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Lecture - 29
Accelerated TensorFlow - XLA Approach Part - 2
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So, now first we will talk about how to use TensorFlow for your TPU environment ok.
So, this is the very very important for your TPU cluster if you want to use TPU clusters.
So, basically for your colab you can go to your runtime and change runtime type to your
as simple as that. So, basically in by default TPUs will be available for you and you can

use that.

Now, how we can use that and we will use that with different strategies ok. So, basically
XLA mixed precision tf.function run time and so on distribution strategy right. So, let us
see all of them in one place ok. So, importing the things here, so all the things are
imported and then you just see which profiler which TPU version is being used we are

just printing here and using auto time for time displays just few libraries.
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© # Checking if TPU is available - Change Runtine Type to TPU in Google Colab

resolver = tf.distribute.cluster_resolver. TAUClusterResolver(tpu="") # For Google Colab
o tf. config. experinental o_cluster(resolver)
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g t1. function(jit_compile=True)
def xla(a,b,c):
= return tf.reduce sum(a + b * ¢)

Now, checking if TPU is available and changing the runtime to your TPU. So, basically
distribute.

Student: Sir.
TPU cluster resolver, yes.
Student: Sir we cannot view the text properly. So, requesting to increase the size.

Yes. So, | hope this is visible now. So, till now whatever we have talked about is
basically the imports and setup that is very simple, but now what we are going to see is
that how to define the how to use the TPU for your devices and distribution strategies

and so on.

So, we are defining the resolver how we are defining here TPU cluster resolver that we
have seen in the previous class experimental connect to cluster we are connecting it and
then TPU initialization code right. So, to just at the beginning you need to initialize your
TPUs. Now by the way XLA is very good for your TPUs ok because many fused
operations that you are you the XLA will generate is directly supported onto TPU
because TPU is basically from Google TensorFlow is from Google XLA is from Google.

Now, you connect everything ok.
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INFO:tenso
Q Found TPU at:
tive: 12.2 5

inished initializing TPU systes.
ogicalDevice(nane='/job:worker/replica:/task:8/device:TPU:6', device type='TPU'), LogicalDevice(nase='/fob:worker/r
arted: 2022-83-62 +00:06)

f.function(jit_compile=True)
¢ xlafa,b,c):
o tf.reduce sum(a + b * ¢)

time: 2.36 ms (started: 2622-83-82 14:58:30 +68:00)

h tf.device('/TPU:6'):
tf.conpat.vl.Session() as sess w xla:
print(sess w xla.run(ny_func xla(tf.ones([4,4]),tf.ones{[4,4]),tf.ones([4,4]))))

e P mR> Do
o

C 2.8
tine: 424 ms (started: 2022-83-62 14:58:34 +60:00)

» strategy = tf.distribute. TPUStrategy(resolver)

INFO: tensorflow:Found TPU system:
INFO: tensorf1l
INFO: tensorfl Num TPU Cores: 8
INFO: tensorfl N

INFO: tensorfl Num TPU Workers: 1
] INFO:tensorflow:*** Num TPU Workers: 1

m

We will see what kind of performance we are getting here tf.function JIT compiler equal
to True.
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AT("FoUna TPU 3T: {}".TOmAT(device nane})

G Q INFO: tensorflow:Deallocate tpu buffers before initializing tpu system
INFO: tensorflow:Deallocate tpu buffers before initfalizing tpu system

é INFO: tensorflow: Init1alizing the TPU systen: grpc://10.116.171.18

?

INFO: tensorflow: Initializing the TPU system: grpc://10.116
INFO: tenso inished initializing TPU systen.

INFO: tensorflow:Finished initiali
Found TPU at: [LogicalDevice(nane
tive: 12.2 s (started: 2622-63-62

P systen.
worker/ replica:0/task:8/device:TPU:9", device type='TPU'), LogicalDevice(nane="/job:worker/r
15 +09:60)

o

¢ xla(a,b,c):
return tf.reduce suafa + b * ¢)

[ 1
B gtt.function(jit_conpile=True)
]

q time: 2.36 ms (started: 2622-63-62 14:58:30 +69:06)

with tf.device('/TPU:6'):
with tf.compat.vl.Session() as sess w xla:
L print(sess w xla.run(ny_func xla(tf.ones([4,4]),tf.ones([4,4]),tf.ones([4,4]))))

328
time: 424 ms (started: 2022-63-02 14:58:34 +60:00)

m

O strategy = n.msmbm.rwsrlategnreso\ven

So, this is how we will enable here now first we are just wrapping up with some
function. So, this is one function that we are going to reduce. So, basically this is the
graph computational graph and we are running it with the TPU that is it right.

So, all the TPU information you are getting and then you can see the runtime here and
the strategy that we have to defined before right. So, the strategy we have defined here
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distribute strategy for your TPU and we are using that strategy for running this particular
function that we have created.
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Q Q n(jit_compile=True)
xlafa,b,c):
% 8 tf.reduce sum(a + b * ¢)
= time: 2.2 ms (started: 2022-63-62 14:58:41 +00:00)
- tvenegl

° 2 = strategy.run(my_func xla, args=(tf.ones([4,4]),tf.ones([4,4]),tf.ones([4,4])))
print(z)

G PerReplica:{
0: tf.Tensor(32.0, shape=
1: tf.Tensor(32.8, sh
2: tf.Tensor(32.0,
3: tf.Tensor(32.8,
9 4: tf.Tensor(32.9,
5: tf.Tensor(32.9,
e 6: tf.Tensor(32.8, sh:
7 tf.Tensor(32.8, shape=

yoe=float32),

ype=float32),
dtype=float32),
dtype=float32)

}
tive: 1.11 s (started: 2622-03-62 14:58:43 +60:60)

~ MNIST MODEL WITHOUT TPU AND WITHOUT XLA

So, this is a very simple example how you will actually create the strategy enable the

XLA compiler and run ok.
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o~ MNIST MODEL WITHOUT TPU AND WITHOUT XLA

# Checking Versions

ingort tensorflow as tf
tf._version_

# Checking Python Version
! python --version

Python 3.7.12
time: 127 ms (started: 2022-63-62 14:58:50 +60:00)

© !»ip install ipython-autotine # For autosatic Tise Display
%10ad_ext autotine

[}

m

, Requirenent already satisfied:
Requirement already satisfied:
Requirement already satisfied:
Requirenent already satisfied:
Requirement already satisfied:
Requirenent already satisfied:
Requirenent already satisfied:
Requirement already satisfied:
Requirement already satisfied:

ipython-autotime in /usr/local/lib/python3.7/dist-packages (6.3.1)

ipython in /usr/local/lib/python3.7/dist-packages (fron ipython-autotise) (5.5.8)
decorator in /usr/local/Lib/python3.7/dist-packages (from ipython->ipython-autotine) (4.4.2)
pexpect in /usr/local/lib/py 7/dist-packages (from ipython->ipython-autotime) (4.8.8)
pygnents in /usr/local/ib/p 7/dist-packages (fron ipython->ipython-autotine) (2.6.
simplegeneric>d.8 in /usr/lo ython3.7/dist-packages (from ipython->;
pickleshare in /usr/local/lib/python3.7/dist-packages (from ipython->ipythor
traitlets>=4.2 in /usr/local/lib/python3.7/dist-packages (from ipython->ipython-autotime)
setuptools>=18.5 in /usr/local/lib/python3.7/dist-packages (from ipython->ipython-autotim

