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Next, we will go forward with the distributed training; so, as I was mentioning that it is 

very easy to distribute the training in tensor flow. But why we are using that that we need 

to know because the environment you are working with you need some enhanced 
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performance in the end. But, but actually you need to also know the environment that 

you are working with right. So, the ideal performance you want to get let us say very fine 

tuningly managing the entire pipeline of your training defining. 

So, we were mentioning something about this line in the last class that you can a fine 

tune or finely manage which step will go to which GPU that is available for your a 

system, but distributed APIs if you are using that you will get out of the box performance 

which is essentially kind of equivalent if you are doing that fine tuning. Wow what does 

that mean; that means that using this simple API just one line of code you can distribute 

the training. But you will get the same performance as if you are fine tuning the each 

step of your training pipeline. 

Now, how it is happening we will not go into that details? Because in the back end as I 

was mentioning it is called the code is actually developed with C++. And it is very close 

to system you are the that language is very close to your system. So, the performance 

you will get with the C++ backend is much higher than Python right.  

So, that way the using these APIs you will get the same performance as if you are 

finding. Now, using this APIs also is versatile in nature, because this the same strategy 

you can follow for different architectures different hardware different APIs as well as a 

combination of that ok, so, we will see a few instances of that. 
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Now, distributed strategy essentially is thus the main task for that distributed.strategy 

and this strategy is used to distribute any model using Keras API or estimator API. Now, 

again in the previous class; so, you just follow the sequences in the previous class; we 

have said that you have you can define, your models using Keras API or estimator API, 

but estimated API is not being maintained nowadays. 

So, you can use only Keras API for efficient distributed manner. Now, distributed my 

model is also possible using a custom training loop this is very simple and also to get 

much more flexibility ok. So, you can make your layer your library your infrastructure 

distribute aware, what is distribute aware we will see. But you can make your different 

stage of defining your a model you can define which will be the distributed aware 

module for your case; so, this is much more control. 

So, tensor flow is all about abstracting everything to opening everything to you; so, that 

means, high flexibility and high controllability ok; so, both you can give. Make a new 

strategy if you want a new strategy to distribute your training process that also you can 

make it. And that is a also quite valuable if you are targeting let us say multi accelerator 

things. But again, some APIs are already there which will help you to take advantage of 

different accelerators that are available in your system yeah, different API surfaces for 

each of the model that you see now. 
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Now, this strategy that first strategy we will talk about is the mirrored strategy; so, 

mirrored strategy is the multi GPU all reduce sync training. So, it is all about 

synchronized training, synchronized training means each of the devices where you are 

distributing the processes will be locked and executed. So, and all the APIs are 

maintaining everything it for you do not need to worry about the global interrupt lock; 

so, it is very very efficient. 

So, replicas of the variables that you want to a distribute that will be actually made 

replicas and it will synchronize again at the gradient stage so, when you are trying to 

compute the gradient then it will meet again. And so, this is all stage where you are 

actually distributing your variables to or making replicas in each device. So, basically let 

us say you have one system where you have one CPU and multiple GPUs you want your 

replicas; that means, replica of the variables that you want to distribute will be available 

to all GPUs that is all.  

And in the reduced stage you actually synchronize right; so, this is all reduce and sync is 

essentially doing in lock step processes. Variables are mirrored in each GPU as we were 

discussing here, and all we use this algorithm will actually do the aggregation of the 

gradients how it is doing it. 
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So, let us say we have this one device and second device here and first device we are 

giving the input here the input 0 and another input 0 input 1. Now, here we have the 
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same layers A B and B A that is the backward pass and this is the forward pass. Now, I 

want to replicate the VA; so, VA0 and VA1 has been two instances have been created 

which is replicated actually in the two deviator two devices here. Then the output for the 

second layer is V B 0, V B 1, then we are doing the backward propagation. 

So, now we want to have this VB0 and VB1 to be met in the middle somewhere where it 

will be aggregated and again. So, basically this is the reduced stage where it is reduced 

the variables is all variables will be reduced and then will be distributed again. And then 

again, the gradient combination will happen and again it will need to get the average of 

the data, which will help you to improve the to update the weights for particular devices. 

