Applied Accelerated Al
Prof. Satyadhyan Chickerur
School of Computer Science and Engineering
Indian Institute of Technology, Palakkad

Introduction to Al Accelerators
Lecture - 03
GPUs Part 1

Good evening, everyone. Welcome to the 2nd day session on Applied Accelerated
Artificial Intelligence workshop. So, today we would be discussing about Al
Accelerators and to be very specific we will try to discuss in terms of what we are talking
about is GPUs today right.

(Refer Slide Time: 00:40)

- Agenda

* What are Al Accelerators
Where are they used

How do they work

One view of Al Accelerators
Second View of Al Accelerators
GPUs

* CPU vs. Parallel vs. GPU

* PARAM Shivay and DGX |

* Benefits

So, the agenda of this particular session of the day would be like this. We will first start
with what are Al accelerators, where are they used, how do they work, one view of the
Al accelerators, second view of the Al accelerators. Then what are these GPUs, how do
you actually think of writing a program in terms of just running it on a CPU as against on

multi core or a parallel program versus a program which you write it on a GPU.

Then we will try to see the architecture or the setup of PARAM Shivay which is a cluster
which also has GPUs and DGX I. And we will do some demos on these particular
systems ok, very brief small demos to start with and then we will end up with what

would be the benefits of actually working on such a hardware right, ok.

52

(Refer Slide Time: 01:50)

v

~ What are Artificial Intelligence (Al) Accelerators? ?

An Al accelerator is high-performance specialized hardware that is optimized
for Al workloads such as neural networks, machine learning, and other data-
intensive or sensor-driven processes.

The three main types are

1. Central Processing Unit (CPU)

2. Graphics Processing Unit (GPU)

3. Field-Programmable Gate Arrays (FPGA)/Application-Specific Integrated
Circuit (ASIC)

If you see a Al accelerator is a high performance specialized hardware that is specifically
meant for Al workloads which in turn would be neural networks, machine learning
programs, and intensive programs which are basically sensor driven, which involve
certain processes, which also would link all of this right. So, you can work with a
program which has neural networks, which has machine learning right which is linked to

inputs from some sensor devices.

And if you classify it, there are three main types of artificial intelligence accelerators for
that matter. You have a CPU; you have a graphics processing unit or a GPU and then
you have Field Programmable Gate Arrays or ASICs as well. So, these are three actual

areas or devices basically, wherein you can work with for your Al workloads.

53

(Refer Slide Time: 03:11)

Where are they used

NPTEL

We can divide Al Accelerators into two groups (based on where

we use them): Edge
* Data centres

* Edge Devices

And if you see that way from the classification point of view, you can divide these Al
accelerators into two groups based on where actually you can use them right. So, you

have these Al accelerators at data centers and you have these Al accelerators which are
on your edge devices.

Or the devices where you actually do inferencing, which are not very computationally
strong devices right. The devices which are there on the edge. So, this is how the
classification basically looks like, when you talk in terms of where they are placed and
how you are going to use them.

54

(Refer Slide Time: 04:05)

How do they work

Start

_Jﬁ Load data into

accelerator

Load source data memory

toCPU
S yme—

Transfer data to parallel processing
accelerator unit

Send data for

Transfer data from
accelerator unit to
Host

SEm——

Store resultin

Write Result
global memory

—_—
End

Now, technically speaking, any of these accelerators right are supposed to be working in
a coprocessor mode. So, if you have not worked with it this is how you actually try to
develop a program which could run on accelerator. You have got two types of programs
right. The programs which are there which are run on CPU, then there is some portion
right of your data the whole program which you need to actually transfer to the

accelerator and the accelerator does the processing for you.

You get the result again and then this result is again transferred to your host. Host is
nothing but your CPU for that matter. So, CPU is a host, your GPU is a device this is the
terminology which generally people use in these type of systems right. So, host is your
CPU and the GPU is your device. So, when you start writing such programs, what
effectively happens is not everything is to be offloaded to a GPU or accelerator for that

matter.

The portion which is compute intensive, which is actually required to be run by the GPU
will be required to be offloaded to the GPU. And then it basically is executed and then
return back to the host, which actually does all the other types of work right. So, this is
how they are used by people when you start developing your programs and you will start

writing your programs right.

55

(Refer Slide Time: 05:52)

@ One View of Al Accelerators

(ot e

TITTITITrr

Now, one view of the Al accelerators ok is something like this. You have a CPU, you
have a GPU you have FPGA and you have VPUs and all there are various types of
accelerator. So, from one view of the Al accelerator, what | meant was you actually have
a serial and a task parallel workload ok and then you have data parallel workloads. So,
when you have a data parallel workload, it is very good for people to run it on a FPGA
and a VPU.

Whereas, if it is a serial and task parallel workload, these type of workloads are
effectively run through the CPU or a GPU and this all is in a coprocessor mode. So, you
have PCI express through which your CPU and the GPU actually communicates. So, |
hope it is clear that different ways of executing compute intensive workloads by different
types of accelerators right. So, this is what is a gist of how you actually can split your

workload among these various categories of accelerators.