But let us take a concrete example for model training where you will apply all this. So,

basically here what you are seeing that all the necessary imports and version checking
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and that is fine. Again, TensorFlow input for the data set because we will use tfds for
importing the data sets.
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# Inport Necessary libraries

inport tensorflow as tf
inport tensorflow datasets as tfds # TENSORFLOW DATASETS

time: 1.7 ms (started: 2022-03-62 15:06:21 +00:00)

Fom s pPpodn=E

q # Number o
NUM_CLASSE!
[+ time: 4.53 ms (started: 2029-83-62 15:51:43 +09:60)
» )
# Loads MNIST dataset
(ds_train, ds_test), ds_info = tfds.load('mnist’, split=['train', ‘test'], shuffle_files=True,as supervised = True, with info = Tru
=} time: 672 ms (started: 2622-83-02 15:51:44 +60:60)
=

Whatever the data set that we want to load here we are loading mnist datasets splitting
train test and shuffle True supervised True all these things we are setting up good.
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https://ww. tensorflow.org/datasets/keras example rooBBDE

& ize img(inage, label):

**Normalizes images: 'uint8' -> floatd2'.""
> return tf.cast(isage, tf.float32) / 255., label

ds_train = ds_train.map(

=} put

ds_train.cache()

ds_train = ds_train.shuffle(ds info.splits['train’].nun exasples)
ds_train = ds_train.batch(266)
ds_train = ds_train.predetch(tf.data. AUTOTUNE)

sl A N X

[ time: 59.2 ms (started: 2022-83-62 15:51:47 +06:00)

# Build an evaluation pipeline

B ds_test = ds_test.map(
= normalize img, num parallel calls=tf.data.AUTOTUNE)

Then we are normalizing the data and setting up one input pipeline. So, that we talked

about previous section also that map is basically transformation with this normalized
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function right. And the number of parallel calls we are letting how many number of

parallel calls that will be generated.
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time: 59.2 ms (started: 2022-83-82 15:51:47 +68:06)

> Qg PN

O ¢ Build an evaluat

ds_test = ds_test.nap(
normalize img, num parallel calls=tf.data.AUTOTUNE)
ds_test = ds_test.batch(266)
o ds_test = ds_test.cache()
ds_test = ds_test.prefetch(tf.data. AUTOTUNE)

ECIErCELI TS

, tine: 17.9 ms (started: 2622-63-02 15%1:49 +69:00)

=]

model = tf.keras.nodels.Sequential([

9 tf.keras. Layers. Flatten(input_shape=(28,
= tf.keras. layers.Dense( 128, activation="re tas
3 t1..keras. Layers.Dense(NUM_CLASSES, activ
n
»
nodel.summary()
ned 1
] 21k

ds_train we are getting the cache enable, shuffle batching prefetching everything is there.
So, you now know how to do that now build an evaluation pipeline. So, basically just
checking here and creating the model here for the sequential model simply we are
creating three layers of model one flattening layer that is just taking the input and
flattening it two dense layers are there and this is the output, output of that is soft max
function ok.
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O flatten 7 (Flatten) (None, 784) 0 trvoBSDN
2}

dense_14 (Dense) (None, 128) 168488

dense_15 (Dense) (None, 18) 129%

”

: Total params: 161,778
. Trainable params: 101,776
)

9

=} Non-trainable params: 8

tine: 79.6 ms (started: 2622-83-82 15:51:51 +06:06)

# Training without XLA Compiler

»
2 # c or: Detected a call to 'Model.fit" inside a "tf.function’. "Model.fit is a high-level endpoin
# Please no call to “Model.fit" outside of all en g "tf.function’s
# Note that vou can call a 'Model’ directly on “Tensor's inside a ‘tf.function’ like: "model(x)

So, model.summary () as you can see here we have three layers here and the summary.
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- se_categorical_crossentropy’,
keras bptinizers.Adan(),
C’ uracy']
[ time: 17.8 ms (started: 2022-63-82 15:51:55 +68:00)
®»
model. fit(ds train,
epochs = 2,
validation data=ds_test)
- Epoch 1/2
===] - 65 12ms/step - loss: 0.4128 - accuracy: 0.8880 - val loss: ©.2220 - val accuri

Now, at first you just to see how it is performing we are setting the
tf.config.optimizer.set _ jit (False ), this is another way to set JIT compiler equal to True
or set JIT compiler equal to False. So, we are disabling XLA because we have enabled

previously for that toy example learning then model equal to compile. So, basically, we
are compiling the model.
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===] - 35 16ms/step - loss: 0.1852 - accuracy: 0.9470 - val loss: 8.1566 - val accuracy: 0.9533
<keras.callbacks.History at 8x7f33f61275d0>time: 8.76 s (started: 2022-63-62 15:51:57 +6:66)

v
-
i

’ ~ MNIST MODEL WITH TPU AND XLA ENABLED
WITH ONE TPU DEVICE

USE tfconfig.optimizer.set_jitTrue) TO ENABLE XLA

AS @t.function(jit_compile = True) NOT POSSIBLE FOR model it)

© # Checking Versions

import tensorflow as tf
print (“Tensorflow Version®,tf. version )

e (DM » P o
ul

# Checking Python Version
! python --version

[+ TensorFlow Version 2.8.0
Python 3.7.12

m

!pip install ipython-autotime # For automatic Time Display
%load ext autotine

And now we are creating the training pipeline for that and we are using we will be using
since you can see that here we have generated the model using the sequential api. So, it is
I mean highly likely that you will use model.fit () ok.

So, but as you can see here as tf.function (jit_compile = True) is essentially trying to
make the computational graph and model.fit() is actually again you are doing that, but;

that means, tf.function runtime is not supported for your model of fit.
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6 File Edit View Insert Runtime Tools Help
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ol - # Checking 1f TPU 15 available

resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu="")

tf.config.experinental connect to cluster(resolver)
é o # Thislis the TPU initialization code that has to be at th
?

tf.tpu.experinental . initialize tpu systes(resolver)

device nane = tf.config.list logical devices('TPU')
print(*Found TPU at: {}'.forsat(device nane))

o

=

% INFO:tensorflow:Deallocate tpu buffers before initializing tpu system.

E INFO: tensorflow:Deallocate tpu buffers before initializing tpu system.

