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Welcome everyone to the session 2 of end to end Accelerated Deep Learning and so, this
particular session would be taken by Dr. Tosin; Tosin is working as a GPU Advocate at

NVIDIA and is based out in Korea and over to you Tosin for taking the session today.

Thank you Bharat. Hi everybody, | welcome you to this section which is based on end to
end Accelerated Data learning and today, we will be talking about Optimizing Deep
Learning Training and we will focus on Automatic Mixed Precision. So, that is what we

will focus on today.

(Refer Slide Time: 01:08)

Deep Learning Training Optimization 1/3 s

* Optimizing deep learning training is refer to as using optimizer algorithms or
methods to tune a deep neural network to minimize losses and achieve

desire accuracy.

* Tuning could be applied to:
* Learning rate, Weights, etc

* An example of Basic Optimization Algorithm is the Gradient descent

First of all, I will be talking about Deep Learning Training Optimization. So, what do we
refer to as a deep learning training optimization? So, we are talking about optimization
algorithm which is used during the training of a deep neural network, in order to achieve
a desired goal and in a nutshell, you are worth reducing the loss to a minimal level. So,

this is commonly used when we are training a deep neural network. So, these optimizers
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that have been used. So, this optimizer, they help us to the deep neural network to be

able to reach a convergence level faster.

And so, what is actually been tuned in the deep neural network? The learning rates and
the weights that one have been tuned and also, the other parameters which also been tune
like the the batch size also they have been tuned. So, an example of optimization
algorithm is the gradient descent. So, the gradient decent is commonly used and we have

types of gradient descent that are used.

(Refer Slide Time: 02:38)

Deep Learning Training Optimization 2/3

-—SGD — RMSPROP ADAM
ADAGRAD = ADADELTA

* Gradient descent
v Stochastic Gradient Descent
v'Mini-Batch Gradient Descent

v'Momentum(reduce high varfance SGD)

So, | have listed three here; you we have these stochastic gradient descent which have
been used. This stochastic what it does is that what it picks the data in batches in terms of
what randomly using probability. Also, there is the mini batch gradient descent as well.

These big chunks of the batches, it feed them into the momentum.

And also, there is what we call the momentum. So, this momentum is used to reduce the
high variance in the stochastic gradient distance. There are other examples of optimizer
like the ADAMs, the ADAGRAD and ADADELTA and many of them have been used
which I know many of us are familiar with this. So, in the event, where training model
are becoming more complex, researchers are trying to solve complex tasks, it require
larger models to be built and also, more data are also required to be used to build these

models.
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Deep Learning Training Optimization 3/3 Fre

* Advanced optimization of deep learning training phase
v Memory consumption to accommodate large DNN
v Memory bandwidth to accommodate data transfer operation

v Tensor core computation for speedup

* Examples include:

v Mixed Precision

So, in this lights, there is a need for what we call the advanced optimization for deep
learning training phase. So, and when you want to go through this level, there are things
which you may need to consider. So, you will be looking at the memory consumption to
accommodate large DNN model and also, you will be looking at the memory bandwidth
also which will be required to transfer data and you know large model might require
large data and there is transfer here and there that will be needed during the training

phase.

Also, you are looking at the word speed up in terms of computation and which would
require some tensor core. So, now you make use of advanced optimization that can give
you all these attributes. So, example is what you use GPU, you accelerate which GPU
that is one level of advanced optimization and another one is the mixed precision which
we are going to focus on today and there is also an aspect called the XLA which is
accelerated linear algebra, this is from tensor flow a special compiler and also there is the

transfer learning.

So, we will talk about transfer learning in our subsequent a course. So, we focus first of

all on the mixed precision.