56

(Refer Slide Time: 07:15)

Demo 1

* CPU related info
1. Iscpu : displays CPU information |,
2. cat /proc/cpuinfo

Intel(R} Core(TM) i7-4778 CPU @ 3.40GHz
3

2440.383
3909.0000
800.0000
6783.61
VI-x

3%

L2 cache: 256K
L3 cache:

NMA noded CPU(s): @7

* GPU related info
1. nvidia-smi : displays GPU information

2 o @ Quadro K5280 Off | 90000009:01:00.0 Off
2. gpustat : GPU information \ 25 GC P 13/ 1500 | 16848 / G126 & Default |

Now, let us try to do a demo and see if we are trying to work on a CPU ok. It might be a
multi core CPU and then you can work on different types of GPUs. So, let us try to
understand and do hands-on by these two commands right which are written here. CPU
related information if you want to gather, there is something called as Iscpu which
displays the CPU information and then you have this cat/proc/cpuinfo, these two are
going to give you the information about the CPU configuration of your system, the

snapshots are attached.

Similarly, when you see the nvidia-smi command it displays the GPU information and
you have this gpustat which gives a better information also a bit of it. So, let us try to do

this hands-on and see at three different places ok.

57

(Refer Slide Time: 08:33)

6 T D 6 Vew Wrise

et BB b >
b Demo 1
= * CPU related info
1. Iscpu : displays CPU information
2. cat/proc/cpuinfo —_—

* GPU related info
1. nvidia-smi : displays GPl
2. gpustat : GPU informatio

CEEEIEY | e 60 AmmmmmEy

So, I will just go to those places and see ok. So, now, | hope this particular command

prompt is visible to everyone.
Student: Yes, it is.

So now, this is a GPU system right, this just a workstation with a GPU ok. So, we will
try to do two things now, first we will try to understand what type of CPU this has got,
ok.

(Refer Slide Time: 09:07)

* CPU related info

1 Iscpu : displays CPUi® » Pocartan — dbuan-con -~ un 890256 - e

2 ulBislave-node:~§ 1scpu
2. aat/proc/cpuinfo Architecture: x86_64
CPU op-node(s): 32-bif, 4-bit
8yte Order: Little Endian
CPU(s):

8
On-line CPU(s) list: 8-7
Thread(s) per core: 2

Core(s) per socket: & | 1.
Socket(s): 1 e
. N4 node(s): 1 E=
*GPU related info vendor 10: Genuinelntel s
1. nvidia-smi : displays GPIC™ {gmy: & ‘";
2. gpustat : GPU informatio yyge) name: Intel(R) Core(TH) i7-4778 CPU @ 3.406Hz it
Stepping: 3 | e
CPU Mz: 1000.863 g
CPU max Miz: 3909.6000
Py min Wiz 2600 B
BogoMIPS: 6783.61 B
Virtualization: VT-x :J.
L1d cache: 3K -
L1i cache: 3K v
12 cache: 256K

o e e i L3 cache: 819

¢®0 AmmemaFy

320008 RBA"

58

So, if you see this Iscpu, the architecture is informed, we have what type of operational
modes this CPU can work on, what type of Endian-ism is there ok, how many CPU cores

are there in this ok.

(Refer Slide Time: 09:34)

0, e
e B i
6
68
Wodel name: Intel(R) Core(TM) i7-477 CPU @ 3.486Hz
P * CPU relatstepping: 3
1 lscpu s dOV 1009.843
4 * Sepy max miz: 3990.6600
2. cat/progeey min Miz: 800.0000
BogoMIPS: 6783.61
..... yo— Virtualization: VT-x
SR L1d cache: 3K
,,,,, | Lt cache: 3K
e L2 cache: 256K
L3 cache: 8192
o MMA noded CPU(s): -7
- Flags: fpu vme de pse tsc msr pae mce Cx8 apic sep mtrr pge mca on
. * GPU relate o pet psess clflush dts acpi mx fusr sse sse2 ss ht ta phe syscall nx pdelgh 24
= rdtscp 1n constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc ™ |

L. nvidia-smi & couid aperfuperf pni pclauladg dtesss monitor ds_cpl vax smx est ta2 sssed sdbg e
2. gpustat: GP! fma cx16 xtpr pdcm pcid sseé_1 sse4 2 x2apic movbe popent tsc_deadline timer ae s ™
s xsave avx fléc rdrand lahf_In aba couid_fault epb invpeid_single pti ssbd ibrs |
ibpb stibp tpr_shadow vnni flexpriority ept vpid ept_ad fsgsbase tsc_adjust bai
1 avx2 smep bni2 erms invpcid xsaveopt dtherm ida arat pln pts nd_clear flush 11—
d
uiBislave-node:~$ nvidia-saif]

v ww
i i W
i

£259

L Dl | 6 ¢O0 AmmemmEy

And then what is the megahertz speed of a CPU, what is the maximum speed, what is the
minimum speed ok and the model and how many threads per core. So, hyper threading
concept is there and how many cores per socket. So, this is a general thing about this

particular system right. Now, let us try to understand what type of GPU this has got.

