmax here. So, and we check that this is float 16. So,
the rule here is that when you are dealing with what the softmax it has to be because you

are about to move into doing your calculating your loss and gradient descent.

So, it has to be float 32 there in order to escape the dynamic rate limitation that fp 16 has.
So, in order to do that is that we will separate what we have here we separate this layer in
toward just the dense layer and then separate the activation layer from it. So, that is what
we have done here, if you look at this line here we just have the dense layer here and the

second one the output will be just the layer of activation function.

And how do we do that because we are using fp 16 a policy. So, we need to write this out
to cast it back to fp 32 here. So, we are only casting back the softmax layer only. So now

we are good to go. So, this is just the exception that we have there.

671

(Refer Slide Time: 08:17)

x| @ PR X | W Onbiepec x | @ T x e X 1) x +

~ Jupyter mixed_precision_tiv2 Las: Creckpoint: 3curs ago (unsaved changes f

8+ x30B 4% PRmBCH v B
OULPULS = Layers.ALLIVALIOY

Loss Scaling

And then so you can also do that using this line of course, you have a linear here it can
also cast it back with that. So, what we need to do next is what to instantiate our model
we have the input into the model, we have the output into the model and then we can
compile our model by setting the loss and also the optimizer set here and our metrics is

what for calculate the accuracy.

Then we get here what we do here is to get our data you know the mnist data, you get
your mnist data the training will be 60000 and the test will be 10000 as well. So, it is
downloading we download that, so after downloading that so the next thing to do is to

what to initialize our weights.

672

(Refer Slide Time: 09:10)

X | W OOA-We X | W Segpris x | W Hdtpmiso X | @ PHARE X | W Omblepes X — : 9 + 73&;\<

AT Y

Q2w aTHF

VS

— Jupyter mixed_precision_tfv2 vast Checkpoint: 3bours ago (unsaved changes; A NP}‘Z
cn 3 pykemel) O

3+ BB 44 PR B CH wx

7): M initial weights = madel.get eights()

2002-03-14 12:10:22.49574: 1 tensorflow/conpiler/alir/alir_graph_optimization pass.cc:185] None of the MLIR Optinization Pa

sses are enabled (registered 2)

So, we initialize the weights here that we will initialize the weights, then we have to
work do what and train the model here. So, we can see the model here. So, what | want

you to notice here is that this is just put it on the 5 epoch that now we times.

(Refer Slide Time: 09:27)

X O locahost080roteboses i, spd
F NPTEL

" Jupyter mixed_precision_tfv2 Las Checkpont:3houss age. (unsaved changes)
Pyihcn 3 (pyhemel) O

B+ x BB 4+ PRu
cint{‘Test accuracy:’, test_scores[1])

wFlow/coupiler/alir/alir_graph optinization pass.cc:185] None of the HLIR Optiization Pa

22.949574: 1 tensor

2022-83-14 12:10:
sses ed

y: 0.358
14 - sccuracy: 98112 - val_loss: 0.4111 - val_sccuracy: 0.8
53 - accuracy: 0.9670 - val_loss: 0.6232 - val_accuracy: 0.8

58 - accuracy: 0.8887 - val_loss

If you can see the number the time it takes for the for each steps, you can see the first one
was the one the first step is where it takes longer which is 1 seconds 66 the others are just

0 seconds 0 seconds 0 second 1 second is that it is doing the casting here, this is the first

epoch. So, at the subsequent epoch it becomes more faster there.

673

(Refer Slide Time: 09:53).

5 piepecr X | @ Teion]! X | O Hometige- X g m X + - X
FiN
Q2% Dg\]i'g
-
NPTEL
Fle E e G Python 3 {ipykeme!) O
B+ xB0 4% PRn B C M coe v B
M import tensorflow as tf
fro tensarflow isport keras
fron tensarflow.keras isport layers
fron tensorflow.keras inport mixed precision
policy = mixed_precision.Policy("nixed floatis’)
nixed_precision.set_global_policy(policy)
%5'% policy.compute_dtype)
e: %% policy.varisble_dtype)
X
hey all have compute capability of at least 7.0
M inputs = keras. Input(shape=(784,), nave="digits')
ig. list_physical_devices('GP')
x

)
]
*
i,
"y
%
”/x

5
=
»
»
K ﬁ
04p10

> Hometwe: X) mies 3

.
"'u

f

=
<
P |
m
L

Python 3 (ipykemel) O

Change kemmel ’

policy = mixed_precision:Porxcy("mixes. 7
nixed_precision.set_global_policy(policy)

%'% policy.conpute_dtype)
%% policy.varizble._dtype)

ve conpute capability of at least 7.0

compute dty
variable dtyp

M inputs = keras. Input{shs 1,), name="digits')

So, let us see if this were to be trained without using mixed precision. So, if we are not
using mixed precision. So, what do we do? If we change from mixed precision to maybe

we want to use fp 32.

674

(Refer Slide Time: 10:09)

G goucompe X | W CUDA-Wie X | W Smepres: X | W Ratpressor X | @ PPRA X | W Doepeo X | @ Tewofion]! X | T Hometge X 10 momizecs x4 Y . %
&2
A
T

X O localhostH080/natebooks/mined precsion th2ipymb

Restart kernel and clear all output?

Dojyou want o restart e cearalloupu Al

So, | can just come here and say like let me the connect first clear the output just to show

us the difference because this is very important we have limited time ok.

(Refer Slide Time: 10:13)

G gpecompete X | W CUDA-Wie X | W Sogleprecs X | W Hatpresor X | @ P PRE X | W Doblepec X | @ Tensoflow)' X | T HomePage- X (¢ mamipece X 4 = yo-‘\x

X © locahost 8080/ Qe ’%’%s‘
e

" Jupyter mixed_precision_tfv2 Las Checkpain:3hcurs ago (unsaved changes) A NPﬁ

Fle Edt \View Inset Cel Kemel Help Mot Trusted | Python 3 ipykemel) O

B+ xB0B 4% PRn B CH cue v e

dtype: %5'% policy.coapute_dtype)
le dtype: %s'% policy.variable_dtype)

2.6.2

compute dtype: Float32
variable dtype: float32

In [J: M inputs = keras.Input(shape=(784,), name="digits’)

I have cleared that, so what | would do is what this mixed precision policy? | erase it
then I just turn it back to floating point 32. So, this is without using mixed precision here
without using mixed precision. So, if you compute here, so what we will see is that you
see the compute type is no longer fp 16 it is fp 32 the variable type is fp 32. So, let me

quickly run all of these.