637



(Refer Slide Time: 05:21)

Mixed Precision

* Mixed Precision is the combine use of different numerical format(single and half

precision computation) in the training of a deep neural network.
v'single precision: FP32 (float32)
v'half precision: FP16 (float16)

* Mixed Precision is possible on the flowing GPU architectures:

L [’ 60
i [Ny \
() ‘i ’ | -
Ampere Volta Turing
| |

So, what do we refer to as mixed precision? A mixed precision is a using different
numerical format with respect to deep learning, we can say mixed precision is the use of
single and half precision for computation during the training of deep neural network.
And what the word refer to as single precision? Single precision is simply the float 32 is

what we refer to as single precision. Why half precision is float 16, which we call FP16?

So, we are looking at a scenario, where in the training of a deep neural network, these
two precision data type are being used. So, it is an high level optimization process and
how for you to use this mixed precision, there are requirement that is to look at the
resources that the usage of this precision are possible. So, you must consider the GPU

architecture which facilitate the use of these mixed precisions.

First of all, the one we have is the ampere. So, it is possible if your GPU is ampere
architecture, you can use mixed precision is possible. For volta architecture, mixed
precision is also possible and also, for tuning architecture, mixed precision is also

possible.
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So, we would like to talk about tensor core. So, in those architecture, how is it possible
for mixed precision to be used? It is possible based on the tensor core that exists in those
architecture. So, and what are tensor core, these are just dedicated cores for matrix
multiplication that goes on in the deep neural network. The deep neural network itself is
made up of matrix multiplication and convolution and this convolution and this

multiplication are the those tasks can be handled by the tensor core.

So, and we will be talking about mixed precision, we talk about FP32 and FP16. So, the
tensor core, they have data type which are fits into FP32, FP16 BFLOAT 16. So, we will
be able to see that computation will be much easier because we have calls that are
dedicated for that computation and in doing that, it does not require you changing any

code and the at the later hand, you get a maximum speed up with that.

And we can also look at the IEEE standard for that which is the 754 IEEE standard, the
first one you can see here is that is for FP64, this is for FP 32. Then, there is the one for
FP16, the floating point 16 and there is the BFLOAT.

So, why the BFLOAT? The BFLOAT comes because there is a dynamic range issue
which FP16 which the BFLOAT is able to work to overcome that. But however, with
those dynamic rate issue using a method called scaling can make our FP16 perform

better to overcome the dynamic range issue. So, for more, you can check this link; you
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can get more on that. But | would not want to put out more into these details because |

want to focus on the empirical side of it, which is the practical side.

(Refer Slide Time: 09:26)

Benefit of Mixed Precision

+ Speeds up math-intensive operations using Tensor Cores (matrix-mult and convolution ops).
* Require less memory bandwidth, thus data transfer operations are speedup.

* Require less memory, thus the training and deployment of larger neural networks are possible.

+ Volta and Turing architectures:

v 3x overall speedup is achievable

So, what are the benefit of mixed precision? The first thing is that with mixed precision,
you are able to perform matrix multiplication and convolution. Convolution operations in
your deep neural network with maximum speed up that is mass intensity operations are
being performed using the tensor core. Like | said before that the tensor core is dedicated

for such operation and also, it require less memory bandwidth.

So, when it requires less memory bandwidth, then you can transfer more data operation
can be done. So, in a short time, then it require lesser memory. Why? Because it require
lesser memory in the sense that operations are being performed in half precision mode.
So, if those operation have been performed in half precision mode, either it require lesser

memory and thus, you can train large models very well.

So, and after using mixed precision, so what are the benefits you can also get from there
is that you get minimum of 3x speedup based on volta architecture and also, Turing
architecture, if these are the GPU architecture you used. So, based on that, you can gets
3x speedup. If you use ampere, you will get definitely get more than that.
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There are many if you want to know the classes of your architecture of your GPU. So,

you can check online, there are several of them online which you can check on.

(Refer Slide Time: 11:15)
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So, if you check Wikipedia for that, you can see this is a compute capacity here.
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So, you can you be able to know that type of your architecture used. This is you can see
Kepler, you can see Pascal, we have Volta, here the GPUs, that are there Turing, you can

see the classes of the GPU that you use, you also have Ampere here, the classes of GPU

that belongs to that you can have all of them.
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Mixed Precision Training

terggurt”

+ Training with mixed precision speedup computations by performing ops in half precision format.