INFO: tensorfLow: Initializing the TPU systen: grpc://19.181.138. 122:8478

M INFO: tensorfLow: Initializing the TPU systen: grpc://10.181.138.122:8478
il INFO:tensorflow:Finished initializing TPU systen.
INFO: tensorfLow: Finished initializing TPU systen.

q Found TPU at: [LogicalDevice(name: worker/replica:8/task:0/device:TPU:8', device type='TPU'), LogicalDevice(name='/job:worker/r
time: 11.4 s (started: 2022-83-63 15:14:52 +00:60)

» # Data Required

SOFTMAX FUNCTION
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So, if you are using model of fit you will not be able to enable the XLA.

importing the tf and data set and running the resolver initiating the devices right.
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» time: 3.51 ms (started: 2622-63-83 15:15:06 +60:00)

=]

# Loads MNIST dataset
(ds_train, ds_test), ds_info = tfds.load('mnist’, split=['train’,

time: 1.28 s (started: 2622-63-83 15:15:69 +60:00)

ds_info.splits['train'].nun_examples) # Size of Train
int(ds_info.splits['test'].nun_examples) # Size of Test Data

66008
16660

07:47)

£ VIDHYA XLA TPUipynb
File Edit View Insert Runtime Tools Help

+ Code + Text Connect +

0" nt(ds_info.splits['test'].nun examples) # Size of Test Data

[ 60600
10660
tine: 6.42 ms (started: 2022-63-63 15:15:13 +60:06)

Training Pipeline
/. tensorflow. org/datasets/keras exanple

def normalize ing(image, label):
***Normalizes inages: ‘uint8’ -> "floa
return tf.gast(inage, tf.float32) / 25!

ds_train = ds_train.map(
normalize img, num parallel calls=tf.data. AUTOTUNE)
ds_train = ds_train.cache()
ds_train = ds_train.shuffle(ds_info.splits|'train'].nun_examples)
ds_train = ds_train. repeat()
ds_train = ds_train.batch(206)
ds_train = ds_train.prefetch(tf.data. AUTOTUNE)

time: 68.3 ms (started: 2022-63-83 15:15:15 +68:00)

B comment 2% Share 3 °

test'], shuffle files=True,as supervised = True, with info = Tru

9

4

iy,
ol
Uaaspanr”

=
]
b |
m
m

/7 A

So, just

So, all these for TPU that you have seen so far. Just getting some data about the image

size and image classes | can see 60000 images up there for your train and test data is

10000 and so forth.
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0 ine

# based on

izes inages: ‘uint8’ -> "float32".***
tf.cast(image, tf.float32) / 255.,

E ds_train = ds_train.nap(
o normalize_ing, num parallel_callsstf.data.AUTOTUNE)
ds_train = ds_train.cache()
E ds_train = ds_train.shuffle(ds_info.splits|'train'].nun_exanples)
ds_train = ds{ram,reneat()
F] ds_train = ds train.batch(260)
== ds_train = ds_train.prefetch(tf.data. AUTOTUNE)
9

time: 68.3 ms (started: 2022-63-63 15:15:15 +60:00)

L]

# Bulld an evaluation pipeline

ds_test = ds_test.nap(
normalize img, num parallel calls=tf.data.AUTOTUNE)
ds_test = ds_test.batch(268)
ds_test = ds_test.cache()
ds_test = ds_test.prefetch(tf.data. AUTOTUNE)

m

= time: 30.6 ms (started: 2822-83-83 15:15:17 +69:06)

And then this data input pipeline normalize which is used in map in cache shuffle repeat

batch prefetch.
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ds_train = ds_train.batch(208) rvoB800
0 ds_train = ds_train.prefetch(tf.data. AUTOTUNE) e &8

time: 68.3 ms (started: 2022-03-63 15:15:15 +06:00)

5 © #8uild an evaluation pipeline
"

ds_test = ds_test.nap(

R normalize ing, num parallel callsstf.data. AUTOTUNE)
ds_test = ds_test.batch{26)

B ds_test = ds_test.cache()
ds_test = ds_test.prefetch(tf.data. AUTOTUNE)

o

% time: 3.6 ms (started: 2022-63-63 15:15:17 +80:60)

=}

with tf.device('/TPU:6"):
nodel = tf.keras.nodels. Sequential([

tf.keras. layers.Flatten(input_shape=(28, 28, 1)), # layer in Keras reshapes the tensor to have a shape that is equal to
tf.keras.layers.Dense(128,activation="relu'), # Dens nts the operation: output = activation(dot(input, kernel) + bias) -
» tf.keras. Layers.Dense(NUM CLASSES, activations'softsax’)

n

nodel . sumnary()
=] # Input e S
+F

# Dense Layer

And then we are building the evaluation pipeline now. So, basically calling the functions
here again using the tf.device ().
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EE
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F as a loss f
tected a call to "Model.fit™ inside a "tf.function Model.fit is a high-level endpoint that mana
» outside of all enclosing "tf.fu
2 'Model’ directly on 'Tensor's inside a "tf.fur like: “model(x)
# ¥We have to customize the training loop
2 nodel . conpile(
loss="sparse_categorical crossentropy’,
= optimizer=tf.keras.optimizers.Adan(),
el

But here now we are enabling the JIT set JIT equal to True. So, if you see the earlier

training for that matter.
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A E L
# Size of ea ut image, 28 x 28 pixels
Q Q IMAGE SIZE 2
# Number of ct nuaber labels, [8..9]
% 8 NUN_CLASSES = 10
) time: 3.51 ms (started: 2822-63-03 15:15:06 +69:00)
%
E # Loads MNIST dataset
=}
a (ds_train, ds_test), ds_info = tfds.load('mnist’, split=['train’, ‘test'], shuffle files=True,as supervised = True, with info = Tru
time: 1.28 s (started: 2022-83-63 15:15:09 +06:60)
F] N
nt(ds_info.splits['train'].num_examples) # Size of Train Data
q print(ds_info.splits['test'].nun_examples) # Size of Test Data
o 60060
1000
» tine: 6.42 ms (started: 2022-83.63 15:15:13 +60:00)
ing Pipeline
. tensorfLow. org/datasets/keras_example
# Only shuffle and repeat the dataset in training. The of having an
# infinite dataset for training is to avoid the potenti. artial batch
A

So, if you see here where we are actually using the modeling ok. So, where we have
repeated yeah ok. So, ok this is the model summary and yeah.
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© vith tf.device("/TPU:0'): Ave
Q nodel = tf.keras.models.Sequential ([

tf.keras. layers.Flatten(input_shape=(28, 28, 1)), # A Flatten layer in Keras reshapes the tensor to have a shape that is equal to
E 3} tf.keras.layers.Dense(128,activation="relu’), # Dense implements the operation: outpi activation(dot(input, kernel) + bias) -
tf.keras.layers.Dense(NUM_CLASSES, activation='softmax')

2 n

nodel. sumary()
a] # Input Tnage Size = 28°28
# Flatten Laye 28°*28=784

# Dense Layer:

& Input = 784

# Output = 128 (As mentioned in code)

# Param # = 784 * 128 + 128(bias) = 100480
# Similarly Next Layer

# Training with b Conpiter

To train a model with fit(), you need to specify a loss function, an optimizer, and optional
For regression nodels, the comsonly used loss function used 1s mean squared error function
while for classification models predicting the probability, the loss function most commonly used is cross entropy.
sparse_categorical_crossentropy: Used as a loss function for multi-class classification nodel where the output label is assigned
A netric is a function that 15 used to judge the performance of your model. Metric functions are similar to loss funct
except that the results from evaluating a metric are not used when training the model

sone metrics to monitor

-

m k. config.optinizer.set_jit(True) # Enable XLA.