675

(Refer Slide Time: 10:49)

G gpecampts X | W CUDA-Wite X | W Smglepeds X | W Rafpecsor X | @ 6t X | W Doutiepect X | @ Tersoiow] X

X @ localhost8080/notebooksimined_precision thipynb

"~ Jupyter mixed_precision_tfv2 s creckpon: 3ncssago (sared changes)

Fle Edt

Python 3 (ipykemel) O

24 xQ8 4¢ PR B C W cue v
262 7
conpute dtype: float32
variable dtype: float32

In [2]: M inputs = keras.Input(shape=(784,), name="d

ist_physical_devices('GP

densel = layers.Dense(num_units, activation
X = densel (inputs)

dense2 = layers.Dense(num_units, activations
X = dense2(x)

The model will run with 4096 wnits on a GPU

2022-63-14 12:11:58.336621: T tensorflow/core/common_runtine/gou/gpu_device.cc:1518] Created device /job:localhost/replica:
PU:0 with 30994 NB memory: -> device: D, name: Quadro GVI0D, pci bus id: 0090:12:00.0, compute capability:

54,337201: 1 tensorflow/core/common_runtine/gou/gpu_device.cc:1518) Created device /job:localbost/replic
0/task:0/device:GPU:1 with 30638 HB memory: -> device: 1, name: Quadro GV100, pei bus id: 0000:68:00.0, coapute capability
7.0

e int(densel.dtype policy) . =

(Refer Slide Time: 10:51)

G gpucompute X | W CUDA-We X | W Smglpecs X | W Ratprecsor x | @ 7 X | W Doutiepect X | @ Temsofiow]! X

X © locahostH0

'~ Jupyter mixed_precision_tfv2 uas creckpon: 3nassago (sared changes)

Fle Edt

et Cel Kemel Hel

B+ x30B 44 PR B C M e v

T LN AL AN AR SV W A Y 4 WERALSS ky O VO YAV P VU3 AU ALV WS ASPOVEALLY S

e

Layers.Dense(19, activation="sof
dtype: %s' ¥ outputs.dtype.naze)

Outputs dtype: float32

] N s ComRECT: soft
X = layers.Dense(10
output

ns ") (x)

2°, nane=

Layers.Activation("soft:
pats dtype: %' % outputs.dtype.nane)

Wt o cabest. autputs =

All of this which | have run before | am only interested in the results, so everything is fp
32.

676

(Refer Slide Time: 11:00)

G gpucampute % | W CUDA- W X | W Snge x | W Hatprdsor X x| W ooepec X | @ Tesoiow]! X | 2 Homedge: X x + v = ~ X
LY
X O locabost 2ipyrb a ¢ x »THF
TS
7 Jupyter mixed_precision_tfv2 Lasthectpo:3hars a0 (rsaved changes) é oo

Fle Edl Cel Kemel Hep NotTsied # | Python 3 (ipykemel) O

B+ X330 4% PR B C M e v

M model = keras.Hodel (inputs=inputs, outputs=outputs)

sodel.compile(loss="spas ,optimizer=keras.optimizers.RMSprop() metrics=[

(x_train, y_train), (x_test, y test) = keras.datasets.mnist.load_data()
X_train = x_train.reshape(:

In[]): W history = sodel.fit(x_train, y
batch_size:
epochs=5,
validation_split=0.2
evaluate(x_test, y test, verbos:

, test_scores[2])

uracy:", test_scores[1])

loss *= loss_scale

Since its fp 32 | do not need to run that one again to convert.

(Refer Slide Time: 11:14)

x| W COA-Wae X | W Segkpeis X x X x x| 2 X @ moeiacs X 4 v - e X
Fix
X @ locahost book: d thipyn] 3
© locabos ? »g\n’s
— Jupyter mixed_precision_tfv2 LastCheckpoin: 3hours ago. (ssaved changes) et
3 NPTEL
Kemel Help Python 3 {ipykeme!) O
acCH» s v B3
(x_train, y (x_test, y_test) = keras.datasets.nist.load_data() E
x_train = x_train.reshape(58000, 784).astypel t32°) / 2
X_test = x_test.reshape(10900, astype()
W initial weights = model.get_weights()
W history = model. fit(x_train, y_train,
batch, 2,
epochs
validation split=h.2)
model.evaluate(x_test, y_test, verboss
loss:", test_scores[0])
uracy:*, test_scores[1])
2022-03-14 12:12:19.892533: 1 tensorflow/compiler/alir/lir_graph optimization pass.cc:185] Nome of the MLIR Optimization Pa
sses are enabled (registered 2)
- 1s 128us/step - loss: 3. val_loss: 0.8917 - val_accura
- 1s S4ms/step - loss: 8.7203 - accuracy: 0.7826 - val_loss: 0.3334 - val_accuracy: 8.9
- 1s %4ms/step - loss: 0.4370 - accuracy: 0.8658 - val_loss: 0.2468 - val_accuracy: 0.9
1s Sdns/step - loss: 0.2948 - accuracy: 0.9999 - val_loss: 0.3883 - val_accuracy: 0.8
Epoch 5/5 -

So, let us run this. So now, what | want us to see here is that.

677

(Refer Slide Time: 11:20)

“

x| W QoA wap x | W Segepes: x | W sreon x | @ PRI X | W Oobepec X | @ Temonl) % | 3 Hoehee X mosize X b

i

ity

Q@

=
J

»

"
t 2
g

=
T
=
m

" Jupyter mixed_precision_tfv2 Las: Checkpoin: hours age. (unsaved changes) [

Python 3 (ipykemel) O

2022-83-14 12:12:19.892533:
sses are enabled (registered 2

l; Epoch 1/5

If you look at this we have at the initial is 1 seconds subsequent epoch is also 1 seconds 1
seconds 94 the 1 seconds 94 you can see that the time it takes when it is not mixed
precision is higher than when it is mixed precision. It might looks small is because we
are dealing with smaller data and smaller model size here that is why. So, it is just to
show you the differences that are there, when it was mixed precision fp 16 you can see

only have 1 here and all other subsequent epoch 1 just took only took 0 seconds.

(Refer Slide Time: 11:57)

X | W 00k X | W Segepe X | W Rt X | @ PHARA X | W dntiepe X

T
12y %
i

»
///gl
g’

p
'
y

_ Jupyter mixed_precision_tfv2 Last Ceckpoint: 3hours ago. (autosaved

1
i
m
m

8+ x808 4V PRn B C W u v B

678

So, I will change it back because I need to show us in case you are now you are the way

you write your code you are using custom loop within your code.

