

Applied Accelerated Artificial Intelligence

Dr. Satyajit Das

Department of Computer Science and Engineering

Indian Institute of Technology, Palakkad

Lecture - 29

Accelerated TensorFlow - XLA Approach Part - 2

(Refer Slide Time: 00:15)

So, now first we will talk about how to use TensorFlow for your TPU environment ok.

So, this is the very very important for your TPU cluster if you want to use TPU clusters.

So, basically for your colab you can go to your runtime and change runtime type to your

as simple as that. So, basically in by default TPUs will be available for you and you can

use that.

Now, how we can use that and we will use that with different strategies ok. So, basically

XLA mixed precision tf.function run time and so on distribution strategy right. So, let us

see all of them in one place ok. So, importing the things here, so all the things are

imported and then you just see which profiler which TPU version is being used we are

just printing here and using auto time for time displays just few libraries.

598

(Refer Slide Time: 01:31)

Now, checking if TPU is available and changing the runtime to your TPU. So, basically

distribute.

Student: Sir.

TPU cluster resolver, yes.

Student: Sir we cannot view the text properly. So, requesting to increase the size.

Yes. So, I hope this is visible now. So, till now whatever we have talked about is

basically the imports and setup that is very simple, but now what we are going to see is

that how to define the how to use the TPU for your devices and distribution strategies

and so on.

So, we are defining the resolver how we are defining here TPU cluster resolver that we

have seen in the previous class experimental connect to cluster we are connecting it and

then TPU initialization code right. So, to just at the beginning you need to initialize your

TPUs. Now by the way XLA is very good for your TPUs ok because many fused

operations that you are you the XLA will generate is directly supported onto TPU

because TPU is basically from Google TensorFlow is from Google XLA is from Google.

Now, you connect everything ok.

599

(Refer Slide Time: 03:17)

We will see what kind of performance we are getting here tf.function JIT compiler equal

to True.

(Refer Slide Time: 03:45)

So, this is how we will enable here now first we are just wrapping up with some

function. So, this is one function that we are going to reduce. So, basically this is the

graph computational graph and we are running it with the TPU that is it right.

So, all the TPU information you are getting and then you can see the runtime here and

the strategy that we have to defined before right. So, the strategy we have defined here

600

distribute strategy for your TPU and we are using that strategy for running this particular

function that we have created.

(Refer Slide Time: 04:06)

So, this is a very simple example how you will actually create the strategy enable the

XLA compiler and run ok.

(Refer Slide Time: 04:19)

But let us take a concrete example for model training where you will apply all this. So,

basically here what you are seeing that all the necessary imports and version checking

601

and that is fine. Again, TensorFlow input for the data set because we will use tfds for

importing the data sets.

(Refer Slide Time: 04:34)

Whatever the data set that we want to load here we are loading mnist datasets splitting

train test and shuffle True supervised True all these things we are setting up good.

(Refer Slide Time: 04:54)

Then we are normalizing the data and setting up one input pipeline. So, that we talked

about previous section also that map is basically transformation with this normalized

602

function right. And the number of parallel calls we are letting how many number of

parallel calls that will be generated.

(Refer Slide Time: 05:32)

ds_train we are getting the cache enable, shuffle batching prefetching everything is there.

So, you now know how to do that now build an evaluation pipeline. So, basically just

checking here and creating the model here for the sequential model simply we are

creating three layers of model one flattening layer that is just taking the input and

flattening it two dense layers are there and this is the output, output of that is soft max

function ok.

603

(Refer Slide Time: 05:58)

So, model.summary () as you can see here we have three layers here and the summary.

(Refer Slide Time: 06:07)

Now, at first you just to see how it is performing we are setting the

tf.config.optimizer.set _ jit (False), this is another way to set JIT compiler equal to True

or set JIT compiler equal to False. So, we are disabling XLA because we have enabled

previously for that toy example learning then model equal to compile. So, basically, we

are compiling the model.