X
)

ottty

€3 C & cmmmgmgennion . - >e Q:

0y & VIDHYA XLA TPUpynd
File Edit View Insert Runtime Tools Help

+Code + Text

° # Output = 128 (As mentioned in code)

Q Q # Paran # = 784 * 128 + 128(bias) = 108489
# Similarly Next Layer
a o # Training with XLA Copiler
Ll # To train 2 model with fit(), you need to specify a loss function, an optinizer, and optionally, sove metrics to monitor

# For regression nodels, the commonly used loss function used 1s mean squared error function

B # while for classification models predicting the probability, the loss function most commonly used is cross entropy

# sparse_categorical_crossentropy: Used as a loss function for multi-class classification nodel where the output label is assigned
# A metric 1s 3 function that is used to judge the performance of your model. Metric functions are similar to loss functions,

g # except that the results from evaluating a metric are not used when training the model

|t config.optinizer.set_jit(True) # Enable XLA.

1
q # @tf.function - Runtime€Error: Detected a call to 'Model.fit' inside a "tf.function’. "Model.f
# Please move the call to ‘Model.fit’ outside of all enclosing “tf.function's.
# Note that you can call a "Model™ directly on ‘Tensor's inside a ‘tf.function' like: “model(x)
# We have to custonize the training loop

15 2 high-level endpoint that mana

nodel.conpile
loss='sparse categorical crossentropy’,
optimizer=tf.keras.optinizers.Adan(),
setrics=[‘accuracy']
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“ dense (Dense) (None, 128) 106480
Q
dense 1 (Dense) (None, 18) 129%

Total parans: 161,778
7 B Trainable parans: 161,770
Non-trainable params: 0

time: 161 ms (started: 2622-83-83 15:15:20 +00:80)

° # YOU CAN USE THIS CODE SNIPPET FOR DISTRIBUTION OF TRAINING ACROSS AVAILABLE TPUs
strategy = tf.distribute. TPUStrftegy(resolver)
w;twkuaxegy.smoe(): # creating the model in the TPUStrategy scope means we will train the model on the TPUs

model = tf.keras.models.Sequential([
tf.keras. layers.Flatten(input_shape=(

28, 1)), # A Flatten layer in Keras reshapes the tensor to have a shape t

tf.keras. layers.Dense(128,activation="relu'), # Dense implenents the operation: output = activation(dot(input, kernel) + bias)
L tf.keras.layers.Dense(NUM_CLASSES, activation='softmax’)
n

nodel. sunnary ()

So, set JIT True and compile. And then we are using the distributed strategy ok TPU
strategy, because we want to distribute all the TPUs that is available here. And thus

inside this strategy scope we are defining the model sequential.
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0 rvoBBQN
o] o |
nodel . susnary()
21 nage Size = 28%28

S 1 Layer = 28 * 28 = 784

7 B

28 (As mentioned i
784 * 128 + 12
Next Layer

# To train a model with fit(), you need to specify a loss fun

[ 1
5 # Training with XLA Coapiler
ol
9

crossentropy: Used as a loss fun
s used to judge the pe
evaluating a metric are no!

functions are similar to

t used when tra the model

»
tf.config.optimizer.set jit(True) # Enable XLA
# @tf.functit untimel r: Detected a call to 'Model.fit’ inside a "tf.function’. "Model.fit is a high-level endpo
# Please M fit" outside of all en H

[

# Note that yo
# We have to customiz

directly on ‘Tensor's inside a 'tf.function’ like: 'model(x)".
the training loop

610



(Refer Slide Time: 09:24)

€3 C § clmahmgenn 5 )

K & VIDHYA XLA TPUipynb

File Edt View Insert Runtme Tools Help Last 2

+Code +Text Comect » /' E A

¥
e
iii

0 # except that the Tesults Trom evaluating 3 WEtric are noT Used When training the mogel ~
v e

tf.config.optimizer.set jit(True) # Enable XLA

o

function - RuntimeError: Detected a call to "Model.fit’ inside a
lease

tf.function', ‘Model.fit is a high-level
e the call to "Model.fit' outside of all enclosing 'tf.function's,

5 # Note that you can call a "Model™ directly on Tensor's inside a “tf.function’ like: "model(x)

’ # e have to customize the training loop

that sana

[ o nodel. conpile( |
loss="sparse_categorical_crossentropy’,
e optimizer=tf.keras.optinizers.Adan(),
metrics=['accuracy']
] |
9 o INFO:tensorflow:Found TPU system:
INFO: tensorflow:Found TPU systen:
Num TPU Cores: 8
* Num TPU Cores: 8
» * Num TPU Workers: 1
INFO:tensorftow:*** Num TPU Workers: 1
INFO: tensorflow: *** Num TPU Cores Per Worker: 8
INFO:tensorflow:*** Num TPU Cores Per Worker: 8
* Available Device: DeviceAttributes(/job:localhost/replica:0/task:0/device:(PU:8, (PU, 8, 8)
a * Available Device: DeviceAttributes(/job:localhost/replica:0/task:0/device:(PU:8, (PU, 8, 0)
* Available Device: DeviceAttributes(/job:worker/replica:@/task:8/device:CPU:@, (PU, 6, 8)
* Available Device: DeviceAttributes(/job:worker/replica:6/task:8/device:(PU:6, CPU, 6, 8)
= THED- tancarfims 44 huailahla Newica: MauiraAttrihitact/inh unrkariran]irs.0/¢ack-8/douica-TOI.A TOU & )

And after that we are generating the model summary and setting up the compiler here ok
XLA True.
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0 loss="sparse_categorical_crossentropy’, rvo BRSO

Q optimizer=tf.keras.optinizers.Adan(),
metrics=['accuracy']

® P o

) [ INFO:tensorflow:Found TPU system:
INFO: tensorflow:Found TPU systen:
INFO: tensorflow: *** Num TPU Cores: 8
= INFO:tensorfl Num TPU Cores: 8
INFO: tensorflow: *** Nun TPY Workers: 1
INFO: tensorfl Hum P8 Workers: 1
INFO: tensorflow: *** Nun TPU Cores Per Worker: §
INFO: tensorflow: *** Nun TPU Cores Per Worker: §

[l > =

INFO: * Available Device: 1butes(/ob: Localhost/replica:/task:0/device:CPU:8, CPU, 8, 6)
HFO: Available Device: 1butes(/job: Localhost/ replica:8/tas

9 F0: Available Device: DeviceAttributes(/job:worker/replica:0/task:8/device:CPU:8, CPU, 6, 8)
NFO: Available Device: DeviceAttributes(/job:worker/replica:6/task:8/device: PU:, CPU, 6, 8)
INFO: Available Device: DeviceAttributes|(/job:worker/replica:6/task:8/device: PU:0, TPU, 6, 8)
NFO: Available Device: DeviceAttributes(/job:worker/replica:6/task:8/device: PU:0, TPU, 6, 8)
NFO: Available Device: DeviceAttributes (/job:worker/replica:6/task:8/device: PU:1, TPU, 6, 8)

®» FO: Available Device: DeviceAttributes(/job:worker/replica:0/task:8/device: PU:1, TPU, 6, 8)

INFO: tensorflow:
INFO: tensorfl
INFO: tensorfl
INFO: tensorflow:
=} INFO: tensorflow
INFO: tensorfl
= INFO: tensarflow:

Available Device: DeviceAttributes(/job:worker/replica:8/task:8/device:TPU:2, TPU,
Available Device: DeviceAttributes(/job:worker/replica:8/task:0/device:TPU:3, TPU,
Available Device: DeviceAttributes(/job:worker/replica:8/task:0/device:TPU:3, TPU,
Available Device: DeviceAttributes(/job:worker/replica:8/task:0/device:TPU:4, TPU,
Available Device: DeviceAttributes(/job:worker/replica:0/task:8/device:TPU:4, TPU,
Available Device: DeviceAttributes!/iob:warker/realica:8/task:8/device:TPU:S. TPU. 6. 8)