(Refer Slide Time: 10:03)

€ T 9 g Vew woe b

B N Y - - —
{52 Eoil G
v A o v -

O P -~ spmzns ke
ood nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulgdq dtessé monitor ds_cpl vmx smx est tn2 sssed
sdbg fma cx16 xtpr pdem pcid sse4_1 ssed_2 x2apic movbe popent tsc_deadline_timer aes xsave avx fléc rdr
and 1ahf_ln abn cpuid_fault epb invpcid_single pti ssbd ibrs ibpb stibp tpr_shadow vaei flexpriority ept
pid ept_ad fssbase tsc_adjust bmil avx2 smep bmi2 erns invpcid xsaveopt dthern ida arat pln pts nd_clea
r flush_11d

uis@slave-node:~$ nvidia-sui
Wed Feb 2 17:19:26 2022

8 [0mmmmme

| NVIDIA-SMI 479.86 Driver Version: 479.86 CUDA Version: 11.4

I
| G Name Persistence-H| Bus-1¢ Disp.A | Volatile Uncorr. ECC

E ; | Fan Temp Perf Par:Usage/Cap| Menory-Usage | GPU-Util Cospute M.
itd ! I ! i
= | 8 Quadro K520 OFf | 0602000:01:09.0 OFF | off E
= | 266 41C P8 1w /1584 | OMB/ SLGKB| @ Default g
Tl b | Ml
===
=T = ‘| Processes: |
- wiiz | e 61 o PID Type Process name GRU Menory |
= | D Usage |

| ® WANA %57 6 /ust/lib/xorg/Xorg 66uiB |
| @ NANA 67 6 /ust/bin/gnome-shell 278 |

u18eslave-node:~§ ||

[T TS

59

Now, you see this; this particular system has a Quadro K5200 GPU. So, this tells about
the GPU number ok, the name and all of this like fan speed, then compute node, the
index ok all of this. So, this you can go through in detail when that afterwards, but you
get the information about this particular GPU. Now, let us try to go to another place now
which is RDGX.

(Refer Slide Time: 10:52)

& T S G ven Wt o

00d nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulodq dtessé monitor ds_cpl vax smx est tn2 ssse3
sdbg fma cx16 xtpr pdem pid ssed_1 ssed_2 x2apic movbe popent tsc_deadline_timer aes xsave avx fléc rdr
and lahf_ln abm cpuid fault epb invpcid single pti ssbd ibrs ibpb stibp tpr shadow vnmi flexpriority ept
vpid ept_ad fsgsp® & Apoyarion - sydape = shabuRR 107 M, nd_clea
r flush_l1d
e
m Feb 2 uday@dgx:~$ 1scpu
4 Architecture: B6_64
| WYIDIA-SUI 478, cw op-node(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s):
;,,\ 1w perfOn-line CPU(s) list:
Thread(s) per core:
====s==z==z===za COTE(S) per socket: 28
8 Quadro Ks2Socket(s): 2
2% 41C nm node(s): 20 4
jor ID Genuinelntel
6

8
79
2

”
Intel(R) Xeon(R) CPU E5-2698 v& @ 2.206Hz
1

*| Processes: g
| 6u 61 cr CPUM
o CPU max Wz

2695.897

1200.0000

! y
I CPU min iz
| 8 NA NABOQOMIPS: 4390.81 oy
| @ NA N/AVirtualization: VT-x

1d cache: 3K ;:
u18eslave-node:~§ L1 cache: 32K .

920NCaRBAC s\ 060 AmEmEEY
So, let us try to do the same thing again.

(Refer Slide Time: 11:13)

& T 5 6 v e

- — —
‘a;:«ﬁ Cx
N A e TN

00d nopl xtopology nonstop_tsc cpuid aperfaperf pni pclmilgdq dtessé monitor ds_cpl vax sax est tn2 ssse3
sdbg fma cx16 xtpr pdem peid ssed_1 ssed_2 x2apic movbe popent tsc_deadline_timer aes xsave avx fléc rdr
and 1ahf_In abn cpuid fault epb invpcid single pti ssbd xhrs ibob suba tor_shadow vnai flexpriority ept
vpid ept_ad fsgsb® '8 Seorurion - sigape s uhabyRie 10070, nd_clea
T ﬂush lld Stepping: 1

ode 2695.897

———— 3
| NVIDIA-SHI 479, BOGOMIPS:

L1d cache: 3%
;,n ym perfL1i cache: K

L2 cache: 256K
e L3 cCache: 51208K

8 Quadro K52MMA noded CRU(S): €-19,40-59
%% 410 ”m nodel CPU(s): 28-39,68-79

Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca ¢
! om0V pat pse36 clflush dts acpi max fxsr sse sse2 ss ht tm pbe syscall nx pdpelg
b rdtscp 1n constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_

! tsc cpuid aperfaperf pni pclmulqdq dteséé monitor ds_cpl vmx smx est tm2 sssed
‘| Processes: Sdbg fma cxlé xtpr pdcm peid dca sses_1 ssed_2 x2apic movbe popent tsc_deadline
U GI CI tiner aes xsave avx fléc rdrand Lahf_ln abm dnowprefetch couid_fault epb cat_

D 1D 13 cdp_13 invpcid_single pti intel ppin ssbd ibrs ibpb stibp tpr_shadow vnmi f1
expriority ept vpid fsgsbase tsc_adjust bmil hle avx2 smep bmi2 erms invpeid rt

|
|
|
I
|
|

® WA NAR Can rdt_a rdseed adx snap intel_pt xsaveopt cqn_Lic cqn_occup_Lic con_mba_tot oy
@ WA N/As) can_sbn_local dther ids arat pln pts nd_clear flush 11d | T
e udayidgu:-§ nvidia-sui o
waéslave-node: 41 ey

AONLAREAEE s 000 AmmmmBY

60

So, if you go to the DGX. So, this DGX has got 80 cores, 80 CPU cores that is what it
means right. And you have 20 cores per socket, then you have on node 0 CPU, what are
the numbers 0 to 19, 40 to 59 and node 1 CPUs 20 to 39 and 60 to 79. So, this is a DGX
server right, DGX 1. So, let us try to understand the GPU information about it ok.