604

(Refer Slide Time: 06:34)

And now we are creating the training pipeline for that and we are using we will be using

since you can see that here we have generated the model using the sequential api. So, it is

I mean highly likely that you will use model.fit () ok.

So, but as you can see here as tf.function (jit_compile = True) is essentially trying to

make the computational graph and model.fit() is actually again you are doing that, but;

that means, tf.function runtime is not supported for your model of fit.

(Refer Slide Time: 07:32)

605

So, if you are using model of fit you will not be able to enable the XLA. So, just

importing the tf and data set and running the resolver initiating the devices right.

(Refer Slide Time: 07:41)

(Refer Slide Time: 07:47)

So, all these for TPU that you have seen so far. Just getting some data about the image

size and image classes I can see 60000 images up there for your train and test data is

10000 and so forth.

606

(Refer Slide Time: 07:55)

And then this data input pipeline normalize which is used in map in cache shuffle repeat

batch prefetch.

(Refer Slide Time: 08:06)

And then we are building the evaluation pipeline now. So, basically calling the functions

here again using the tf.device ().

607

(Refer Slide Time: 08:16)

But here now we are enabling the JIT set JIT equal to True. So, if you see the earlier

training for that matter.

(Refer Slide Time: 08:29)

So, if you see here where we are actually using the modeling ok. So, where we have

repeated yeah ok. So, ok this is the model summary and yeah.

608

(Refer Slide Time: 08:53)

(Refer Slide Time: 08:56)

609

(Refer Slide Time: 09:02)

So, set JIT True and compile. And then we are using the distributed strategy ok TPU

strategy, because we want to distribute all the TPUs that is available here. And thus

inside this strategy scope we are defining the model sequential.

(Refer Slide Time: 09:16)

610

(Refer Slide Time: 09:24)

And after that we are generating the model summary and setting up the compiler here ok

XLA True.

(Refer Slide Time: 09:26)

Now, we can see total TPU cores are 8 and TPU workers = 1 and you can set it like how

many workers you want you have seen in the previously how you can configure those

things.

611

(Refer Slide Time: 09:39)

(Refer Slide Time: 09:43)

And then model summary you have seen and then we are fitting the model to the model

fitting is essentially running the model for you generated graph for that and you are using

that and total of 16.8 seconds you are spending for your training of 2 epochs.

612

(Refer Slide Time: 10:05)

Now, we are moving towards the example where we want to enable the XLA, but for

with the TPU and also with tf.function runtime because the tf.function runtime has its

own optimizations that you have seen. Because it is serializing the computational graph,

that is not possible for your model.fit() and that is why the performance was not that

good simple.

(Refer Slide Time: 10:32)

613

(Refer Slide Time: 10:38)

(Refer Slide Time: 10:44)

Now, the same setup importing the TensorFlow all the data set libraries then initializing

the resolvers right.

614

(Refer Slide Time: 10:48)

(Refer Slide Time: 10:53)

And something regarding the data and setting up the just viewing the data frame also you

can see these are the handwritten dates images from the data set itself.

615

(Refer Slide Time: 10:56)

And then setting up the input pipeline data input or data loading pipeline for normalizing

mapping caching shuffling batching and prefetching.

(Refer Slide Time: 11:08)

And then with this TPU device. So, one TPU device we are using again you can also use

any other strategy also. So, sequential model that we have defined for that device.

616

(Refer Slide Time: 11:22)

And then defining the optimizer and loss function. But now we are actually defining the

training step, but not using the model of fit.

(Refer Slide Time: 11:41)

And we are wrapping it with tf dot function runtime with JIT compiler equal to True and

after doing that we are actually calling the train step for these number same number of

epochs. Because we have run for two epochs previously and 4 times speedup that we

talked about in the session in the slides you can see 4 times speedup you are getting

right.