+ Minimal information are stored in single-precision to retain as much information in critical parts

of the network.

+ Training steps
+ Porting the model to use the FP16 data type where appropriate

+ Adding loss scaling to preserve small gradient values.

Then, mixed precision training. So, after, while you do train your model using mixed
precision, so ideally the training with mixed precision will help you to speed up
computation. Because those operations they are performed in half precision format. That
is its performed those operation using float 16, FP16 and then, the minimal information
are being stored in FP32 which is the single precision. So, the process is that you are

using both FP16 and you are using FP32 as well.

So, during the training, what are the steps you need to take during the training is that you
need to port your model to use the FP16 data type, where it is appropriate. The only
place you will not use the FP16 is if your model may be your dealing with multi-
classification tasks, where you might want to use Softmax activation function. So, at the
Softmax activation function, you have to use FP32 there. Then, the other part you will be
you will be able to use FP16.

And the second part, step is that you need to add a loss scaling to preserve small
gradient. So, why this is that? When you use mixed precision because of the computation
that happen with FP16, it usually leads to small gradients which is we call it on the float
such that during the gradients computation, the gradient is so small that sometimes it
leads to 0 value and those 0 values affect the accuracy of the model. So, you will not be

able to get the accuracy, you will get if you are using only FP32. So, then the loss of
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your model has to be scaled and how do you scale? You scale by multiplying loss with a

particular value.

(Refer Slide Time: 14:04)

FP16 Porting in Model

+ Tensor core enabled framework
* Choose FP16 format for tensor, convolution, fully-connected layers,
* Keep all hyper-parameters of FP32 training session.
* Issue with the above method
v Some network gradient becomes very tiny or lead to zero 0 (dyna

fted into FP16 representable range to match accuracy of FP32 training

+ Solution

v Scaling is required

So, during FP16 porting in your model, so how do you how will you be able to achieve
this is that? You use frameworks that tensor core are enabled because the that is being
performed actually by tensor core. So, because those tensor core they also have

precisions which is based on FP16 and FP32.

So, you choose FP16 format for a tensor which helps you to do the matrix multiplication
are there, the convolution operation also it works with the fully connected layer and also,
you keep all the hyper parameters of FP32 that is the floating point 32 training section

there.

Now, like | said earlier, there are issues with this; but the issue that will not arise there is
that FP16 has a way of what we call dynamic range being too narrow and it leads to what
we call the underflow. So, gradient become very small that leads to you may have 0
gradient and this will affects your training. So, it requires a gradient, it requires such that
you need to shift do some kind of shifting into FP16 representable range to match the
accuracy of FP32 that you have.

So, now, how do you achieve that is the solution is that you use what we call scaling and

scaling which we | have mentioned before is that you multiply by a particular threshold,
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you multiply your loss by a particular threshold. And what you get there is what we call

scaling, but I will still explain further as we continue.

(Refer Slide Time: 15:58)

FP16 Porting in Model

* FP16 dynamic range is sufficient for training, however gradients may require scaling to move them into the
range to keep them from becoming zeros in FP16.

FP16 Representablerange

* Overflow should be avoided

Secome wroin P16 _| FP16 denoms

og imagnitude)

Histogram of activation gradient magritudes throughout FP32 training of Multibox SSD network. Both x- and y-azes ae logarithmic.

So, FP16 as a dynamic range which is sufficient for you to train and it does this in a way
that it is affects the gradients of your deep neural network and so, what you need to do is
to what to do scaling like I said; but while doing the scaling there is an issue that will

arise as well.