(Refer Slide Time: 11:41)

-

sdbg fna :x' v avx fl6c rdr
nd Lanf_ln | rority ept
'm tota | O Nane Persistence-H| Bus-Id Disp.A | Volatile Uncarr. EOC | }'aor o hes
- ¢t i | Fan Temp Perf Par:Usage/Ca| Nesory-Usage | GPU-RiL Conpute W. |
v ren 23l ® Tesla VIO-SB... On | 0006G000:e6:00.0 OFf | o
[NA WC PO 6N/ 306w | GIMB / 518 | ex Default |
s WIDIA-SHT
| | 1 TeslsViS-SO2.. On | G0080060:67:00.0 OFf | o
————— - o0 wene [WA T PO G/ 3| @B/ SIS | & Defalt |
2 Fan T
..... ! : N T |2 Tesla viea-S00... On | 69809009:0A:08.8 OFF | 0
—— | | NA BC P 42¢ /36w | B/ 3518 | ex Default |
o Quad
o e | 3 Tesla VIGB-SNG... On | edee0eed:es:ed.d off | 0
CH | | [WA C PO AN /30| 6B/ 351868 | @ Default |
===} ‘A———-———-
_—=) | & Tesls VIBG-S02... On | G008069:65:00.0 OFF | 0|
[WA 4 PO 194/ 300 | JSGS/ 51868 | 1006 Default |
0 e |
e e Pre H
wiim : G ot | 5 Tesla VIOG-SOU... On | 80006908:86:09.0 OFF | 8|
= | T |WA G P 45/ 30| B/ 2S0MB| e Default |
[0 WAl 6 Tesla VIBG-SNG... On | eoeedeed:es:e0.0 off | 0
oo | & WAILNA 6 7o 1/ 36w | 16378 / 251068 | 1686 Default |
%, slave
______ ——

cO0 hAmmmmEy

1200LalB&r

= o — . e
et o &8 Cx
v D A o oo S L7
‘ ood nopl xtonaleav menstan tse fm- £ oni m!n\m« m M manitor ds ol vax sax est tn2 ssse3
sdbg fna cx ®48 avx fléc rdr
and Tanf 1n | 7 Tesls V18G-5002.. o | ao0aeoee-64-60.0 0ff | o | Bierity et
wpid ept_ad | WA 6IC P 860/ 060 | 15678 / 5108 | 1006 Default | Fois od cles
o r flush 11d
T s ulB@slave-ng
b | 6Py Mesory
| | wionsa | & PID Type Process name Usage
P I .
= @ radll © C python 83714i8
§ i :m Tl & BT C pythn 25214i8
..... § | | & 5386 € python 19118
-] i | & 782 C python 252148 |
® Qudrl 4 1MW C python 191148 |
: ik Qscﬁ 4 16667 € python 8818 |
1 | & um C python 362Mi8 |
' | & 32 C python 25248
] | 4 %8 C python 881i8
i | & 4701 C python 191148
‘| pre A4 599 C python 8818
: o ol b 6838 C pythen 48 B
H /| & 7688 C python 4148
i | & 8% C python 191148 -
H Al 6 33 C python 1637Mi8 @ ey
ey | 7 C python 15255Mi8 | sl
% =
[3

LEEEIEY | Gl cO0 hAmmmmEy

So, if you see this, this is a DGX and if you see the GPUs, you have got GPU 0, GPU 1,
GPU 2, 3, 4 and up till 7 and these are all Tesla V100s ok. And you have got the

61

memory, the utilization of that memory on that particular GPU ok. So, this is how the

information about your total GPU system ok you can gather using nvidia-smi.

And then for each of these GPUs which are the processes which are running ok, and how
many what is the memory which that particular GPU is using right, all of that

information could be gathered from these two commands right. So, Iscpu and nvidia-smi.

(Refer Slide Time: 12:55)

() Task and Data Parallelism
Task parallelism vs Data parallelism

Data Parallelism Task Parallelism

Input Data

Y
Task I Task Im | Task I Task Task’ Parallel
1 1 1 1 1 1 P’OCESSW@

Task2 | | Task

-0

&
g

v

Result Data

Y
o

£

So, now let us go to the next slide which talks about, which talks about the parallelism
which | had just told right, | had told about the task parallelism as well as the data
parallelism. So, let us try to understand it in brief as to when you talk of data parallelism
the data actually is split into various blocks and given to various tasks. So, there is a data

decomposition which actually happens too much.

And then this is how like this block of data goes to this task, this block of data goes to
this task, this block of data from third block goes to the third task right. And something
like this and then you have this aggregation of all of these results and then do this. This
data parallelism when you talk task parallelism let us say you have a small section of
data.

Then you actually split ok, that particular data which can be unique for each of the tasks
and then it is not necessary that here the tasks will use the same data or these tasks will

do the same work ok. So, basically it is the decomposition at what level, decomposition

62

at the task level, decomposition at the data level right. So, here these are different tasks,
you get the same data or you get different data for the same type of task right. So, this is

how actually is a basic difference between the task and data parallelism.

(Refer Slide Time: 14:44)

Second View of Al Accelerators

560 | Sycned | Data Aigorithms, &g HumanMachine Users
Q. | Daa | Conditioning Teaming (CoA) (Missions)
%8 — * Supervised Qe
;‘ . D Leamng
b S1) Information « Unsupenised | Knowecge | [Human- Insight
. Do F—>| Leamng | Machine |
Soures | unsincare| R maniasey [0 Machee u
| Daa _|[*0s8 * Renlocenet
CREGH— ey oy =
P i Soectum
|
) ! ! !
omr— @
o |« oV @ Nd
¥ §
v ¥ et .
CPUs GPUs U Newmoptc Custm Ouekm L

And from the second view of Al accelerators, what | meant was you can use these
accelerators, if you see here it starts with CPU, GPU, TPU and then all the way up till
guantum accelerators. So, the idea here is that all of these different levels of complexities
which are available in these accelerators could be used as different levels of your
programming applications right.