(Refer Slide Time: 12:04)

¢ k- o " o o

ompete % | W X | W Sogepreas % | W x| @ w X+ s&‘\i
Ay

X LR x§\]4.-§

a =

NPTEL

Pythcn 3 (pybemel) O

So, if you use custom loop within your code, then how do you use mixed precision when
you use custom loop? So, to use when you use custom loop, then I will show you that 1

in a GV sorry | do not want to mess things up that is why | keep now. So, we have set

back we set back to our mixed precision here.

(Refer Slide Time: 12:34)

o X | W QOA-WRE X | W Seglpreis X | W Hatpncsor x | @ P X | W Dtiepecs X | @ Teofow]! X | D Homee X B oz X+ v - o
LR
X Qex »THT
~' Jupyter mixed_precision_tfv2 Last Creckpoin: 3curs ago (snsaved cha >
~ Jupy p .t eckpoit: 3hous 30 (snsaved changes —

P) O

2002-83-14 12:13:41.419214: 1 tensorflow/core/common_runtine/gpu/gpu_device.cc:1510) Created device /job:localhost/replica:
na 6V188, pei bus id: 0900:1a:00.0, compute capability:

©/task:0/device:GPU:0 with 30994 NB memory: -> dev

7.0
4 12:13:41.419763: T tensorflow/core;

2022
©/task:0/device:GPU:1 with 30773 MB memory: -> device:

evice.cc:1510) Created device /job:localbost/replica:
V109, pci bus id: 0000:68:00.0, coapute capability:

So, | can run this now back run this.

679

(Refer Slide Time: 12:41)

5 gpucompete X | W DA-Whe X | W Segiepre x | W R X | @ P84

x| W ootiepec: X | @ Tesofiow]! X | T Homete- X 8

X © localhost 8080/

7 Jupyter mixed_precision_tfv2 uas creckpon: 3hcssago (sared changes)

Fie Eat

Pytton 3 (pykemel) O
B+ x40 4% >RmECH

t(densel.dtype_policy)
t %s° % x.dtype.name)

print("de ype: %s' % densel. kernel. dtype.nane)

<olicy

ixed floatls™>
£l

softnax’, name='pred)
% outputs. dtype.nase)

Outputs dtype: floatls

N 2 CORRECT: softmax and
x = layers.Dense(19, na
outputs = layers. Activation('s
eint (“Outputs dtype: %s* X outputs.dtype.name)

dictions')(x)

Outputs dtype: Floats2

Wiating o ocaios.

(Refer Slide Time: 12:49)

G gpucampte X | W CUOA-WRe X | W Seghpris X | W rstprio X | @ PR X | W oo X | @ Tewodiow]! X | T Homeme- X 6

X © locahost05

" Jupyter mixed_precision_tfv2 as creckpon: 3ncssago (sared changes)

Fle Edt Vew men Cel Kemel Hep Python 3 (pykemel) O
B+ xBH0B 44 PRn B CH

<Policy "wixed_float1s"
x.dtype: floatls
densel.kernel. dtype: float32

el output will be Floatls
19, activations"softnax’, name='p
% outputs. dtype.nane)

x = layers.Dense(10, na
cutputs = layers.Activation('s
print(‘Outputs dtype: %' X outputs.dtype.nase)

Outputs dtype: Float32

outputs = layers.Activation(']

o, dtypes

In M model = keras.Model(inputs=inputs, outputs=outputs)

wodel. compile(loss="s,

,optinizer=keras.optinizers.RiSprop(), metri

Wit o kcabost. (x train, y train), (x test, y test) = keras.datasets.anist, load data() Y

680

(Refer Slide Time: 12:52)

5 gpacompite X | W CDA-Whe X | W Seglepre x | W Hagsor X | @ P64

X | W Onblepmc X | @ Tensfiow]' X

X © localhost808/noteby

"~ Jupyter mixed_precision_tfv2 uas creckpon: 3ncssago (sared chages)

Fle EGt View Iment Cel

Help # |Pytton 3 (pyremel) O
B+ %38 4% PR B C M o v B

, dtypes){outputs)

In [6]: M model = keras.Model(inputs=inputs, ocutputs=outputs)

sodel.conpile(loss="sparse c

ical_crossentropy”,optisizerskeras.optinizers. RuSprop() metrics=[‘accuracy'])

(x_train, y train), (x_test, y test) = keras.datasets.anist.load_data()
x_train = x_train.reshape(50000, 784).astype('float32') / 25
X_test = x_test.reshape(100¢ astype("float32’) / 255

In (7]: W initial weights = model.get weights()

W history = model. fit(x_train, y
batch_size:
epoch:
validation_split=0.2)

test_scores = model.evaluate(x_test, y test, verbosez2)

nt(Test loss:’, test_scores[¢])

t(Test y:', test_scores[1])

Loss Scaling

Wiating o ocaos Tnee seale =

(Refer Slide Time: 13:03)

G gpacompete X | W CUDA-Whe X | W Segleprec x | W R X | @ P64

X | W Dubleec X | @ Tersofiow) X | T Homeduge X x I v - X
X © localhost808 b
— Jupyter mixed_precision_tfv2 Last Checkpolnt: 3hours ago (unsaved changes)
View Inset Cel Kemel Help Python 3 {ipykeme!) @
B+ 230 4% PRn B CH v
(x_train, y_train), (Keras. datasets.anist. load_data() &
X_train = x_train,reshape(5000, 764).astype(float3
X_test = x_test.reshape(10000, 78¢).astype(
In W initial veights = model.get weights()
In [*]: W history = model.fit(x_train, y
batch_size:
epochs=s,
validation_split=.2)
test_scores = model.evaluate(x_test, y_test, verboses2)
loss:’, test_scores[9])
ccuracy:’, test_scores[1])
2022-03-14 12:14:09.136991: 1 i i ir_graph_optimization _pass.cc:185) Nooe of the MLIR Optimization Pa

sses are enabled (registered 2)

- 1s 68ms/step - loss: 39182 - accuracy: 0.4074 - val_loss: 9.6897 - val_accuracy: 0.8

05 39ms/step - loss: 0.6346 - accuracy: 0.8020 - val_loss: 8.3928 - val_accurac

- 0 42ms/step - loss: 8.3479 - accuracy: B.6904 - val loss: 0.2470 - val_accuracy: 8.9

- @5 44ms/step - loss: 0.4312 - accuracy: 0.8657 - val_loss: 0.2463 - val_accuracy: 0.9

Wiatieg r ocatos

Run that is then?