So, VA ∆VA which is computed here will be broadcasted to all these GPUs; so, this is the 

synchronous training; so, you see here each. So, this is locked also this is this process is 

also locked and you will until or unless you get this here you do not know you cannot do 

the register; so, this is a synchronous training. 
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Now, all reduce synchronous training how you can define it the strategy. So, mirrored 

strategy; that means, making replicas replica of variables, how we can define? This is 

one way of defining strategy is equal to tf.distribute.MirroredStrategy. Mirrored strategy 

is very simple a function which will distribute your or mirror your variables to all the 

devices that is there. If you want to particularly define, which are the devices that you 

want to work with, you can also give the arguments which are the particular devices gpu 
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0, gpu 1 in this case. And also, you can define which reduce algorithm will be used you 

can define that in the algorithm, these are the three ways to define the strategy. 
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Once you have defined the strategy, you can go to your model definition and completion 

this is the sequential way of defining the model that we have seen so far. And to add like 

this these variables which are used in these layers will be distributed to your machines, if 

I want to specify that we will just wrap this with this strategy.scope() that is it. So, you 

define the strategy you wrap, your entire training module inside the strategy.scope(). 

So, this particular block is under this strategy scope that is it simple, and your you will 

have the mirrored strategy with already is that that is simple. And this particular block 

which you will see in this red box is essentially the distributed aware box or distributed 

aware block. So, distribute aware block you can also define that you have seen so far. So, 

this is the distribute aware block, because now backend knows that this is the block 

where, I will mirror the values. 
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We can have multiple worker; so, that was for single worker and multiple devices, you 

will have multiple worker multiple devices. And in this case tensor flow collective ops 

will be updated, again the thing will be synchronized in nature and what. So, workers 

will run in lock state and you will synchronize the gradients in the in each step ok. So, 

each step will be distributed to multiple worker multiple devices whatever you define; 

so, worker which will do the things ok and the this is again synchronous in nature. 
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So, how to define that you want to distribute use the multiple worker mirrored strategy 

so, this is coming under the experimental module; so, this is just the experiment 

experimental module, but it will be first part to your a mainstream module in any time 

ok. But you can use this tf.distribute.experimental.MultiWorkerMirroredStrategy() to 

define one mirror strategy, which is we will be creating one scope for your distributed 

module, which will be distributed to multiple worker and multiple devices.  

You can also define which back end communication will be happening NCCL can define 

ok nice. Then you can you also need to define the workers the basically, which will be 

the task type and the workers and that will be given as json string form ok. So, cluster the 

specification for your nodes here this will be the worker and this will be. So, this is 

simple usage of our multi worker mirrored strategy where you can have multiple worker 

working tandem in a synchronous manner in all the steps will be locked and executed. 

(Refer Slide Time: 12:53) 

 

You can have all reduce synchronized training for TPUs as well; so, it is a bit tricky, but 

since through the colab also you have seen that they you have the flexibility to access 

GPUs use it is similar to your mirrored strategy. But unlike mirrored strategy it will use 

cross replica sum to synchronize the aggregations or to different nodes one TPU is TPU 

and many TPUs is called TPU pods ok; so, you can have both. 

So, how to define this strategy; so, again as I was mentioning that once you have defined 

this strategy you can use strategy.scope() and define your scope that is it. Again, here we 
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will define the strategy and strategy.scope() you will define your distribute aware block 

that’s it. How you can define it? You can define your resolver, which is essentially 

cluster resolver class and this will actually be using this TPU cluster resolver for the tpus 

ok. 

So, its bit tricky, but you can use these texts; so, to use this strategy. Now, I how you will 

get the strategy you will just define to connect to the clusters initialize the tpu system and 

then use this resolver to create the strategies right. So, this is again coming under 

distribute dot experimental module where you will have this TPU strategy to be defined 

for your TPUs and you can use this strategy using strategy.scope(). 
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So, we have talked about synchronous execution where your workers are working in a 

locked state right. What happens if your workers let us say multiple devices you have in 

one system they are not similar in runtime problem. Let us say some worker will little 

faster some worker will slower and slower and slower. 