Because when you scale you multiply by a particular threshold value, it can result to
what we call overflow and what we mean by overflow? Overflow in the sense that you
will be having values that may lead to infinity or NAND value that will lead there. So,

that is what happened in that sense.
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Loss Scaling

+ The purpose of lose scaling is to preserve small gradient magnitudes.
* Process
* Asingle multiplication by scaling the loss values computed in the forward pass prior to starting backpropagation

+ Weight gradients unscaled before weight update, to maintain the magnitude of updates the same as in FP32

training

Training procedure

So, and the next phase is Loss scaling. So, how do you perform loss scaling and what is
the reason for loss scaling? The reason for lo scaling is that you want to preserve this
small gradient. How do you preserve it such that you are able to train your model as if
you are using FP32 only.

So, the first thing you do is to what? You make a single multiplication by scaling the loss
value. So, when you scale the loss value at the forward pass. So, what do you mean by
forward pass? This is like the forward propagation that is you when your model forced to
run your deep neural network, when it runs and it eats the output; before it comes back

again which is what feeding the output, it get feeding it back to deduct from the weight.

So, which is the word the process of back propagation. So, the first thing what | am
trying to say is that you multiply your loss scale For example, if | assigned 1024 my loss
as my loss scale, I can compute my model here get the loss and then, most of use the loss

scale which is 1024 to multiply and add to the loss. So, this is what we call scaling.

So, this is done at the forward pass of your model, when your model initially run the first
time. So, then you compute the gradient. Secondly, that is what you do; you compute the
gradients. So, after you compute the gradient, then you on scale back again, you want
scale back. So, or scale back. So, add you scale back, you divide the gradient which you
computes by the value you use to scale initially. So, when you do that, then you can now

updates the weights.
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So, there is a procedure for doing that this is a simple algorithm to do that |1 would can
see here. So, the first one, the first line is what you maintain a primary copy of your
weight. Your weight will be in FP32, then during the iteration. So, this iteration this is
what happens while you are training your deep neural network, where you can have the
step and the iterations that are there. So, within that step and iteration, you can make an
FP16 copy of your weights and after then, so that F16 copy of your weight, you perform
that with what the forward propagation that is the initial runs.

Then, so, you scale. So, how do you scale which | have explained here, you scale you
multiply the resulting loss with a scaling factor x. So, the scaling factor x is what you
have here. Then you cannot do your back propagation. So, after the back propagation is
performed, then you on scale back that is you divide the gradient you get there by the
value of the scale and then, you cannot proceed to updates the weights.

(Refer Slide Time: 19:46)

* Process

Choosing A Scale Factor

* Pick a constant scaling factor ( ).

* some trial and error may be required because scaling factor can depend on the network,

framework, minibatch size, etc.

* Choose a value so that its product with the maximum absolute gradient value is below 65,504

( )

+ Avoiding Overflow

So, here how do we know; how do we pick a scaling factor? Like ok, do we just pick
1024 or we just pick one just pick to how do you know how to pick that? So, there is a
process for that is that the first one is you can pick a constant value scaling value and that
is can only be done if you have the statistical gradient value for your gradient. If you
have the statistics for your gradient that is when that is possible or you can use some

brute force method which you refer to as trial by error to test.
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If this particular scaling value that you pick, if it will not run into overflow, so you can
use trial by error. Now, why do you have to use trial by error? It is because this scaling
factor is dependent on some other attributes or factors like the your network size that is
your model size, the framework you are using, whether you are using tensor flow or you
are using pytorch or you are using mx, also the mini batch also the size of your

minibatch, it also depend on that.

So, that is why you have to try to you able to get the right scaling factor for the kind of
tasks you are doing and also, you can choose a value which will not exceed the
maximum value which is represented in FP16 and that maximum value is the 65,400.
These value have been proved to be efficient and work well and in research that it is if
your value is below this range your scaling value. Then, your model would definitely do
well; but while doing this, you must avoid what we call the overflow.

(Refer Slide Time: 21:44)

Training Procedure in Choosing a Scale Factor

1. Maintain a primary copy of weights in FP32.
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viil. If there hasn’t been an Inf or NaN in the last N iterations, increase S.