681

(Refer Slide Time: 13:10)

o T A T e T T e R | e e ¥ 4 + - X
X 0 QB % %
0 * »§)g§
~" Jupyter mixed_precision_{fv2 LastCreckpor: Shows ago (ssaved changes A NPTE“
e Python 3 {ipykemel) O
2+ BB 244 PR B C MW wadn v 3
2022-03-18 12:14:09.136991: T tensorflow/conpiler/alir/alir graph_optinization pass.cc:185] None of the MLIR Optimization Pa
sses are enabled (registered 2)
poch 1/5
6/6 [] - 1s 63ns/step - loss: 3.9182 - accuracy: 0.4074 - val_loss: 0.6837 - val_accuracy: 0.8
9ns/step 6 - accuracy: 0.8829 - val_loss: 9.3928 - val_accuracy: 0.8
] - s 42ms/step - 1 3479 - accuracy: 0.8994 - val _loss: 9.24] val_accuracy: 0.9
] - 0s 44ns/step - loss: 0.4312 - accuracy: 0.8657 - val_loss: 0.2463 - val_accuracy: 0.9
] - 05 3ns/step - loss: 0.2281 - accuracy: 0.9329 - val_loss: 0.3491 - val_accuracy: 0.8
curacy: 0.8893

Test accura

So, look at it when we are back it is only the first step that we have 1 seconds and the

others just 0 0 O there.

(Refer Slide Time: 13:17)

moe X | W COA-WEE X | W Segepais X | W Rstpmor X | @ PHARE X | W Dot o e ® % =
£\
X O r *3TPF
~ Jupyter mixed_precision_tfv2 Last Checkpoint: 3haurs ago. (unsaved changes F] -
- - - NPTEL
e Python ykemel) O
2+ % B0 AY PR BC P wam v B

Test accuracy: 9.8892999887466431

Loss Scaling

So, when now we want to do with what loss scaling here. So, loss scaling you need to
compute the loss scaling when you are using custom training loops, here we do not need

to what compute that. But when we are using custom loop it will be done automatically

by itself.

682

(Refer Slide Time: 13:34)

Jupyter mixed_precision_tfv2 Last Checkpoint: 3hows ago (unsaved changes A

2+ xB0 4% PRmECH v B

But in this case when you use custom loop here you need to specify a mixed precision
loss scaling optimize this is the scaling we are talking about. So, when you try to use
custom loop you must specify the scaling optimizer. So, you get your optimizer here this
is our optimizer here is the optimizer root mean square props. So, we use the mixed
precision loss scale optimizer to wrap it, after we wrap it through that we get our loss

objects here using the cross entropy then we here we get our data again here.

So, let me run this get our data then. So, we want to compute the training step. So, in this
training step here we get our gradient tape, this is the gradient tape under the gradient
tape. So, what happened get your prediction this is the model supply the input x into it,
this is a function we are just writing this function graph from then we compute our loss

using this loss object you know we have calculated the loss object here.

So, we call it takes this value, then we scale our loss with what we have been talking
about before. So, this optimizer from the mixed precision loss scale optimizer we use it
to scale. So, we get the scale loss here, after we get the scale loss, then we also get the
what the scale gradient as well the scale gradients using tape loss scale gradient add your
scale loss and the model variable add trainable into it.

Then after we have gone that is our scale gradient then we will get our re gradients. So,
what happened after your scale your gradient then you what on scale back? So, our

optimizer dot on scale the gradient back. So, we will scale the gradient back then we can

683

now use our optimizer to apply to our normal trainable gradient. So, we return the loss

here.

(Refer Slide Time: 15:31)

So, as we have done that we need to do also for testing, but our testing we do not need to
go through this. So, we just write the model testing this way that you see sorry about this

for now | do not include this here and here also | do not want to include this here.

(Refer Slide Time: 15:50)

X | W anA-we X | W Sk x | W Rtpmiso X | @ PHARE X | W dmbepe X

=
»

/gl

gt

~

~ Jupyter mixed_precision_tfv2 ast Checkpoint: 3hous ago (sutosaves

8+ B0 4V PRmECH
Using custom training loop

So, this @tf function is showing this is a graph formats of writing your model. So, then

ok let me run this as well if | run the first one here.

684

(Refer Slide Time: 16:19)

X | W OO x | W Sngepecs x | W Ratprdso X | @ 6L

»
ey,
[g A
) /!
oy’

=
m

— Jupyter mixed_precision_tfv2 Last Checkpoint: 3bours ago (unsaves changes; "

8+ x30 44 PRUNECH v B

10]: M e(jit

So, we run that. So, run this cell which I have explained then the one also that compute

for our test step. So, remember this is for training step and this is for test step.

(Refer Slide Time: 16:26)

3

»

¥
Il/gl
o

@ ARG X | W Ol X | @ Tewodion)! X | O Hometige X

2
a ”/

X | W 0A-Wae X | W Segkprs X | W Ratpmdso X

_ Jupyter mixed_precision_tfv2 Last Checkpoint: 3bours ago (unsave changes; NPTEL

3
EA
34
l,"

avg.result(), test ac

You can of g the Tensorflow XLA compier by

_ENABLE_AUTO_MIXED PRECISION'] = 1 1o the top of the script
rue) 1othe top of the custom oop

Then the weight we set our weight to initialize our weight again, then this is the
customized loop now. So, we are inside the loop. So, inside the loop we calculate our
epoch loss average here using the metric.Mean() then our test accuracy is set here. So, in

each value inside our training data set we train with these steps get the loss and the loss

average loss is calculated here.

685

Also inside our test set so we get the training test step here training step and then we our
test accuracy will update the states and then we can compute here we can print all the
results here. So, when you do that so you can see also it is a very fast order we did not
calculate time here, but if you test this with bigger model you will be able to see and that

it run faster than when you are not using mixed precision.

So, I have just showed you 2 for when you are using custom loop training loop and when
you do not use custom training loop. So, with custom training loop you know you have
to set your mixed precision loss scaling all of that then you have to scale you have to
unscale back or scale gradients and all that which all the theoretical which we have

explained before.

(Refer Slide Time: 17:54)

References

This script was adapted from: hifps

So, here one thing you can do again is to optimize for that is what we call the XLA
compiler. So, you can do use the XLA compiler by what adding this to you add this to
the environment variable then you enable a jit compiler on each of the top of custom
loop that you have. That is you know our custom loop exist between on the each of this

function.