617

So, this is a very simple example where you can set up your own pipeline for your

training and you can define like, which exactly steps which are the steps that will be

wrapped with your with your trained tf dot function runtime which JIT compiler. And

this is one example where we have done in TPU ok.

Now, we can extend this for running it several TPUs and see what are the strategies

supported for a XLA compile and play with it ok. So, this is where your exploration for

different strategies and you know whatever methods that you have learned from this

course we will apply right. So, you take this code and play with it right.

You can also use keras data set and see what happens for the particular example that we

have seen. Because we have we have used tfds the TensorFlow data set and try to use

keras data set and see what happens ok.

(Refer Slide Time: 13:28)

So, explore all these things you can note it down and you can explore this, because a lot

more interesting things that you can discover I am telling you ok. So, let us go into the

GPU now right. So, we have seen the TPU part where we have enabled the TPU

execution setup environment and wrapped the function with the tf.function(jit_compile =

True).

618

Now we will train first one naive way because we want to see right what is happening

here with the GPU and of course, without amp the automatic mixed precision without

XLA without anything its vanilla training model right.

(Refer Slide Time: 14:09)

So, where you have the strengths of imported the image the same thing that you have

seen in the TensorFlow model.

(Refer Slide Time: 14:28)

So, same training module here train set test data set we are unpacking it model defining

with the sequential api model summary we are checking. And then clearing the session if

619

we have, let us say running previous JIT compilation session is already on we are just

doing it just for safety. We are clearing the session and setting the XLA disable model

dot compile will compile the model train model with this fit function right. So, that is it

that is the vanilla training for the TensorFlow particular pattern.

(Refer Slide Time: 14:57)

So, interestingly your DLProf will figure it out that you are actually not using XLA think

I do not know. So, we will see I hope this is the profile for after training with this.

(Refer Slide Time: 15:07)

620

So, basically you can see if amp was not a enabled GPU was not greatly used and so on

and so forth. Unable to split profile into training iterations, so ok that is ok. GPU

memory is underutilized that is fine because of the very small model right.

(Refer Slide Time: 15:34)

And all the operations that are being actually called and executed how many times of

operations execution call and how much time you have spent for those operation call that

you can see profile it here.

(Refer Slide Time: 15:51)

621

And you can see few of the operations that are matrix multiplication operations which

are actually tensor core eligible or not eligible. So, whether using tensor core now we are

not using because we are mixed precision.

And all these profiles you can get it from right. So, ok so just to see like this is very my

way of setting things up right.

(Refer Slide Time: 16:24)

Now, of course, average time you can see 12.8 now of course, we want it accelerated

right. So, let us see what happens if we enable the accelerate right.

(Refer Slide Time: 16:34)

622

(Refer Slide Time: 16:41)

(Refer Slide Time: 16:46)

So, the same thing same train the data set unpacking model definitions are clearing in the

background and here we are actually enabling the XLA and then model compile model

train model with fit function and train model. So, this is a simple same just with two lines

of code we are actually enabling the XLA.

623

(Refer Slide Time: 17:05)

(Refer Slide Time: 17:16)

So, let us see what happened here average time got reduced to 7.75 that is good and, but

still. So, if you see of course, amp was not used and GPU is underutilized that is

understandable.

624

(Refer Slide Time: 17:25)

And of course, again you can see the functions, that is and also you can see which is the

operation that is being actually run by your optimized code ok. So, for the from the XLA

part.

I have not shown other views you can exploit those. So, as I was mentioning that it is not

possible every time to go to every tab and explain you everything, but you can explore

the other views as well.

(Refer Slide Time: 17:59)

625

Let us say you want to see the operations and kernels that are being executed you can see

the list of the operations and all the statistics behind those you can export them in PDF,

CSV, JSON format or excel format whatever you want. Kernel’s by operations iteration

kernels by operation iterations.

(Refer Slide Time: 18:15)

So, all the things you can explore from this profiler right. But of course, this is where

you will explore more ok.