L)
L)
8,
8,
8,
Available Device: DeviceAttributes(/job:worker/replica:0/task:8/device:TPU:2, TPU, 6, 6)
8,
[)
8,
L)
8,

Now, we can see total TPU cores are 8 and TPU workers = 1 and you can set it like how

many workers you want you have seen in the previously how you can configure those
things.
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*++ Available Device: DeviceAttributes(/job:worker/replica:6/task:0/device:TPU SYST rvoBBDE
* Available Device: DeviceAttributes(/job:worker/replica:8/task:8/device:TPU SYSTEN:S, tru-stotem, v, o

* Available Device: DeviceAttributes(/job:worker/replica:/task:0/device:XLA_CPU:0, XLA CPU, 6, 6)

vailable Device: DeviceAttributes(/job:worker/replica:0/task:8/device:XLA CPU:0, XLA CPU, 8, 6)

INFO: tensorflo
L INFO:tensorflo
INFO: tensorflon

o Hodel: “sequential 1

o Layer (type) Output Shage Param &
flatten 1 (Flatten) (None, 784) ]
dense 2 (Dense) (None, 128) 160480
dense 3 (Dense) (None, 18) 129%

Total params: 161,770
Trainable params: 101,770
Non-trainable params: 0

time: 412 ms (started: 2622-83-03 15:15:48 +60:60)

# Train Size = 66000

# Batch Size = 200

# No. of Batches = 66600//200 = 360
# No. of Epochs = 2

# Test Size = 10860
= # Batch Size = 200

%
b1

O
g
Rl 5 07 vaikmatonin S E\#E
A VIDHYA_XLA TPUipynb =
( o ALATPLipyn B Comment &% Shere @3 o NPTEL
E File Edit View Insert Runtime Tools Help
+ Code + Text Connect ~ ;& A
8 = onnec 7
° # No. of Batches = 66060//200 = 300
" # No. of Epochs = 2
Q Q
é (4]
5 . # No. of Epochs =2

model. fit(ds train,
(=] epochs = 2,

[ 1
e steps_per_epoch=309,
)
9

validation data=ds_test,
validation steps=38) [y

» Epoch 172

[}

16s 25ms/step - loss: 8.4689 - accuracy: 0.8889 - val loss: 6.2210 - val accuracy: 0.9368

- 6s 21ms/step - loss: 8.1937 - accuracy: 8.9453 - val loss: 0.1578 - val accuracy: 6.9557
<keras.callbacks History at 8x7f138572a496>time: 16.8 s (started: 2022-93-63 15:15:53 +06:68)

~ MNIST MODEL WITH TPU AND XLA ENABLED

WITH ONE TPU DEVICE
USE @tf.function(jt_compile = True) TO ENABLE XLA

And then model summary you have seen and then we are fitting the model to the model
fitting is essentially running the model for you generated graph for that and you are using
that and total of 16.8 seconds you are spending for your training of 2 epochs.
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<keras. callbacks. History at x7f138572a498>tine: 16.8 S (started: 2022-83-03 15:15:53 +09:68) N TY LR

g
=] - - MNIST MODEL WITH TPU AND XLA ENABLED

L3 VWITHONE TPU DEVICE
USE @t function(it_compil = True) TO ENABLE XLA
USING CUSTOM TRAINING

# Checking Versions

ingort tensorflow as tf
print (“TensorFlow Version®,tf. _version_)

# Checking Python Version
! python --version
TensorFlow Version 2.8.8

Python 3.7.12
tine: 143 ms (started: 2622-03-63 14:57:19 +06:08)

m

!pip install ipython-autotime # For automatic Time Display
“load ext autotine

Now, we are moving towards the example where we want to enable the XLA, but for
with the TPU and also with tf.function runtime because the tf.function runtime has its
own optimizations that you have seen. Because it is serializing the computational graph,
that is not possible for your model.fit() and that is why the performance was not that

good simple.
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*~ = ode fext onnect /

inport tensorflow as tf
Q = print (*TensorFlow Version®,tf. version )
Q

# Checking Python Version
o ! python --version
TensorFlow Version 2.8.8

Python 3.7.12
time: 143 ms (started: 2622-63-03 14:57:19 +80:08)

>

O !pip install ipython-autotise # For automatic Tise Display
#load ext autotime

(> N

=]

% Requirenent already satisfied: ipython-autotine in /usr/local/lib/python3.7/dist-packages (8.3.1)
Requiresent already satisfied: ipython in /usr/local/lib/python3. /dist-packages (from ipython-autotise) (5.5.8)
Requiresent alrgady satisfied: prompt-toolkit<2.0.0,>=1.8.4 in /usr/local/1id/python3.7/dist-packages (from ipython->ipython-autotin
Requiresent already satisfied: pexpect in /usr/local/lib/python3.T/dist-packages (from ipython->ipython-autotine) (4.8.6)
Requiresent already satisfied: traitlets>=4.2 in /usr/local/lib/python3. /dist-packages (fron ipython->ipython-autotise) (5.1.1)
Requiresent already satisfied: decorator in /usr/local/lib/python3.7/dist-packages (from ipython->ipython-autotine) (4.4.2)
Requirenent already satisfied: sinplegeneric>.8 in /usr/local/Lib/python3. /dist-packages (from ipython->ipython-autotine) (6.8.1)
» Requiresent already satisfied: pickleshare in /usr/local/Lib/python3.7/dist-packages (from ipython->i autotine) (6.7.5)
Requiresent already satisfied: pygnents in /usr/local/lib/python3.7/dist-packages (from ipython->ipython-autotine) (2.6.1)
Requirenent already satisfied: setuptools>=18.5 in /usr/local/lib/python3.7/dist-packages (from ipython->ipython-autotine) (57.4.8)
Requiresent already satisfied: wowidth in /usr/local/lib/python3.T/dist-packages (from prompt-toolkit<2.0.8,>=1.9.4->ipython->ipytho
Requirement already satisfied: s1x=1.9.8 in /usr/local/lib/python3.7/dist-packages (from prompt-toolkit<2.0.8,>=1.9.4->
=] Requiresent already satisfied: ptyprocess>=0.5 in /usr/local/\ib/python3.T/dist-packages (from pexpect->ipython->ipython
The autotime extension is already loaded. To reload it, use:
)] Yreload ext autotine

2
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" i T.cont1g.experimental_connect to cluster(resotver)
© 2 ™his is the TPU tnitialization code that has to be at the beginning.
Q Q tf.tpu.experimental.initialize tpu_systes(resolver)
a o device nane = tf.config.list logical devices('TPU')
print('Found TPU at: {}'.format(device name))
7

allocate tpu buffers before initializing tpu system.