So, what we need to do here is our first thing is to have that is let us come here then | can
enable the mixed precision here. Remember we do not get confused this the enablement
we are doing here is for the XLA. So, we enable it like this then let me run this as | have

enabled that. So, we are still on the float 16 then I can come here then add the jit to it as

686

well, just to show you that you can have it in front of the function here just in time also

you can add that here just in time and add that here.

(Refer Slide Time: 19:10)

(ay,
x

”_/z,

Z tomemae X

5 x x | W Smpepmis x | W Hatprdso- X | @ PR X | W Dostiepecr X | @ Tersoion]! X v -
X O locahost & b &S\\Fl" 5
~ Jupyter mixed_precision_tfv2 Last Checkpor: 3hous ago (ssaved changes) A NP?:‘L
Fie # | Python 3 ipykemel) O
ed_1oss(10ss)
d Loss, nodel. trainable variables)

i gradients)
nable_variables))

.get_unscaled gradients(

gradients = optini
(gradients, mode!

.apply_gradients(
return loss

return nodel(x, training=False)

In [12]: W sodel.set weights(initial weights)

n [13]: N for epoch in range(5):
s eras. metrics.ean()
arseCategorical Accuracy (name="tes

accuracy = tf keras.metrics.Sp:

for x, y in train dataset:
1oss = train_step(x, y)
epoch_loss_avg(loss)

test dataset:
test_step(x)

for x, y
predictio

So, then | can run this over again and run this over again.

(Refer Slide Time: 19:18)

(24
*

x
*

‘
ey,
e

o’

f

2% »

Y
"'u,

7 Jupyter mixed_precision_tfv2 Las checipor: 3hous ago (saved chanes) A —

grads = coupute_gradient(loss, model.trainable_variables)
grads /= loss_scale
Using custom training loop

= keras.optimizers.RMSprop()
= mixed precision.LossScaledptinizer(optinizer)

t = tf.keras. losses.SparseCategoricalCrossentropy()

2. Dataset. fron_tensor_slices((x_train, y_train))

train_dataset = (
) batch(:

test_dataset = tf.data.Dataset. from_teasor_slices((x_test, y_test)).batch(152)

Then run this also over and run this as well.

687

(Refer Slide Time: 19:20)

X | W oosiepec X | @ Tesofiow]! X | T rometme X

G gpecompt X | W CUDA-We X | W Seglepes X | W Rafpecsor X | @ @6

X @ locahosts

" Jupyter mixed_precision_tfv2 uas creckpon: 3tcssago (sared changes)
Pyon 3 pykenel) O

e Eat et Ce
24388 4% pEn BC W)

Bt . function(jit_compile=True)
def train_step(x, y):
with tf.GradientTape() as tape:

predictions = model(x)

loss = loss_object(y, predictions)
scaled_loss = optisizer.get_scaled_loss(loss)
scaled_graients = tape.gradient(scaled_loss, model.trainable variables)
graients = optinizer.get_unscaled gradients(scaled gratients
.apply_gradients(zip(gradients, model.trainable variables))

return loss

def test_step(x):
return model(x, training=False)

N model. set_weights(initial weights) I

M for epoch in ra

= tf.keras.metrics.Hean()

. keras.metrics. SparseCategoricalAccuracy (nane="test_sccuracy”)

test_accuracy

for x, y in train_dataset:
loss = train_step(x, y)
epoch_loss_avg(loss)

Wistieg o kecaos. for x, y in test dataset:

(Refer Slide Time: 19:27)

G gpecompte X | W CLOA- Wi X | W Smpleprecs X | W Raprecso X | @ PHARF X | W Dnblepec X | @ Tewoioult X | T Homedmge: X B x
X © locahosta0s
~ Jupyter mixed_precision_tiv2 Las: Ceckpoint: 3bours ago. (snsaved changes)
Fle EGt View Insen Cel Kemel Python 3 (ipykemel) O
2+ xB0 4% PR BCH o)
Eranients = OpTIRLZer. geT_UNSCa1e0_gra0lents|ScaLed_granlents) T
ptimizer.apply_gradients(zip(gradients, model.trainable_variables))

return loss

function(jit_compilesTrue)
def test_step(x):
retuen nodel(x, trainingsFalse)

N sodel. set_weights(initial_weights)

M for epoch in 5):
@ s tf.keras. metrics.Hean()
tf.keras.metrics. SparseCategoricalAccuracy (name:

test_accuracy

for x, y in train_dataset:
Toss = train_step(x, y)
epoch_loss_avg(10ss)

for x, y in test dataset:
predictions = test_step(x)

test_accuracy.update _state(y, predictions)
t h (format(epoch, epoch_loss_avg.result(), test_accuracy.result()))

ss=}, test

Epoch 0: loss=3. test accuracy=0.
Epoch 1: oss=0.4986571 , test accuracy=0.
Epoch 2: loss=d. , test accuracy=d
, test accuracy=d.

Epoch 3: I

Epoch 4: loss=0.14815224707126617, test accuracy=0.9539999961853027

Watieg o oo

688

(Refer Slide Time: 19:31)

5 goucampu % X | W Segepeis X | W Rdtpriso X | @ PRARA X | W Dobleee X x| C Homeae- x @ m x 4 S8 X
Fix
X CRTIE O S
-~
NPTEL
24+ 3208 4% PR B C M uw ‘=
: Mfor epoch in
5 eras. metrics Hean()
test_accura ras . metrics.SparseCategoricaliccuracy (name=test s)
for x, y in train dataset:
los: p(x, ¥)
epoch_loss_avg(loss)
predictions)
accura «format(epoch, epoch_loss_avg.result(), test_accuracy.result()))
2022-03-14 12:20:37.466542: 1 tensorflow/conpiler/xla/service/service.cc:171] XIA service 0x227963f0 initialized for platfor
B CUDA (this does not guarantee that XUA will be used). Devices:
2022-03-14 12:20:37.466671: 1 tensorflow/conpiler/ ice/service.cc:179] device (0): Quadro GV108, Con
pute Capab
2022-03-14 12:20:37.466677: T tensorflow/conpil ervice.cc:173) device (1): Quadro GV108, Con
pute Capability 7.0
2022-03-18 12:20:37.476624: 1 tensorflow/conpiler/alir/tensorflow/utils/dump_nlir util.cc:210] disabling RLIR crash reproduc
er, set env var “MLIR_CRASH REPRODUCER DIRECTORY' to enable.
You can optmize further using the Tensorfow XLA compiler by adding
1. os. environ] TF_ENABLE_AUTTO_ MIXED_PRECISION'] = *1' 1o the lop of the script
2 (jit_cospile=True) 1othe top of the custom koop

Run this as well then here. So, we can also run this as well. So, it will make it faster you

can see if you can see here.