(Refer Slide Time: 18:26)

Now we want to introduce amp also and enable XLA at the same time right.

626

Now, we want more performance we are just we do not know what is what will happen

right, but we are just we know that if we enable amp and use mixed precision then we

can you know use the tensor cores more ok we can increase the utilization, so let us do

that.

And also let us keep the XLA on right. So, I do not know what will happen. So, let us see

eager execution. So, enabling the eager execution here the image size all the images train

test data set unpacking and definition of the model, model work summary.

(Refer Slide Time: 19:11)

(Refer Slide Time: 19:16)

627

(Refer Slide Time: 19:18)

And here we are enabling XLA also at the same time. So, in the previous example in the

prior class that you have seen, how we are getting more utilized tensor cores by using

mixed precision in our pytorch class.

So, extensively we have not used mixed precision in TensorFlow, but you can use that

how you can use that here with optimizer basically you can scale it right. So,

experimental dot enable mixed precision graph rewrite you can enable that for this

optimizer and you can use that optimizer inside your model and train that model as

simple as that use mixed precision.

628

(Refer Slide Time: 20:07)

And let us see what happened here and oops our average iteration time got increased so;

that means, we have degraded performance. So that means, the, but introducing

everything XLA mixed precision everything in the tensor processing unit which is the

GPU we were getting much more performance right and that is because the that that is

because Google ok.

(Refer Slide Time: 20:47)

629

(Refer Slide Time: 20:50)

So, basically google supports the mixed precision binary fusion which is supported in

GPU, but not supported inside your GPU and you will not keep tensor course utilized.

So, still your GPU is underutilized and whatever XLA run you have defined it is not

using the tensor core.

But some of the in the cluster of 5 a xla run this 200 is using the tensor core ok. So, some

parts will not be actually compatible for your target gpu. So, you just need to use some

libraries.

So, now here we are using the amp library from Google itself again you know there are

two libraries for that one is NVIDIA apex and the native library from PyTorch both from

PyTorch and the tensor core. Now you can know what is what we use for getting

enhanced performance right.

630

(Refer Slide Time: 21:43)

Now in the next setting, we will see how you can actually also enhance the training

pipeline with tfds right. So, we will now formulate the pipeline with tfds right as you

have seen in the TPUs right.

(Refer Slide Time: 22:04)

631

(Refer Slide Time: 22:14)

So, training data with tfds dot load from mnist splitting training test and comparing and

formulating the pipeline here.

(Refer Slide Time: 22:24)

And then map cache batch prefetch sequential model definition model summary

optimizer and mixed precision enabled sparse category loss we are using here from the

logics, that we are getting from the last layer and defining the train step with runtime

function tf.function(jit_compile = True) with this we have wrapped this function.

632

And. So, I do not know everything we are using here. So, the tfds data pipeline the JIT

compiler for the function training step and mixed precision caching of data load I mean I

do not know what else we can have here right.

(Refer Slide Time: 23:05)

So, let us see the dlprof ok. So, with enabling XLA we will not give you always the best

performance that I have told you in the slides right. So, that is exactly what we are doing

here 12.8 it is not exactly what we want. So, if you blindly just enable everything that

does not mean that you will get the better performance.

Conclusion is you see analyze what is best for you and actually what you will get from

the exploration and profiling. So, use the profiler always like how you can actually see

where is the performance you are going to increase or decrease depending on which

strategy you are using. So, all these are basically exploration based ok.

And for your target GPUs for your target TPUs what will be the best for you explore that

and see what actually fits for you ok. What are the optimizations that are good for your

target architecture you explore. You explore this the Kernel’s here that is that that are

being generated and see what kind of visions you have after the training.

You can inline the you can inline to see the intermediate results. So, I have shown you in

the class slide that part of the techniques for enabling the optimizer graph for generated.

633

So, you can use this and see what kind of optimized graph you see. So, with this we will

conclude the session and.

Thank you for that.

634