So, you actually can use with these your sensors, you can do data conditioning, you can
develop in your algorithms, you can do actually human in loop and all of that human
machine interaction at various levels, various complexities. The same hardware could be
used right and then you can have application development for various users, then you
talk about explainable Al, you can talk about matrices, you can talk about verification,

validation, policy, ethics safety training.

So, it actually is a very huge gamut of applications, course of action require requirements
and then the application or the area where you are working in and the hardware. So,
these are all linked right and this is what | thought like we would cover it as a second
view of Al accelerator right. Two views of Al accelerator, one is from the view of how

you are going to do computations only computational workload and the second thing is

63

how can it be used for other things right, like inferencing or data conditioning or

something processing the structured data or unstructured data.

Of course, they are all considered as data workloads, but the idea was at different places
you want different type of accelerators and different type of usage for those accelerators

right. So, that was the intention of this specific slide ok.

(Refer Slide Time: 16:57)

~ GPUs

= i,
z A
ETE D
A v
= Mgy

Core

L1 Cache

LCache §
L2 Cache

CPU GPU *
source(NVIDIA)

So, now let us try to understand the difference between the CPU and the GPU, which is

something like this. It is basically having multiple cores, the CPU and you have L1 cache
for each of the core, then you have controls unit for each of these cores. And then you
have got L2 cache, L3 cache and DRAM. For GPU you have got these huge massively
parallel processing cores with you and each of these ok, have got their own control and
cache and then you have L2 cache you have the DRAM, the way in which these are used
for massively parallel applications ok.

The way in which they are programmed are bit different, then yeah that is how basically
it is done. Not going into the details of them, but this is how the difference lies in the
CPU architecture and the GPU architecture.

(Refer Slide Time: 18:16)

FAVZA Y
IFHS

Gpus - For the Data Center For the Edge

NPTEL

1 2 £ KA B3 3 B R ED
44 4

Figure6. GA100 Full GPU with 128 SMs (A100 Tensor Core GPU has 108
SMs)

So, massively parallel programming is supported by GPUs and this is an example which
I thought, this slide shows if there is a GPU right for the data center and then the same
type or the similar family of GPUs ok for the edge. So, the idea was the difference is in
this design of how many cores you are working with right, how is the connectivity
between the CPU and the GPU stuff, because this is totally a embedded type of a Jetson
Xavier NX processor engine which require which also has a high-speed 10 and memory

fabric.

So, this is for the edge devices, wherein when we would be doing inferencing we will try
to show you how to use such devices for doing your inferencing portion of your problem
which you are trying to solve, right. And this is the GPU for data center you have B100s,
you have A100s right and so many of them which are to be used by data centers for
training your models right, coming up with lot of different type of approaches for

models.

Then you have basically so many other things which you can do on these GPUs, which
are basically for the data center right and you have this unveiling stuff and all of that. So,
this is the difference in the architecture and the design of these accelerators at the data

center level and at the edge level ok.

65

(Refer Slide Time: 20:00)

CPU vs GPU Processing

* Sequential reduction : ((((((13+27)+15)+14)+33)+2)+24)+6)

e TP

Source: https://www.eximiaco.tech/en/2019/06/ parallel-red

So, now let us try to understand a very basic thing of something which is called as
sequential reduction. For example, you have to add these numbers together. So, let us say
how does a sequential processing happen for it, it is something like you go on adding 13
plus 27. Then you get that and then you add 15 to it, then to 14 then 33, 2, 24 and 6. So,

this is a way in which a sequential processing happens.

So, if you see this particular type of reduction operation, you will see that you cannot do
anything in parallel, it cannot be done parallelly right, because this particular thing
depends on the sum of this and so on and so forth. So, this is basically a way in which a

CPU actually works for you, when you come down to a parallel reduction ok.

So, the idea is something like this, you can do this particular addition ok at one particular
on one particular core or one particular CPU or a processing element and then you can
do this on a different processing element and so on and so forth. And then you can go on

summing it up, right. So, this is a way of parallel reduction.

66

(Refer Slide Time: 21:22)

CPU vs Parallel vs GPU Processing

* Parallel Reduction with a GPU |

e
¢ ¢ ¢ o

BORORR]
v .. A
ROO0RO00
e
800000

Source: eximiaco o

lel-red

Now, how do you do this parallel reduction using a GPU? So, the idea is we are trying to
assume that you have got let us say N number of elements. So, you basically start with

N/2 threads. So, you use one thread for every two elements, each thread computes the

sum of the corresponding elements which

result ok, in one of the threads.

So, iteratively at each step the number of thread is going to be half ok and the step size
right, between the corresponding elements will go on doubling and ultimately you get the
sum as a sum of a array of all of this and then you get the result. So, this is how actually

you actually move from a sequential type of execution thinking to parallel and then to the

concept of GPUs with many threads ok.

67

Assuming N as the number of the elements in an array,
we start N/2 threads, one thread for every two elements

* Each thread computes the sum of the corresponding two

elements, storing the result at the position of the first
one.