(Refer Slide Time: 19:35)

i

E

%
s

5
%
»
,ﬂgu, %
agpa0

"'n

X @ locahost

p

7 Jupyter mixed_precision_tfv2 Las Crectpo: 3teuss g0 (ssosae)

=
<
P |
m
o

Python 3 (ipykemel) O

24+ 5BB 4% bRn BC W v =

for x, y in train_dataset:
loss = train_step(x, y)
epoch_loss_avg(loss)

test_accuracy. upe

e _state(y, predictions)
t("epoc i

.format(epoch, epoch_loss_avg.result(), test_accuracy.result()))

466642: 1 tensorflow/compiler/xla/service/service.cc:171] XLA service 8x2279b3f0 initialized for platfor

t guarantee that XLA will be used). Devices:
466671: T tensorflow/compiler/xla/service/service.cc:179] Streamxecutor device (9): Quadro GV109, Con

2022-83-14 12
n (UDA (this
2022-03-14 12
pute Capability
2022-03-14 12:20:37.468677: T tensorflow/compiler/xla/service/service. cc:179]
pute Capability 7.0

2022-03-14 12:20:37.476624: T tensorflow/conpiler/mlir/tensorflow/utils/dump_alir_util.cc:210] disabling KUIR crash reproduc
er, set env var “MLIR C PRODUCER_DIRECTORY" to enable.

2022-03-14 12:20:40.485564: 1 tensorflow/coapiler/[TIEREMEL SUEIREL cache.cc:368] Compiled cluster using XLA! This Line i
s logged at most once for the lifetine of the process.

device (1): Quadro GV109, Com

Epoch 0: losss3. , test accuracy=0.7530999779701233
Epoch 1: loss=d.4:
Epoch 2: loss=D..

3: loss=D.

Epoch 3:
Epoch 4: loss=0.17942981421947

You can optimize further using the Tensorflow XLA compier by adding: I

1. os.environ] ‘TF_ENABLE_AUTO_MIXED_ PRECISION'] = *1" o the top of the script
(it cospile=True) 1othetop of the custom loop

These are enabling the what the jit XLA compilation this is tensorflow special tensorflow
compiler which will run with what using the jit there. So, you can also use this and if you

use it that is this is combination of mixed precision and the XLA. So, which give more

optimization.

(Refer Slide Time: 20:01)

689

G gpecampet= X | W CUDA-Wike: X | W Smgleprecs X | W Rafprdsor X | @ PRI X | W Dubepec X | @ Tesofiow)! X

& vt x B =
X © locabost 08 notebosksmied srecsion iy Qe x a?@’s.

" Jupyter mixed_precision_tfv2 Las checipot: 3hass a0 (aosavet) [NP_'F;.
Fle Edt \View nset Cel Kemel Hep ¢ |Python3 fipykemel) O
2 + xB 0B 4 ¢ PR hempt i | v e

Restart 0

amaucww

In [18]: W import tensorflor Restart& RunAl

Reconnect
from tensorflow 1

from tensorflow.} Shdown

Fron tensorflow. ision
inport os Change kemel »
print(tf. _versic__

0s. eaviron] 'TF_ENABLE_AUTO_MIXED_PRECISION’] = '1'

#policy = mixed precision.Policy(‘floot32’)

policy = mixed_precision.Policy('nixe
mixed_precision.set_global_policy(policy)

print("coapute dtype: %5°% policy.compute_dtype)
print("variable dtype: %' policy.variable_dtype)

2.6.2
compute dtype: float1s
variable dtype: float}

In [2]: M inputs = keras. Input(shape=(754,), nase="digits')

1 tF.config. list_physical_devices("G
print(*The model will run with 409 units on 3 6P') <

Jocabosz308)notebocks maed seecsion IR pynd

it pdf - Showall X

(Refer Slide Time: 20:07)

G gpucompute X | W CUDA-Wite X | W Seglepeds: X | W Ratpecsor X | @ PRPRA X | W Doiepec X | @ Tesofiow] X | T Homete: X D

X O locabosti8natebooksmined precsion thipymb Q@ % #§

Restart kernel and clear all output?

Contiwe Ry

Wating e cabost.

it-1pdf - Showall X

So, this is it on mixed precision then.

690

(Refer Slide Time: 20:12)

G gpacampte X | W CUDA-WRE X | W Smglepris X | W Ratpeisor X | @ PRFRF X | W Dostiepec X | @ Tesofion] ! X

X © locahosts!

isimieed precsion 2 oy

Z Jupyter mixed_precision_tfv2 ascreckpon: 3tcssago (sared changes)

Fle Edt View nset Cel Kemel Help

| Python 3 ipykemel) O

+ x OB 4 ¢ PR empt
Restart
Restart & Ciear Quiput

Restart & Run Al

N isport tensorfloy

Reconnect
from tensorflow 1

from tensorflow.}
from tensorflow.}
inport os

Stgdown
9 o
ision

Change keme!

print(tf. _versic __

os. environ] 'TF_ENABLE_AUTO_MIXED_PRECISION'] = '1'

licy = mixed precision. Policy('fl

policy = mixed_precision.Policy('mixe
mixed_precision.set_global_policy(policy)

print(*coapate dtype: %5'% policy.conpute_dtype)
print("variable dtype: ¥s'X policy.variable_dtype)

In[): M inputs = keras.Input(shape=(784,), name='digits')

$ tF. config, Tist_physical devices('6"):

se fewer units o (AU

he model finishes in a reasonable amount
The model will run with 64 units on 2 (')

of time
focahes:3080otebocks maed seecsion N2y

it pdf

» Showal

So, | am about to round up just 2 more slides.

(Refer Slide Time: 20:19)

G gpacompte X | W CLOA-WRE X | W Segleprcs: X | W Ratpncior X | @ PRARA X | W Doblepect X

x

& Tosoriou]! X | O Homenge X ¥ moigmcs x| 4 > _ig.\x
X @ locahost08/notebooksjmae on_th2ipyb Qg ¥ aw 5

Shutdown kemel?

Watieg or bcabost.

it-1pdf Showall | X

Let me shut down this here.