So, how do we now train because why you are trying to pick up scaling value, you need
to test it during your training see that ok, this value scaling well and it is not leading to
overflow or you are not experiencing an underflow. So, the first thing you do this is an
algorithm here is that you maintain the primary copy of your weight which is in FP32.

So, how do you have this is that your model variable data type by default will be FP32?
Then, you initialize your scaling value to a large value, you pick just pick a large value

which is less than the value | mentioned here which the result will be less than this. So,
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you pick that. Then, in your iteration, so you make a copy of your FP16 weights, then

you perform forward propagation with it, then you scale using with the value.

Then, after you scale you perform your model perform the backward propagation. So,
after the backward propagation is performed, so what you need to do is what you have to
check, you check if that does not resort to overflow that is infinity or NAND in your

weights your gradient weights.

So, if that on call, what you need to reduce what? You need to reduce the value of that
scaling factor x, you reduce it from the initial one then. You would skip the weight
update; you would not update because you can update with an infinity or a none value in

your weight. So, you skip that.

So, when you skip that, after you have reduced then you start all over again. But if that is
not the case then what you need to do is you on scale back your gradient by dividing it
with the scale factor value that you pick and then, you complete your weight update. So,
when you complete your weight update then, so after that has been successful, you check

your model; I mean the iteration fully run.

So, and if you if why the iteration fully run, you check that oh there is no infinity or none
value existing in between the iteration. Then, you can also increase your scaling value
since your iteration the iteration have performed, there is no overflow. So, you can
increase it. So, when there is an over overflow, you reduce its and to able to get a value
where overflow does not occur anymore and that after that value, a slight increase in that

value may lead to overflow.

So, at exact point, you can use that particular scaling factor and this is an example here
which is perform on big using big LSTM. So, what you can see here is that the FP32, the
loss this the y axis is the loss; the loss this is the black one you see the loss decrease, it
decreased steadily; then the mixed precision used when the loss scale is at 1, you can see

its decreased and suddenly rises again.

So, which does not give good loss function, it does not give good loss. So, because the
loss is increasing again. then our accuracy will be down. So, when the mixed precision
loss is scaled at 128, we can see which is the green one its give the same result as if we

were using FP32. So, it is it was able to achieve the same result as FP32. However, the
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were able to use it to train larger models, it require less memory would gain speedup as

well.

(Refer Slide Time: 25:41)

Summary: Mixed Precision Training

+ Choose FP16 format tensor core
* Forward pass of the model
+ Scale the loss and backpropagate the scaled gradients

* Un-scale the gradients and optimizer performs the weight update

So, in summary, the mixed precision training is that you have to pick choose a floating
point of FP16 format, then you perform your forward pass in your model. After that you
scale the loss and then, do your back propagation of the scale gradient and then, you will
scale back the gradients and the optimizer performs the weight update. These are just the

summary of all what have been seen.

(Refer Slide Time: 26:11)

Is there a simpler way?

'/

\
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So, is there a simpler way with all this more of theoretical scale, unscale and do that. |

would say yes, there is a simpler way.

(Refer Slide Time: 26:23)

L 4

Automatic Mixed Precision (AMP)

Automatic Mixed Precision (AMP) makes mixed precision training with FP16 easy in frameworks.
* AMP automates process of training in mixed precision
« Converts matrix multiplies/convolutions to 16-bits for Tensor Core acceleration

TRAINING LAYER AUTOMATIC MIXED PRECISION ACCELERATED BY 6PU

So, the simplest way this available method is what we call the Automatic Mixed
Precision; AMP. Now, the automatic mixed precision make things easier. So, you can
perform your training using FP16 within the framework. So, you do not have to do all
the manual job again. So, the automatic mixed precision automate the process of training
in mixed precision. It does the automation for you. It converts the matrix then and the
convolution into 16 bits for your tensor.