* Iteratively, each step:

* the number of threads halved (for example,
starting with 4, then 2, then 1)

* doubles the step size between the corresponding
two elements (starting with 1, then 2, then 4)

+ after some iterations, the reduction result will be stored

in the first element of the array.

you are using it for and then you store the

(Refer Slide Time: 22:39)

CPU vs. GPU Processing - Training time

(Classification Problem’)

f Epoc Epor

~— Time taken for each epoch in CPU
Time taken for each epoch in GPU

FTH

&
828R

EXEEERED

g8egheERe

So now, this is actually a snapshot which shows about the difference in the processing
time for a small classification problem ok, which we ran on the GPU as against the CPU.
So, here if you see for epochs vary ranging from 1 to 99 ok, you see the time taken for
each epoch, on a CPU as against on a GPU right. So, you can see that you have got for if
there is only 1 epoch to be run you get about 154.26 seconds time to get executed on a
CPU as against 18.21 seconds on the GPU, right.

This was just to show you the time difference right between something which you run on
a CPU and something which you run on a GPU ok, all the way up till hundred epochs.
So, the idea was to just show you the difference, then show you the difference and then
you can assume that just for a very small classification problem right of some diabetic
retinopathy detection, just we tried doing it for some application ok. And this was just
idea to be given so that the time difference for execution it on a CPU and a GPU ok.

68

(Refer Slide Time: 24:19)

Train a convolutional neural network on multiple {+)

= GPU with TensorFlow.
Mean | < \
—[ow] [Jow

Y

[Va_naﬂ) —> (-pv

-8
-8

3
2
o
=
=4
(3

i

Source:htty ps: gitbooks pl)_multigpu_cnn.html

So now, if you are trying to train a convolutional neural network on multiple GPUs with
TensorFlow right, this is how it is going to happen. You have your CPU right and CPU
has to be the master and then you have these coprocessors which are your GPUs. So,
actually what is happening, when you try to develop a convolutional neural network or
for that matter neural network you will have gradients, losses, weights and all of this
right. And then you will have your own model right which basically would be running on
a GPU.

So, you have these variables, you have to calculate the mean, the updation of all of this
and then it has to be again fed back to your model for you know improving its accuracy
and so on and so forth. So, the idea is this is how it is going to be linked. So, CPU does
certain specific portion which is not actually effectively to be done by a GPU, because
GPU is compute hungry type of a processing element right.

You have to give it lot of computations, you cannot depend on this data intensive or io
intensive applications to be effectively run on GPU. So, that is one thing which you
should keep in mind, that not all applications are suitable suited to be running on a GPU,
they have to be massively parallel, massively parallel requirement should be there for
that type of application.

Then only it actually gives you the benefit and the advantage of trying to solve a problem

on a GPU. So, this is how it is going to actually be used when you are trying to go ahead

69

in these classes, because you will be working on various types of models, how do you

accelerate them and all of that. So, this is the basic idea of what is going to come.

This is example of a multi GPU type of a setup, you can have a single GPU type of a
setup and then you can have a cluster GPU with clusters right, that type of a setup. So, let
us try to see in the days to come as to how we can use this type of a setup also for

solving certain problems ok.

(Refer Slide Time: 26:43)

©) PARAM shivay - Super Computer of 837 TFLOPS)

Y cvu only compute Nodes

s —-H Y bish Memory Compute Nodes

0.0 K
W F
M';

I
n

¥ 6pu compute Nodes

So, this is the PARAM Shivay cluster at 1T Varanasi, this gives you about 837 teraflops,
if you see the configuration of this system right you have got about 4 login nodes, you
have 192 compute nodes and then you have GPU nodes with NVIDIA Tesla V100. So,
the same V100 which | showed you on the DGX.

So, DGX has got a very specific type of a setup which I will show you in the next slide,
but the idea here is here also we are using V100s, there are 11 numbers and then you
have actually InfiniBand switch and then the communication, then you have primary

storage of about 750 terabytes and 250 terabytes of archival storage.

Then you have got high memory compute nodes right. So, there are about 20 nodes, 800
cores all of this information is available on the NSM website, the reference is also given.

So, if you see the GPU compute node specifications here, you have got about eleven

70

nodes with 440 CPU cores and then you have got about 2 x V100 PCI accelerated cards,
each with 5120 CUDA cores right.

So, this is basically with each node which you are talking of. So, this is the total design
of your PARAM Shivay cluster which you have and then this is the DGX | server

actually.

(Refer Slide Time: 28:35)

GPU Memory 25563 (RGAGPY)

NVIDIA CUDA Cores. 40960

WD T Coreson Vi0based
y Systems) b

System Memory

Storage
Network

So, if you see this architecture, this is something which is having a NVLink right. So,
NVLink is a proprietary bus link ok which is specifically developed by NVIDIA and it
uses its NVLink in its servers right. So, if you see here you have got about 8 GPU cards
right and then you have PCle switches, then you have your CPU cores, then you have
NIC.

So, if you see this DGX 1 server, you have got 8 tesla V100s, you have got 256 GB of
memory, you have got dual 20-core Intel Xeon CPU processors. And then you have got
about 40960 CUDA cores, you have got 5120 tensor cores. You have these system

memory and the network right. So, this is the architecture of your DGX 1.

71

(Refer Slide Time: 29:55)

DGX - | - Tensor Cores

* The Tesla V100 GPU contains 640 Tensor Cores: 8 per SM (Streaming Multiprocessor).