B a‘da,a(e tpu buffers before initializing tpu system.
o WARNING: tensorflow: TPU system grpc://10.161.138.122:8476 has already been initialized. Reinitializing the TPU can cause previously ¢
WARNING: tensorflow: TPU systen grpc://10.161.138.122:8470 has already been initialized. Reinitializing the TP can cause previously ¢

itializing the TPU system: grpc://16.161.138.122:8478

itializing the TPU systen: grpc://10.101.138.122:8478
nished initializing TPU system.
:Finished initializing TPU systen.
/3

:TPU:@', device type='TPU'), LogicalDevice(name='/job:worker/r

q time: 15.8 s (started: 2622-83-83 14;

# Data Required

» # REF: https://developers.googleblog.con/2017/83/x1a-tensorflow-conpiled.htal - SOFTMAX FUNCTION

# REF: https://waw. tensorflow.org/xla - XLA

£ REF . tensorflow.org/xla/tutorials/jit cospile - TUTORIAL
g # Eager execution is a poverful execution environment that evaluates operations imediately

# It does not build graphs, and the operations return actua ves instead of computational graphs to run later.
=
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time: 3.21 ms (started: 2822-83-03 14:57:55 +69:00)

33 # Loads MNIST dataset

(ds_train, ds_test), ds info = tfds.load('mnist’, split=['train’, ‘test'], shuffle files=True,as supervised = True, with info = Tru

tine: 680 ms (started: 2622-93-63 14:57:59 +96:00)

[ tfds.core.Datasetjnfo(
name='mnist’,

s info)

he MNIST database of handwritten digits.',
‘htto://yann. lecun. con/exdb/anist/’',
features=FeaturesDict({

image': Image(shape=(28, 28, 1), dtype=tf.uint8),
“label’: ClassLabel(shape=(), dtype=tf.int64, num classes=10),
®» ,
total_nun_examples=76960,
splits={
‘test': 10660,
“train’: 66600,
8 h
supervised keys=('image', 'label’),
] citation=’ rticle{lecun26l8anist,

Now, the same setup importing the TensorFlow all the data set libraries then initializing

the resolvers right.
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redistribution info=,
time: 1.8 ms (started: 2022-83-63 14:43:36 +00:08)

° # Viewing the Train dataset

df = tfds.as_dataframe(ds_train.take(5), ds_info)

G image label
M
l 1 }
Zm 0
3 7
. a8

time: 1.21 s (started: 2022-63-63 14:43:38 +06:60)

# Viewing the Test dataset

= df = tfds.as dataframe(ds test.take(S), ds info)

7
) s
b €3 C & cmmemhgogean >0 3\\ 5
£ £ VIDHYA XLA TPUipynd ¥4
( i B Comment 2% store o NPTEL
— | File Edit View Insert Runtime Tools Help
e
i = X St | 7 .

time: 1.21 s (started: 2022-03-63 14:43:38 +09:08)

° # Viewing the Test dataset

df = tfds.as_dataframe(ds test.take(5), ds_info)
") df

image label

0. 2
lm 0
M-
3! 8
‘ 7

time: 1.21 s (started: 2022-03-03 14:43:42 +66:00)

e D m > PO
o

And something regarding the data and setting up the just viewing the data frame also you
can see these are the handwritten dates images from the data set itself.
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def ra": i
***Normal

ds_train = ds_train.map(
normalize img, num parallel calls=tf.data.AUTOTUNE)

ds_train = ds_train.cache()

ds_train = ds_train.shuffle(ds info.splits['train'].nun_examples)
ds_train = ds_train.batch(268)

ds_train = ds_train.prefetch(tf.data. AUTOTUNE)

» time: 29.6 ms (started: 2022-63-63 14:58:85 +06:60)

# Build an evaluation pipeline

ds_test = ds_test.nap(
normalize img, num parallel calls=tf.data.AUTOTUNE)

ds_test = ds_test.cache()
ds_test = ds_test.batch(200)

145

And then setting up the input pipeline data input or data loading pipeline for normalizing

mapping caching shuffling batching and prefetching.
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normalize img, num parallel calls=tf.data.AUTOTUNE)

ds_test = ds_test.cache()
ds_test = ds_test.batch(260)
ds_test = ds_test.prefetch(tf.data. AUTOTUNE)

tine: 59 ms (started: 2622-63-63 14:58:07 +00:60)
ORECR-E NN
with tf.device(/TPU:0'):
nodel = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28, 1)), # A Flatten layer in Keras reshapes the tensor to have a shape that is equal to
tf.keras.layers.Dense(126,activation="relu’ ,kernel_regularizer=tf.keras.regularizers.12(l=le-4)), # Dense implements the operatio
tf.keras.layers.Dense(NUM CLASSES, kernel regularizer=tf.keras.reqularizers.12(l=le-4))
n

nodel . susnary()

Model: “sequential 15

Layer (type) Output Shape Paran #
flatten 15 (Flatten) (None, 784) ]
dense 39 (Dense) (None, 128) 168488
dense 31 (Dense) (None, 16) 1299

And then with this TPU device. So, one TPU device we are using again you can also use

any other strategy also. So, sequential model that we have defined for that device.
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dense 31 (Dense) (None, 18) 129%

Total params: 161,770
Trainable params: 101,776
Non-trainable params: 8

tine: 127 ms (started: 2622-83-83 14:58:11 +00:60)

O optinizer = tf keras.optinizers.Adan(8.091)
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from logits=True)

atf. function(jit_compile = True)
def train step(inputs, labels):
with tf.GradientTape() as tape:
predictions = model(inputs, training=True)
regularization loss=tf.math.add_n(model.losses)
pred_loss=loss_fn(labels, predictions)
total loss=pred loss + regularization loss

e DRSS PodHE &

gradients = tape.gradient(total loss, model.trainable variables)
optinizer.apply gradients(zip(gradients, model.trainable variables))| I

[ time: 6.12 ms (started: 2022-83-63 14:58:16 +06:00)

] with tf.device('/TPU:8"):

And then defining the optimizer and loss function. But now we are actually defining the

training step, but not using the model of fit.
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gtf. function(jit_conpile = True)
deff train step(inputs, labels):
with tf.GradientTape() as tape:
predictions = model(inputs, training=True)
regularization loss=tf.math.add_n{nodel.losses)
pred loss=loss_fn(labels, predictions)
total loss=pred loss + regularization loss

i gradients = tape.gradient(total loss, model.trainable variables)
optimizer.apply gradients(zi (graﬂ)eﬂts, model. trainable variables))

% time: 6.12 ms (started: 2622-83-63 14:58:16 +60:60)

[}

RS> PpodmE
T ¢ P i

with tf.device('/TPU:0"):

9 for epoch in range(2):
= for inputs, labels in ds_train:
train_step(inputs, labels)
print(*Finished epoch®, epoch)

»

Finished epoch 6

Finished epoch 1

time: 4.33 s (started: 2622-83-63 14:58:19 +00:08)

=

And we are wrapping it with tf dot function runtime with JIT compiler equal to True and

after doing that we are actually calling the train step for these number same number of

epochs. Because we have run for two epochs previously and 4 times speedup that we

talked about in the session in the slides you can see 4 times speedup you are getting

right.
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So, this is a very simple example where you can set up your own pipeline for your
training and you can define like, which exactly steps which are the steps that will be
wrapped with your with your trained tf dot function runtime which JIT compiler. And
this is one example where we have done in TPU ok.

Now, we can extend this for running it several TPUs and see what are the strategies
supported for a XLA compile and play with it ok. So, this is where your exploration for
different strategies and you know whatever methods that you have learned from this
course we will apply right. So, you take this code and play with it right.