So, you will have a different performance workers in your device or in a machine and 

you can use parameter servers and workers in this case. Parameter servers, maintains the 

global variables which will be actually synchronized and doing the aggregation. And 

worker nodes will again do the replication of the variables computing and then it will 

sync to the server parameter servers to get aggregated and you came back; so, parameter 

servers will take care of this synchronization. 

562



So, these workers will be working in their own way ok; so this is a bit different from 

your synchronous way of working things. But once you have the APIs you do not need to 

worry about anything; so, the parameter servers strategy we are defining it with again it 

is under coming under distribute dot experimental. And the parameters servers strategy 

you can define it and we can also define with parameters server strategy with this these 

two ways ok; so, this is just the name that we are doing. 

Now, once you have defined it actually you can use the strategy as a scope and also you 

need to define in the json string format the workers, which will be the ps the parameter 

servers and which will be the work. So, these two definitions if you just give in the our 

configuration string that is it; so, once you have this definition for the tasks and the 

classroom. So, basically what nodes will be the worker and what are the nodes will be 

your parameter server; so, that is. 
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It one more way of approaching is central storage; so, central storage is basically the one 

node approach of parameter server one or ps worker strategy that you have seen; so, this 

is asynchronous also. But we think that; so, here we had multiple devices where we have 

defined, which will be the parameter servers and which will be the workers. 

But here we are thinking from a single node point, in a single node you will have 

multiple devices which are not exactly same in performance. So, you can use central 

storage approach where one machine multiple GPU will have one copy of each variable 
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will be in CPU. So, maybe CPU will be working as parameter server right, and one 

replica of the model will be in each GPU here and because it might so happen where 

parameters the number of parameters this is another case. 

Where the number of parameters is getting exceeded more than the memory that is 

available for your GPU, what you will do because you are doing the replica you are 

maintaining the gradients. And then again you are sending back those you are getting all 

the updated values aggregated values again. So, it might so happen all the embeddings 

cannot may not feed your GPU memory in that case you can use your CPU to be 

working as that central storage ok. 

And offered everything to your CPU and do release some of the memory pressure from 

the GPUs. So, how you can define it? Again it is very simple strategy, equal to 

tf.distribute.experimental.CentralStorageStrategy() and that is it. So, your one pc system 

will be working as your parameter server strategy and you can use this strategy.scope() 

to define it ok. 
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So, these are the reference codes that is already implemented with engineers from tensor 

flow for getting to know more about this distribution strategy that is already 

implemented for several frames that you can do we will go into. Now, one demo for 

functional API to understand better, some problem approach we will see. 
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So, what is the problem that we are referring to solve it with functional API mentioning I 

may have single input and multiple outputs right. So, one problem I am defining here; so, 

you have seen the image data set; so, many times for now which is essentially the data 

set for your handwritten digits right. So, from 0 to 9 we have digits and all the images 

from different way of writing it is there. 

Now, I want to take I want to create one model which will classify first or of course, the 

digit whether the digit is 5 or 6 or 9 or 10 or 0 like rather. And another head we will 

predict whether this is being written in left hand or right hand ok; so, this is the problem 

statement that we are targeting here. So, again one single input, one image you will give 

as input and it will give two outputs, what is the number? Essentially 0 to 9 and whether 

the number is written with using right hand or left hand right ok. 

So, keep the problem definition in mind and we will go forward with that model 

definition how you will define such model which will have two outputs and then you a 

use the functional API. So, simple inputs we will define with Keras, let us say 28 by 28 

image that is standard for your image data set. We are flattening this using this flatten 

Keras.layers.flatten() Keras API. 

Again, we are using all the imports of there you can see, first dense layer we are 

defining, which is dense layer which is 120 output using activation relu function. Second 
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dense layer it is using 10 outputs and activation; so, 10 outputs you can see here this 

Dense layer output is essentially will classify which digit is it.  