* Each Tensor Core provides a 4x4x4 matrix processing array which performs the operation D=A * B + C, where A, B, Cand D are 4x4
matrices. The matrix multiply inputs A and B are FP16 matrices, while the accumulation matrices C and D may be FP16 or FP32
matrices.

FP16 0r FP32 FP16 P16 FP16 o FP32
Sum with
FP16 Full precision FP32 Convert to
storage/input product accumulator FP32 result

- 1]
._r—'® @I .
m

Now, let us try to go and see what is one of the very important features for these V100
GPUs. One of the very important things which is there is a tensor core. So, there is an
animation which is also running on the slide, which tells you about how basically these

tensor cores can process right; floating point operations.

So, FP16 or FP32 or INT4 and all so on and so forth. So, the idea here is you perform a
operation of the type A * B + C, which is equal to D. So, you are trying to actually do a
matrix processing ok, using arrays and then it is something like accumulation which you
are trying to do in the end right.

So, this is a generic representation of this and then you can work with any type of values,

it can be FP16 or FP32 and you can get the result in one of the various things ok.

72

(Refer Slide Time: 31:31)

DGX - | - Tensor Cores

One arithmetic operation that holds high importance is matrix multiplication.

Multiplying two 4x4 matrices involves 64 multiplications and 48 additions.

Convolution and Multiplication are the areas where the new cores shine.

Typically, the notion is that CUDA cores are slower, but offer more significant precision.
Whereas a Tensor cores are lightning fast, however lose some precision along the way.

All Tensor core does is that it accelerates the speed of matrix multiplication.

Tensor Cores are able to multiply two fp16 matrices 4x4 and add the multiplication product
fp32 matrix (size: 4x4) to accumulator (that is also fp32 4x4 matrix).

General Matrix Multiplication (GEMM)

Instead of needing to use many CUDA cores and more clocks to accomplish the same task it
can be done in a single clock cycle causing a dramatic speed up in machine learning
applications.

So, now why is a tensor core very important? So, if you see one arithmetic operation that
holds very high importance is a matrix multiplication. So, you tend to solve lot of your
problems using matrix multiplications and if you specifically see matrix multiplication of
let us say a 4 x 4 matrix, it involves about 64 multiplications and 48 additions.

So, this is where this tensor core is going to be of help to us. So, the whole GPU is made
up of two types of cores, one is the CUDA core and another one is the tensor core. So,
notionally if you see CUDA cores would be bit slower, but they will give you lot of
significant precision. Whereas, a tensor core right is very fast and along the
compensating for this speed right you lose some precision ok. So, all tensor core

basically does is that it accelerates the speed of your matrix multiplication.

So, tensor cores are able to multiply two fpl6 matrices 4 x 4 and add the multiplicative
product right and then to the accumulator. So, this is General Matrix Multiplication or
GEMM. One of the things is instead of needing to use many CUDA cores and more
clocks to accomplish task let us say, it can be done in a single clock cycle with lot of
dramatic speedup for applications which involve machine learning this that everything

ok on these tensor cores.

73

(Refer Slide Time: 33:46)

@ DGX - | - Tensor Cores

(a) (b) (c)

Equivalent matrix multiplies for (a) forward propagation, (b) activation gradient calculation, and (c)
weight gradient calculation of a fully-connected layer.

* Tensor Cores in CUDA Libraries : cuBLAS uses Tensor Cores to speed up GEMM computations (GEMM is
the BLAS term for a matrix-matrix multiplication); cuDNN uses Tensor Cores to speed up both
convolutions and recurrent neural networks (RNNs)

_.» CUDA - WMMA (Warp Matrix Multiply-Accumulate)
I e

So, this is how we can think of actually trying to create ok easy to understand
representations of whatever we would be using in our deep learning or machine learning
type of model development. You can show it as an equivalent matrix multiplications for
forward propagation or your activation gradient calculation and then weight gradient

calculation, when you are trying to do it for a fully connected layer in the end.

So, you can see here that these are the matrices right, size of the matrix and then you
have these output activations input activation weights and all of that put in a manner
which could be easily right executed by tensor cores. So, if you see that way how
basically people could use tensor cores is that you can use tensor cores in CUDA
libraries, you have this cuBLAS which uses tensor core to speed up the GEMM

computations.

And then cuDNN also uses tensor cores to speed up both the convolutions and the
recurrent neural networks or RNNs. So, this is how you could specifically start using
tensor cores for your own application development right. And then there is something
which is called as CUDA Warp Matrix Multiply Accumulate or WMMA, this will help

you to actually use tensor cores very fast.

74

(Refer Slide Time: 35:57)

DGX - | - Tensor Cores

* DLSS -- Deep Learning Super Sampling

* Basic premise is simple: render a frame at low-ish resolution and when finished, increase
the resolution of the end result so that it matches the native screen dimensions of the
monitor (e.g. render at 1080p, then resize it to 1400p). That way you get the performance
benefit of processing fewer pixels, but still get a nice looking image on the screen.

Low resolution
render

High resolution
output

And then how these tensor cores could be used for various other applications right. So,
here there is something which is a application of a sampling thing right. So, you have
something called as a deep learning super sampler. So, what effectively people have tried
to do is that you render a frame at a very low resolution right and then once it is finished
right you increase the resolution so that matches with your screen dimensions of the

monitor.

That way you get the performance benefit of processing fewer pixels, but still get a very
nice looking image on the screen right. So, this is actually how tensor cores are being
used ok. So, now there is a demo which we thought we will show you of matrix
operation right on a hardware which has tensor cores and | will like to show it to you and

this is how the result will look like.