691

(Refer Slide Time: 20:20)

7

x
o

+

»
ﬂﬁ"’“’
' o

"ta1p1

y
%
u,

=
<
P |
m
L

=3 Python 3 (pykeme) @

5+ xBB 44 PR B C W oz -

In []: M isport tensorflow as tf

fron tensorflow izport keras
from tensorflow.keras import layers
from tensorflow.keras isport mixed_precision

version)

0s.eaviron{ ‘T _ENABLE

aixed_precision. set_global_policy(policy)

o: %5°X policy.coupute_dtype)
%% policy.variable_dtype

n M inputs = keras. Input(shape=(73

iF tf.config.List_physical_devices(
print(*The » 10 ru

it

Then you can leave also | leave here.

(Refer Slide Time: 20:24)

5 oputonputzcy X | W QUDA-Wape: X | W Segeprcsen 3 | W Habpre

X | W Dol precsor X | @ Tensoow | NV %

3 C O locahosti
~ Jupyter
Fies R
‘Select items 1o perfamm actions on them, Upload Mew» O
Do - mi Lot Modfed Filesize

Shousag 28218

secondsago 12148

Bhowsage 13348

692

(Refer Slide Time: 20:32)

@ANVIDIA |

% CATALOG

19.05py2

So.

(Refer Slide Time: 20:43)

AMP: Tensorflow

set the environment variable inside a TensorFlow Python script

os.environ| TF_ENABLE_AUTO_MIXED_PRECISION'] ='1"

Graph-based:

opt = tf.train.experimental.enable_mixed_precision_graph_rewrite(opt)

train_op = opt.miminize(loss)

Keras-based:

opt = tf.keras.optimizers.Adam()

opt = tf.train.experimental.enable_mixed_precision_graph_rewrite(opt)
model.compile(loss=loss, optimizer=opt;

modelfit]...)

So, back from the demo, so there is another better way to do what we have done or so in
that other way we which to use now automatic mixed precision with our tensorflow is
that you set this environment although. We have seen how we can set this environment.
So, if you are working with graph base what you need to include is just this enable

mixed_ precision_ graph_ rewrite you use that to wrap your optimizer and it is done.

693

So, you do not need to on scale on the scale you do not need to do that, that is how
automatic mixed precision is very easy to use. And if you are using keras based as well
you can just do that as well enable_ mixed_ precision_ graph_ rewrite to wrap your
optimizer and everything is done. It does the scaling and on scaling itself within it does
that within.

(Refer Slide Time: 21:43)

model.compile{loss=loss, optimizer=opt)

model.fit(...)

So, to show you that I can just because we can only do that with tensorflow version 1, if
you can see here this is version 1 here container. So, | will run this again. So, we would

not waste time on this ok.

694

(Refer Slide Time: 22:00)

model.compile(loss=loss, optimizer=opt)

model.fit(...)

| think | can come here then let me have that is ok.

(Refer Slide Time: 22:08)

@
+
13

»
=D
Uurgguai?”

[] ek
@ 282K
& 121k
& Bhousage 13348

Now, | will run this is our version 1 here.

695

(Refer Slide Time: 22:18)

— Jupyter mixed_precision_tfv1 Last Checkpoint: 3hours ago. (snsaved changes)

B+ 3

b

AW X | W Seglpres x | W tatpsor X | @ PR X | W Oaiepmr X | @ femaion]’ X | 2 Hone o
Q¢ % :g\\p‘;e
a NPTEL

OB ¥ NRn B C W ok v B

rt tensorflow as tf

rflou dmport keras
rflow.keras isport layers

W oix (x ets.anist. load_data()
xtr (train. reshap)
X_test = x_test. reshape(sty
inputs = keras. Input(shape=(name=)
ctivations an)
o name
layers.Dense(18, activation="softmax’, name='predictions’)(x)

M model = keras.Hodel(inputs=inputs, outputssoutputs)

So, in the version 1 this is what with import tensorflow we have import our keras, our

layer, OS do you see we do not import mixed precision here. So, what you can do here is

that here | have set my environment for cuda device because | want to use GPU, then |

set the environment here. So, after setting the environment here let me just run this that is

done. So, you can see the version of the tensorflow is 1.14 yeah for automatic mixed

precision.

(Refer Slide Time: 22:49)

_ Jupyter mixed_precision_tfv1 astCheckpoit: 3hous ago (unsaved cranges)

e X | W smeprs x | W Ritpesso X | @ PRFRF X | W Dotiepe X | @ Tefion]! X | 2 Home

r
»
S %

¥ @B 4V NRn BCH v 8
{0 DEVICES™]="8,1"

Input

densel = layers.Dense(409%, activations"relu’, names'dense 1)
x = densel (inputs

nse(4095, activations'relu’, name='dense 2')

nse(10, activations"softax’, nase='predictions’)(x)

===x] - 1s fus/step

ig before flag parsing goes to stderr

906109 139917474551616 deprecation.py:505] From fusr/local/lib/python3.6/dist-packages/tensorflow/python/ops/

696

E

3 :
) }
,"Il?[ﬂ/

m
L

®
p

So, here we are getting our value here loading the data from mnist, then the training the
train and the test data then the input size which is the shape of the input is 784. Then we
have our 2 dense layer and the output layer. So, here we care less whether our activation
for sure it is on float 32 or is on float 16 we do not need to bother about that. So, | run

that so downloading putting our download the data that we need.

(Refer Slide Time: 23:24)

_ Jupyter mixed_precision_tfy1 Last Checkpoit: 3hous ago (unsaved changes [

B+ xB0B 4V HRn B C W e v 2

So, this is the crucial part here. So, we define our model here the input and output. So,
then we load what our optimizer. So, after loading optimizer the next thing to do so to
wrap the optimizer under tensorflow dot train dot experimental, then you wrap it with
enable mixed precision graph rewrite. So, you wrap that against your optimizer. So, once

you do that this is just a single line here.

So, which makes automatic mixed precision makes life easier. So, you wrap that here
then you compile this is the normal line for to compile, you have your loss your
optimizer your metrics that you want to use to compile. So, let me run that cell after

running that cell then we can initialize when you initialize or initialization is done then.

697

(Refer Slide Time: 24:27)

x| @ Pemi X | W ontepe x | @ e X[ZHme x X+

— Jupyter mixed_precision_tfv1 ast Checkpoint: 3bours ago (unsaved changes; [

2+ xB0 4V HRn B C W s v B

References

This script was adapted from:

So, we can now run our model as well. So, you see we do not need to do anything for
that here as well. So, just run the model you can see how the model runs, you see it is
even almost it is faster a little bit faster. But we cannot judge based on the little more that
we have done is 0. This is first one took 1 seconds and all that subsequent epoch, this
number of steps just to 0 0 seconds and you can see this is just micro seconds yes 6 6

whether | want more than that ok.