So, we need 10 classes to classify; so, 10 class and activation soft max function we are 

using because we need to classify in the end because this will convert the logits into your 

predictions and name is category output so, category of the digit that we have defined 

now this layer.  

You can name one layer; so, this is just such use case where you can name the layer and 

you can see the layer definition of this layer. Now, here we are creating two output 

layers, one output layer for the category output and another layer for left right output. So, 

there is just one prediction output will be there, because that will give you the a sigmoid 

activation. 

And with this sigmoid activation we can get whether this is just binary classification we 

are doing it right whether it is being written on the left hand or right hand; so, two heads 

we have defined. Now, here we have defined the layers as functions; now, we will use 

these to call on the inputs. So, now, we are calling this right; so, x is flattening the input; 

so, the input is flat pattern here because this is the fully connected layer we are using 

dense layers x equal to dense 1. 

So, first dense layer, then output 1 is taking this x as input and doing the 10 outputs and 

this output 2 is taking this layer basically this output of this layer. So, same output is 

going two head to two heads and giving two outputs right so, this is the important thing 

that in the function call a function, functional API you can do it this is the thing that I 

wanted to show you. 

Then you can define the module keras dot model inputs 1 input we have input equal 

inputs; outputs. Now, you can see we are giving the output list here; so, one model we 

have created now which has multiple outputs. So, we are giving one list of outputs here 

outputs 1, outputs 2 name equal to mnist model; so, you can define one model; so, this is 

the name of the model. 
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If I see the model summary what I will see this that input layer the size, flatten layer the 

size, dense one layer with this number of parameters flatten 1 which is the name. But, 

category output 1; so, you see this name here category output category output, dense 

layer and category left to right output dense layer. So, these are the two output layers we 

have created and; so, total; so, this is the model definition model summary whatever you 

call it. 
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Then we are defining two losses, because two heads we have; so, for the SoftMax for 

this category loss category output we have this cross-entropy loss sparse categorical 

cross entropy loss. From logits equal to false, because we have defined the SoftMax 

activation, if you did not define the activation here then you need the logits. 

So, logits are the outputs directly coming from the neurons. Now, loss 2 is essentially 

again binary cross entropy loss because we are doing the binary classification optimizer 

we are defining, metrics we are defining, what metrics we want to see, accuracy we want 

to see. Two losses, one loss is for category output and second loss is for left right output. 

So, for two output layers we have these two losses we are comparing the module model 

with this loss whichever we have defined here with this optimizer and with this metrics 

simple as that. 
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And we are training the module here; so, basically we are creating the data set here. So, 

keeping the keras.datasets as a source we are taking the I mean mist data set, creating 

train test modules. And then we are its unpacking and normalizing the images here, then 

we are now we are creating the two classes. Let us say we are creating the two classes let 

us say greater than 5 will have written as let us say 1 ok; so, that is right handed and less 

than 5 is left handed let us say ok. 
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So, you can see here; so, all these digits 5 0 0 0 4 0, but 9 1 6 1; so, all these are written 

in right hand and these are written in left. So, now, our class levels have been created 

then we are going into training to just feed call feed with this train function train data set 

this number of the epochs, batch size, verbose 2. So, now, we are getting the outputs here 

for the accuracy loss and for different epochs. 
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And we are doing the predictions in the end and this prediction is essentially calling on 

the test, and how many predictions we are doing? Two predictions here. First prediction 

is for your left-hand right category and then left-hand right hand. And let us say we are 

taking the first 20 data and checking what is the maximum prediction for that and what is 

the left-hand and right-hand prediction for that.  

Printing the data, the labels with let us say category and the labels for your right left hand 

right; so, all the digits have been successfully categorized. So, these are the predicted 

labels and predicted labels for the left-hand right hand you can see; one is for your 7 0 is 

for 2, 9 5 1 this is wrong prediction, but again anyway.  

So, you have seen how you can use functional API to simply define your module with 

different number of outputs and you can train the module and extract the predictions and 

do so, as simple as that. So, if you are doing transfer learning or maybe multi head or 

multistage training you are creating the pipeline this is the best way to go using 

functional API; so, it is functional API we will close this session. 
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