You can also use keras data set and see what happens for the particular example that we
have seen. Because we have we have used tfds the TensorFlow data set and try to use

keras data set and see what happens ok.

(Refer Slide Time: 13:28)

_ Jupyter train_wo_xla wo_amp.pyw tas sundayat0214

FIEE LI EY EY T X

$

TEST BATCH SIZE = 160

So, explore all these things you can note it down and you can explore this, because a lot
more interesting things that you can discover | am telling you ok. So, let us go into the
GPU now right. So, we have seen the TPU part where we have enabled the TPU
execution setup environment and wrapped the function with the tf.function(jit_compile =
True).
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Now we will train first one naive way because we want to see right what is happening
here with the GPU and of course, without amp the automatic mixed precision without

XLA without anything its vanilla training model right.

(Refer Slide Time: 14:09)

~ Jupyter  train_wo_xia_wo_amp.pyv Las:sundey at0214

TRAIN STEPS = 1066

TEST BATCH SIZE = 188

keras.datasets.mnist.load_data() # Load the dataset avai
train ds = tf.data.Dataset.from tensor slices(train).batch(TRAIN BATCH SI.
data.Dataset.from_tensor slices(test).batch(TEST BATCH SIZE) # Lo

e D m s> P SHE
E)

*

So, where you have the strengths of imported the image the same thing that you have

seen in the TensorFlow model.

(Refer Slide Time: 14:28)

£ 7 Jupyter train_wo_xia_Wo_amp.py tas sunsyatc214 NPTEL
)
6 # Note: Not all Operations are compi
. tf.keras.backend. clear_session()
. tf.config.optinizer. set jit(False) #
that

nodel. compile(

orical_crossentropy’,
.optimizers.Adam(),

def train model(train s, test ds):
model. fit{train ds,
epachs = 2,

validation data=test ds)

train nodel(train ds,test ds)

So, same training module here train set test data set we are unpacking it model defining

with the sequential api model summary we are checking. And then clearing the session if
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we have, let us say running previous JIT compilation session is already on we are just
doing it just for safety. We are clearing the session and setting the XLA disable model
dot compile will compile the model train model with this fit function right. So, that is it
that is the vanilla training for the TensorFlow particular pattern.

(Refer Slide Time: 14:57)
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So, interestingly your DLProf will figure it out that you are actually not using XLA think

I do not know. So, we will see | hope this is the profile for after training with this.

(Refer Slide Time: 15:07)
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So, basically you can see if amp was not a enabled GPU was not greatly used and so on
and so forth. Unable to split profile into training iterations, so ok that is ok. GPU

memory is underutilized that is fine because of the very small model right.

(Refer Slide Time: 15:34)

e P m»> P SHE

And all the operations that are being actually called and executed how many times of
operations execution call and how much time you have spent for those operation call that

you can see profile it here.

(Refer Slide Time: 15:51)
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And you can see few of the operations that are matrix multiplication operations which
are actually tensor core eligible or not eligible. So, whether using tensor core now we are

not using because we are mixed precision.

And all these profiles you can get it from right. So, ok so just to see like this is very my

way of setting things up right.

(Refer Slide Time: 16:24)

Fom > Po W=

Now, of course, average time you can see 12.8 now of course, we want it accelerated

right. So, let us see what happens if we enable the accelerate right.

(Refer Slide Time: 16:34)

&
e

7~ Jupyter train_xia.pyv tasisundeyaio215

import tensorflow as tf

e (PR > FPodmE

TRAIN_STEPS

TEST BATCH SIZE

# Loads MNIST dataset

train, test = tf.keras.datasets.mnist.load data() # Load the dataset
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(Refer Slide Time: 16:41)

Jupyter train_xia.pyv Lestsundeyat0215 Lot

Load: aset

train, tes keras.datasets.mnist.load data() # Load the dataset ava.
train ds = tf.data.Dataset. fron tensor slices(train).batch(TRAIN BATCH SIZE)
test ds = tf.data.Dataset.from_tensor slices(test).batch(TEST BATCH SIZE) #

fodel = tf.keras.models. Sequential([
Layers. Fl

4
/

iy,

> m =

# We need to clear the session to en
tf. keras.backend. clear_session()
tf.config.optinizer.set Jit(True) #

# e

nodel..compile(
loss='spal
optinizer:
metrics=(

e (PR >»> PO

ical_crossentropy’,
ptinizers.Adan(),

def train model(train ds,test ds):
® model..fit{train ds,
epachs = 2,

validation data=test ds)

train model(train ds,test ds)

So, the same thing same train the data set unpacking model definitions are clearing in the
background and here we are actually enabling the XLA and then model compile model
train model with fit function and train model. So, this is a simple same just with two lines
of code we are actually enabling the XLA.
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(Refer Slide Time: 17:05)
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(Refer Slide Time: 17:16)
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So, let us see what happened here average time got reduced to 7.75 that is good and, but
still. So, if you see of course, amp was not used and GPU is underutilized that is
understandable.
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(Refer Slide Time: 17:25)
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And of course, again you can see the functions, that is and also you can see which is the
operation that is being actually run by your optimized code ok. So, for the from the XLA

part.

I have not shown other views you can exploit those. So, as | was mentioning that it is not
possible every time to go to every tab and explain you everything, but you can explore

the other views as well.

(Refer Slide Time: 17:59)
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Let us say you want to see the operations and kernels that are being executed you can see
the list of the operations and all the statistics behind those you can export them in PDF,
CSV, JSON format or excel format whatever you want. Kernel’s by operations iteration
kernels by operation iterations.

(Refer Slide Time: 18:15)
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So, all the things you can explore from this profiler right. But of course, this is where

you will explore more ok.

(Refer Slide Time: 18:26)

7~ Jupyter train_xia_amp.pyv Last sundayat0215

import tensorflow as tf

1t
tf. conpat..v].enable eager execution()

ELEN Y X

) 8

&

TEST_BATCH SIZE

Now we want to introduce amp also and enable XLA at the same time right.
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Now, we want more performance we are just we do not know what is what will happen
right, but we are just we know that if we enable amp and use mixed precision then we
can you know use the tensor cores more ok we can increase the utilization, so let us do
that.

And also let us keep the XLA on right. So, | do not know what will happen. So, let us see
eager execution. So, enabling the eager execution here the image size all the images train

test data set unpacking and definition of the model, model work summary.

(Refer Slide Time: 19:11)

< o
A ~ Jupyter train_xla_amp.pyv Lastsunday at0215 Logot
5
\ TRAIN BATCH
Q # I TRAIN
TRAIN STEPS
é TEST BATCH SIZE = 108
? # Loads MNIST dataset
train, test = tf.keras.datasets.mist.l0ad data() # Load ¢
B train ds = tf.data.Dataset. froy tensor slices(train).batch
test ds = tf.data.Dataset.from tensor_slices(test).batch(TEST BATCH SIZE)
B # Model and Optisizer
nodel = tf keras.models. Sequential ([
) tf.keras. layers. Flatten(input_shap
nodel. summary()
»

(Refer Slide Time: 19:16)

~ Jupyter train_xia_amp.pyv Lestsundayat 0216

test ds = tf.data.Dataset.from_tensor slices(test).batch(TEST BATCH SIZE) # Load a batch for testing

@ DRSS PodHE
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(Refer Slide Time: 19:18)

_ Jupyter tain_xia_amp.py Lestswdaya 0216

# e
tf. keras.backend. clear_session
tf.config.optinizer. set jit(True) #

opt = tf.keras.optinizers.Adan()
opt = tf.compat.vl.train.experimental.enable mixed precision graph rewrite(opt)
nodel..compile(

e DRSS PO SmE s

def train model (train ds,test ds)
nodel. fit(train ds,
epochs = 2,

validation datastest ds)

And here we are enabling XLA also at the same time. So, in the previous example in the
prior class that you have seen, how we are getting more utilized tensor cores by using

mixed precision in our pytorch class.