So, for example, what we have let us say this is our training layer, the convolution layer
that you can see here. So, the training is being done using what automatic mixed
precision which is both FP32 and FP16 as well and the computation that will go within
the FP16, 1 will be run on the tensor core. And for example, this is an example here that
you have your deep neural network here, the DL, the frameworks are here and the
another framework is embedded with enabled with automatic mixed precision here. So,

which will be handled by the tensor core.
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(Refer Slide Time: 27:37)

« Frameworks

AMP Use

v Through Scripting @xnet PYTGRCH L)

+ Containers
v Tensorflow (19.07 or upstream TensorFlow 1.14 or later): on NVIDIA NGC
v Pytorch (22.02): Apex repository on GitHub & on NVIDIA NGC.

v Mxnet (19.04 or later): on NVIDIA NGC

So, automatic mixed precision use how do we use the automatic mixed precision, we can
use it using our frameworks through scripting. So, it exists here in mxnet, pytorch also,
you can use tensor flow as well. And then, you can use container. However, in the
container, | must say for tensorflow you can use it is only possible with tensorflow

version 1 that is only where you can use the automatic mixed precision.

If you want to use a mixed precision, automatic mixed precision with tensorflow version
2, it might not be possible. | tried it there are so many errors that you can you might visit
from there. Also, you can use pytorch, also mxnet as well. So, all of these you can pull
them on the NVIDIA NGC. So, if you go to NVIDIA NGC here. So, from here so this is

tensor flow. Let me come to catalog here ok; yeah.
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% » :13 'E
EANVIDIA. NGC | CATALOG

Containers

NVIDIA NVIDIA NVIDIA
e Ve NERLN

So, you can search, you can search for tensorflow or you search for pytorch.

(Refer Slide Time: 28:58)

Containers

Y

Sorry Alice, looks like that's too far down the rabbit hole.

We thought you might like...

So, if you search all of that, come in ok alright.
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e + SO

» 585

ZANVIDIA. NGC | CATALOG L
Containers LeamMaore

Sorry Alice, looks like that's too far down the rabbit hole.
We thought you might like...

NVIDIA nyIDIA nyiDiA

INFRASTRUCTURE NFRASTRUCT 36

NVIDIA NGC: Al Development Catalog

Getting Started

PyTorch

- Jr——
viDIA LY

So, yeah they yeah you can just click you search for them, you can see this is tensorflow

this is pytorch.
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EANVIDIA NGC | CA

% CATALOG

Getting Started

SANVIDIA. NGC | CATALOG

TensorFlow e

Description

Publisher
ogie Brain Team

LatestTag
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e + SO X
§ox
- » 585
ANVIDIA NGC | CATALOG NPTEL
TensorFlow g
Pabisher
..... -
20242:p43
s
Compressed s
Muitinode Support.
Mirch sapport

202427y3 (Latest)Scan Results

If you click on them, you can get here; you will pick. So, you can pull there are several
versions here. Again, you can pull from there, but if you need to use if you are using this
these are tensorflow version 2. So, here you can only use mixed precision; you cannot

use automatic mixed precision.

(Refer Slide Time: 29:42)

e . W ) v + .

AN

¢ o (8 >3

ANVIDIA. NGC | CATALOG NPTEL
TensorFlow PulTag

20241253
20041153

220141-py3

N0M2py3
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ANVIDIA NGC | CATALOG

TensorFlow

21.091-py3 - |
21.084f1-py3
21.08f2:py3
210742013

210741943

For you to use automatic mixed precision, so you click on the tag here, you come here
there is a version there is version 19 here.

(Refer Slide Time: 29:55)

) + S
> (¥ )
@ANVIDIA. NGC | CATALOG NPTEL
TensorFlow
20.06-tf2-py3

20.06-41-py3
20.034f2-py3 g l
20.0341-py3
20.02-4f1-py3

20.024f2-py3
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SANVIDIA. NGC | CATALOG

TensorFlow

19.05py3
19.04p53
19.04p52
19.03py3

19.03-py2

Version go to 19 07. So, yes, if you pull this one, this is version you will pull this. So,

you just need to click here, then you pull and you can you know use that for your
automatic mixed precision.
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