75

(Refer Slide Time: 37:50)

If you see this we are trying to use three matrices, 4096 x 4096 each then you do the

computation which is the same thing which we were thinking of D is equal to A* B + C.

(Refer Slide Time: 38:18)

~ Benefits

* Sustainable

* Speed

* Scalability

* Heterogeneous Architecture
* Qverall Efficiency

And we have done that on GPU without tensor cores and with tensor cores. So, let me
just take you to that this thing and then I will just execute and discuss that program as

well in brief.

76

(Refer Slide Time: 38:43)

So, let me just, 1 minute, give me a sec yeah ok; so.

(Refer Slide Time: 39:28)

] om0 KROOGONS L

4R0NLalEcT s\ 000 AmmmFm=)

77

(Refer Slide Time: 40:34)

"7 " GU nano 4.8 kernel.cu

0 B0 KOSGONE d

9E0NGaREET s\ 060 AmmmFmmy

Student: Can you increase the font size?

1 minute sir, I will do that.

Student: Yes, this is good, this is good.

Ok, sure so.

Student: You can explain what you have fired and what is happening.

Yes, | will explain the program as well. The idea is that we are trying to compute ok, D =
A * B + C with tensor core and without tensor cores right. So, let me just show the
program once, there are three programs actually. So, this is a sample program which
talks of trying to use something which is called as WMMA. So, this actually means warp
matrix multiply and accumulate. So, the idea here is you are trying to use these matrix

tile dimensions.

78

(Refer Slide Time: 41:14)

"7 " GNU nano 4.8 kernel.cu

o MO ROOQIN o

WAONEAREET s\ 060 AmmmBmmy

So, this is actually WMMA initialization, then you work with tensor cores using
WMMAF16TensorCore type of thing instead of just CUDA cores. | will show you a
GPU program also, there is a GPU program also which does not use this tensor core
right.

Of course, you use your blockld, block dimension threadld which gives you all of these
right the same thing, but here you are trying to work with WARPs right and that is why it
is called as WARP MMA and here it is basically trying to understand a very basic same
thing which you try to do, but you are using the CUDA tensor thing here right. So, which

| just now showed you.

79

(Refer Slide Time: 42:15)

"7 7 G nano 4.8 kernel.cu

om0 KOOGON .

MADOEAREET 5\ 600 AmmmPmmy

So, | will show you a GPU program also, | am not going into the details, but it is a
CUDA program. So, if you can understand CUDA programming you will understand.
But here the idea is to have this particular thing used ok, which is a additional thing
which has been now added into your CUDA thing ok.

(Refer Slide Time: 42:40)

kernel.cu

om0 5006 Q00 .:

BA00CalEcAT s\ 060 AvemFm=y

So, this everywhere uses this tensor core and then you can run it using this same grid
dimension, block dimension type of stuff ok and then you synchronize it and then you do

things.

80

(Refer Slide Time: 42:58)

"7 " G nano 4.8 kernel.cu

om0 RO g el

uﬁ@%all@m s 70008 a--ql-n

So, this is how it is and then this is a GPU program without the tensor core, wherein you

just do CUDA matrix addition, use the same block Idx block dimension.

(Refer Slide Time: 43:16)

T "GN nano 4.8

O:H“FOO"GQ

@05*“@51 s 1080 Bll!l.-l

And then come up with this, then you do the same thing and then you run this using the
grid dimension, block dimension type of thing and then this is again a very basic
rudimentary CPU version, which talks of doing the same thing and then trying to do the

multiplication and then stuffs like that; so, yeah.

81

(Refer Slide Time: 43:32)

€ Tovewr it Corecoe Gom Wedow Wb 0@ s el B s 0=

"7 " G nano 4.8 kernel.cu

s m0 5006800 o

42000 alEcd" s\ ¢00 AmmmFmm)

So, this is just trying to also use the unified memory and yeah, so that is it. So, | thought
like this is just a idea of how basically people could use tensor cores and how they can
use CUDA cores for that matter and this was just the idea of doing things. And then this
was the idea of trying to tell the thing that people can start programming using the tensor

cores and then we can actually see certain other things on the DGX.

And we can do all of those things as we go ahead in the days to come, we will try to
actually execute lot of programs. And then and then from the benefits point of view right,
sustainability is one thing, the speed is another thing, scalability, heterogeneous
architecture you could utilize, then the overall efficiency right improves. So, these are
certain specific benefits of trying to go in for GPU programming and then, yes. So, we

can actually see some more things in; so, ok.

82

(Refer Slide Time: 45:10)

S—————Ts
python 19118 |

python 25218 |
python 191348 |
python 838 |
python 3627Mi8 |
python 2521Mi8 |
python 831MiB |
python 191248 |
python 81Mi8 |
python 4728 |
python SG1IM4B |
python 1912418 |
python 163678 |
python 15255448 |

Afinished, increase
mensions of the
et the performance
) root(19:1) root(19114) roo the screen.
) root(

So, this is a thing which I had left actually so I thought I will share that with you. So, if
you see the gpustat, gpustat again gives you what which GPU are going to use right,
Tesla V100, 32 GB of memory, then the temperature at which it is working and then how
much percentage it is being utilized with. What are the various programs which are
running, how much of it is being utilized, how much memory is being utilized by which

program.

So, this is a way of trying to actually see it in a different format instead of trying to use
nvidia-smi. So, these are certain things which you can go on trying and then do things.

83