So, extensively we have not used mixed precision in TensorFlow, but you can use that
how you can use that here with optimizer basically you can scale it right. So,
experimental dot enable mixed precision graph rewrite you can enable that for this
optimizer and you can use that optimizer inside your model and train that model as

simple as that use mixed precision.
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(Refer Slide Time: 20:07)

&
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And let us see what happened here and oops our average iteration time got increased so;
that means, we have degraded performance. So that means, the, but introducing
everything XLA mixed precision everything in the tensor processing unit which is the

GPU we were getting much more performance right and that is because the that that is
because Google ok.

(Refer Slide Time: 20:47)
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(Refer Slide Time: 20:50)

e DRSS Po dHE &

&

So, basically google supports the mixed precision binary fusion which is supported in
GPU, but not supported inside your GPU and you will not keep tensor course utilized.
So, still your GPU is underutilized and whatever XLA run you have defined it is not

using the tensor core.

But some of the in the cluster of 5 a xla run this 200 is using the tensor core ok. So, some
parts will not be actually compatible for your target gpu. So, you just need to use some

libraries.

So, now here we are using the amp library from Google itself again you know there are
two libraries for that one is NVIDIA apex and the native library from PyTorch both from
PyTorch and the tensor core. Now you can know what is what we use for getting

enhanced performance right.
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(Refer Slide Time: 21:43)
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Jupyter train_xia_amp_tfds_custom.pyv 17 hows ago Logaut

S m =

Necessary libraries

inport tensorflow as tf
import tensorflow datasets as tfds

» ©

FY

SOFTMAX FUNCTION

e >N

NUM_CLASSES = 16

# Loads MNIST

(ds_train, ds_test), ds_info =

fds. load('mnist’, split=['train’, ‘test’], shuffle files=True,as supervised = True, with info =
True, try gcs = True) #try o i)

org/datasets/keras_exasple

DUvel_a_teml DUProf_0a... 3o Ourl_a_bhenl DUProl_Da... o Ot Da. e OUProl_0a.. e

Now in the next setting, we will see how you can actually also enhance the training
pipeline with tfds right. So, we will now formulate the pipeline with tfds right as you

have seen in the TPUs right.

(Refer Slide Time: 22:04)
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7 Jupyter train_xia_amp_tds_custom.pyv 17 hassago Logat

instead of ¢

(ds_train, ds_test), ds_info = tfds.load('mnisk’, split=['train’, 'test’], shuffle files=True,as supervised = True, 'i‘h,"‘") =
for TPY

[ 1

g True, try gcs = True)
= N 5

9

ts/keras_example

def norsalize img(image, label):
» “"Normalizes images: 'vint§' -> 'floatd2 """
return tf.cast(image, tf.float32) / 255., label

ds_train = ds_train.nap(
norsalize isg, nus parallel calls=tf.data. AUTOTUNE)
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(Refer Slide Time: 22:14)
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Jupyter train_xia_amp_tfds_custom.py 17 hous ago Logut
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“*Nort
return

izes images: "uint8' -> floatd

.cast(image, tf.float32) / 255., label

ds_train = ds_train.map(
normalize ing, num parallel calls=tf.data. AUTOTUNE)

ds_train = ds_train.cache()

ds_train.shuffle(ds_info.splits[ train’].num_examples)
“train = ds_train.batch(200)

ds_train = ds_train.prefetch(tf.data. AUTOTUNE)

S P o

ds_test = ds_test.map(
norsalize ing, num parallel calls=tf.data. AUTOTUNE)

ds_test = ds_test.cache()
ds_test = ds_test.batch(260)
6s_test = ds_test.prefetch(tf.data. AUTOTUNE)

e [ D N

nodel =
tf

¢

tf..keras. Layers.Dense(NM CLASSES, kernel reqularizer=tf.keras.regularizers.12(l=le-4))
n

nodel . summary()

So, training data with tfds dot load from mnist splitting training test and comparing and
formulating the pipeline here.

(Refer Slide Time: 22:24)
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A Z Jupyter train_xia_amp_tds_custom.pys 17tessago Lot
5 pro—

5 ) nodel = tf.keras. nodels. Sequential ([
5. Flatt shape= (28

3
3
3
m
L

operation: output + bias) - 0 = 128
tf. keras. layers. Dense(NM CLASSES, kernel_reqularizer=tf.keras. reqularizers.12(l=le-4))
n

nodel.summary()

optinizer = tf.keras.optinizers.Adan(8.691)
optinizer = tf.conpat. 1. train.experinental.enable mixed precision graph rewrite(optinizer)
loss_fn = tf.keras. losses. SparseCategoricalCrossentropy(fron logits=True]

& . function(jit_coapile = True)
def train step(inputs, labels):
with tf.GradientTape() as tape:
predictions = model (inputs, training=True)
regularization loss=tf.nath.add n(model.losses)
pred_loss=loss_fn(labels, predictions)
total loss=pred loss + regularization loss

[ m s DPo

)

» gradients = tape.gradient(total loss, model.trainable variables)
optinizer.apply gradients(zip(gradients, model.trainable variables))

for epoch in range(2):
for inputs, labels in ds train:
train step(inputs, labels)
hed epoch”, epoch)

And then map cache batch prefetch sequential model definition model summary
optimizer and mixed precision enabled sparse category loss we are using here from the
logics, that we are getting from the last layer and defining the train step with runtime
function tf.function(jit_compile = True) with this we have wrapped this function.
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And. So, | do not know everything we are using here. So, the tfds data pipeline the JIT
compiler for the function training step and mixed precision caching of data load | mean |

do not know what else we can have here right.

(Refer Slide Time: 23:05)
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So, let us see the dlprof ok. So, with enabling XLA we will not give you always the best
performance that | have told you in the slides right. So, that is exactly what we are doing
here 12.8 it is not exactly what we want. So, if you blindly just enable everything that

does not mean that you will get the better performance.

Conclusion is you see analyze what is best for you and actually what you will get from
the exploration and profiling. So, use the profiler always like how you can actually see
where is the performance you are going to increase or decrease depending on which

strategy you are using. So, all these are basically exploration based ok.

And for your target GPUs for your target TPUs what will be the best for you explore that
and see what actually fits for you ok. What are the optimizations that are good for your
target architecture you explore. You explore this the Kernel’s here that is that that are

being generated and see what kind of visions you have after the training.

You can inline the you can inline to see the intermediate results. So, | have shown you in

the class slide that part of the techniques for enabling the optimizer graph for generated.
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So, you can use this and see what kind of optimized graph you see. So, with this we will

conclude the session and.

Thank you for that.
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