So, this is just how to use automatic mixed precision. So, how do we check with this
tensorflow one if we are not using automatic mixed precision or let us compare with

when no automatic mixed precision is used or mixed precision is used.

698

(Refer Slide Time: 25:09)

G gpecompete X | W CUDA-Wie X | W Smgprecs X | W Hafpredsor X | @ PR PILF X | W Doblepmc: X | @ Tensofiow|' X | T Home x x 4+ s ‘f'x
agn »8 \i
c @ 5
L)
N
NPTEL
Kemel Hep
interrupt v B
Restant
Restats Ciear Output
In [1]: M import teasorfla Resirt&RunAl
&
from tensorflou s
from tensorflow.| Snddown
inport o5
print{tF._versil Grange kemel »
0s.environ["CU0A VISTBLE DEVICES"]="0,1"
0s.environ *TF_ENABLE_AUTO_MIXED_PRECISION']
1.14.0
In [2]: M (x_train, y_train), (x_test, y_test) = keras.datasets.unist.load_data()
x_train = x_train.reshape(50000, 734).astype('float32") / 255
X_test = x_test.reshape(10000, 784).astype("float32’) / 255
inguts = keras. Input (shape=(734,), nase='digits’)
densel = layers.Dense(4036, activations'relu’, nase='dense 1')
x = densel (inputs,
dense2 = layers.Dense(40%, activations'relu’, nase='dense 2')
X = dense2(x)
outputs = layers.Dense(10, activation="softmax’, nase='predictions’)(x)
Downloading data fron http g con/tensorflowtf-keras-datasets/anist
Joahasz208eoebocksimbed precson VLY. 11493376/11490434 [- 1s fus/ste 7
i1 - Sowal X

(Refer Slide Time: 25:13)

G gpecompste X | W CUDA-We X | W Seglepes X | W Rafpnsor X | @ PRUPRF X | W Doepec X | @ Tewofiowl! X | T Heme X

x + v o= X

o ik iy Q¢ # »53%\%

C O locakhost

Restart kemel and clear all output?

Do you want clear all output’

it-1pdf a Showall X

699

(Refer Slide Time: 25:15)

b

frag,

5
=
»
/Ig
nm_nl/ g

7
,

2"
’
P

"' Jupyter mixed_precision_tfv1 Last Checkpont: Shours ago (ssaved changes)

=
<
3
m
L

3+ xBHB 44 NRn B C W ook v e

N inport tensorflow as tf

1140

M (x_train, y_train), (x_test, y_test) = keras.datasets.anist, load_data()
X train = _train.reshape(50000, 784).astype('F)
x_test = x_test.reshape(l

inputs = keras. Input(

densel = layers.Dense(409%, ac S 1)
x = densel(inputs

dense? = layers.Dense(405%, activations'relu’, names'dense 2')

x = dense2(x)

cutputs = layers.Dense(19, activations'softmax’, name='predictions’)(x)

M model = keras.Model(inputs=inputs, outputszoutputs)

So, if | clear the output here I cleared then | would comment out this, that it is not used it

is not enabled.

(Refer Slide Time: 25:22)

5 x| w x e x | W Hdtpeiso X | @ PR X | W Da x Tensoon | X Home X & m X + - $8 X
Fix

C O locbost Q2% ag\ﬁ.:s:

— Jupyter mixed_precision_tfv1 LastChectpont: 3hours ago (ssaved changes) NP?:L

B+ xB0B 44 RmBCH v =2

0s.enviroa[

1.14.0

x._test. reshape

x_test =

inputs = keras. Input(shape:

densel = Layers.Dense(409% name)
x = densel(inputs

dense2 = layers.Dense(409, activation='relu’, names'dense 2')

x = dense2(x)

outputs = layers.Dense(10, activations'softnax’, nane='predictions’)(x)

WARNING: Logging before flag parsing goes t
WE314 12:26:44.241932 133985491294015 deprecation.py:506] From /usr/local/lib/python3. /dist-packages/tensorflow/python/ops/
init_ops.py:1251: calling VarianceScaling. _init_ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will b
e resoved in a future version.

Instructions for updating:

Call initializer instance with the dtype argument instead of passing it to the constructor

N model = keras.Model(inputs=inputs, cutputs=outputs)

opt = tf.keras.optinizers.Adan()

And | will also come here this is the line here and I comment this line out yeah. So now,

we are just run in our normal tensorflow. So, we can see here I run this slide ok and also

run this.

700

(Refer Slide Time: 25:41)

=
=

» 1
sy

P ﬁ 44%

mm"/ 5

:

x| @mumnr x| w

m

=

2
®
=
z
S
=4

— Jupyter mixed_precision_tfv1 vast Checkpoint: 3hours ago (unsave changes;
L}

sodel. conpile(loss="sparse entropy’, optimizeropt, setrics=[

4]: N initial weights = model.get weights

So, we do not actually need to put initialization we might not run that let us run it. So,

and then let us see how long we took that.

(Refer Slide Time: 26:05)

X+ N
e

X | W Rstpriso X | @ PHFRE X | W Dntlepec X | @ Tersoon]' X | 2 Home X B mied g
s
Qe r a9

4

o)

X | W O0A- Wi X | W Segiprc

,

_ Jupyter mixed_precision_tfv1 Last Checkpoint: 3bours ago (unsaved changes

B ¢+ X308 4 ¢ NRn B C P

References

This script was adapted from:

So, you can see when you run it normally this is steps it takes 1 second one seconds 14
microseconds 1 seconds second. So, this shows the efficacy imagine why you are
running a bigger model, the scale up will be the differences will be very glaring that you

can very easily see as compared to small model this is just a small demo | must say.

701

So, from here so we are back here, so | have explained how to use the automatic mixed
precision with tensorflow rather it also exists in pytorch. So, this is how you can do that
in pytorch. So, you import from cuda your automatic mixed precision with grad scalar,
then for optimization here you auto cast as well you get your loss.

(Refer Slide Time: 26:37)

AMP: Pytorch

import torch
scaler = torch.cuda.amp.GradScaler()

for data, label in data_iter:
optimizer.zero_grad()

with torch.cuda.amp.autocast():
loss = model(data)

scaler.scalefloss).backward|()

scaler.step(optimizer)

scaler.update()

Then also you scale the loss the backward then you also would get your scaler dot step
and then you update the weight as well. So, for more details you can check more details
here and how to do this well, 1 did not prepare for the PyTorch version. That is why but |
will if you check on this link it is very explanatory you can easily get how to do it very

well so.

Thank you.

702

