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So, TensorFlow 1 was heavily based on making graphs and then introducing the lazy 

execution of the graphs, which mostly if you have followed the distributed programming 

of spark that is kind of same program paradigm. But in TensorFlow 2 that program 

paradigm of lazy execution has been transferred to your eager execution ok. 

So, eager execution means as soon as you define something or any operation you define 

it will be evaluated in stand right. So, that is completely opposite of your lazy execution 

that was followed in terms of one and subsequent versions. 

So, from the TensorFlow 2 we have eager execution and from the structural point of 

view TensorFlow 1 was a bit difficult to follow if you are coming from a completely 

PyTorch background. And by TensorFlow 2 is more of a pythonic approach and it can be 

very suitable for beginners to experts. 

Because different levels of programming is there which you for you can follow to define 

your particular model that you want to train. 
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Now, so if you see the structure or architecture of TensorFlow. So, basically the 

TensorFlow architecture has 3 main blocks one is the training block is the safe and 

repository block in the middle you can see here. And the right hand side you can see the 

deployment block. 

So, all these three blocks which have been introduced in 2.0 and subsequent versions this 

made the life much easier for the development and deployment of deep learning 

algorithms seamless ok. So, in the training module you will see that we have distributed 

training strategy core. 

So, which is written in C++ and that supports CPU, GPU, TPU execution and of course, 

multi node CPU, multi node GPU, multi node TPU. So, all these kind of combinations 

that supports. 

And for defining the model itself you have high level APIs as Keras and estimators, but 

it is recommended that you do not use estimators nowadays. Keras implemented from 

TensorFlow, so keras has two implementations one is native implementations. So, if you 

are using keras io and there is another implementation from TensorFlow itself and which 

we will use for defining our models. 

And most of the tf 2 or TensorFlow 2 versions are very very compatible and efficient 

with this high level API defined by the keras. Now, we also have data design modules as 
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tf.data and TF data sets. So now, this data design in TensorFlow is bit different from that 

you have seen in PyTorch in the previous sections. 

So, that also we will talk about and there are much more flexibility in terms of data 

access. Because the data sets all the necessary modules that are actually designed by the 

TensorFlow module designers itself. So, all the data that are imported by this data dot tf 

dot data will have the flexibility to directly convert into tensors which is the main data 

structure in TensorFlow and use it subsequently. 

So, in the entire pipeline you do not need to convert it into with the tensors and deliver to 

your GPU of TPU right. So, in terms of flexibility this tf dot data adds one more level of 

flexibility and efficiency while you are accessing data. There is this analysis or 

visualization tool which is also available in PyTorch plugin that we have seen so far, in 

the previous classes and also we here also TensorBoard is available with TensorFlow is 

available with TensorFlow packages. 

Now, for the saving model we have the serialization saving model. So, where you can 

save your model instantly and reuse it and also there is TensorFlow hub. So, TensorFlow 

hub is model repository. So, if you want to use already trained models which are already 

trained with defined parameters you can use those parameters you can tune them in your 

training depending on the target model that you are targeting and the target problem that 

you are targeting. 

So, basically if you are targeting classification problem depending on the number of 

classes that is available you can tune the already existing parameters from the 

TensorFlow hub. Now, the deployment part is completely giving the TensorFlow a new 

dimension. So, the models that you have defined or trained or designed inside the 

TensorFlow modules you can seamlessly convert it or deploy it on onto your cloud based 

on browser. 

So, if you are using browser you can deploy your browser with using TensorFlow.JS if 

you are try trying to deploy your models for android devices or ios devices or raspberry 

pi or even android arduino support it has with TensorFlow Lite micro. So, TensorFlow 

Lite and TensorFlow Lite micro will have you need to use just to save or just to use your 

saved models and convert to the targeted ways. 
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Now, for the target cloud platform you can use TensorFlow serving right. So, all these 

deployment strategies are inbuilt. So, different strategies there are and we will see how to 

use. So, all these three stacks make actually the TensorFlow a bit flexible and flexible for 

productable and product oriented projects right. 
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So, now the workflow is similar to that of your PyTorch. So, you have to feature your 

data and feature engineering your data. 

Transform or whatever you want to normalize your data, so all these things you will do 

in the beginning and then you have to define the model build the model. So, as I was 

mentioning that you can use keras premade estimators. So, these estimators as I was 

mentioning that it is not recommended for the newer versions or TensorFlow 2 after 

TensorFlow 2.5 actually it is not recommended. 

And also you can use some APIs to custom build your models. So, keras is having all the 

models mostly 90 percent of the models that are necessary to build your models and if 

you want to go a bit more flexible. And to have more control over model building you 

can use this custom models building APIs right. 

And then in the training stage of this pipeline you have this eager exhibition as well as 

autographs. So, this autograph will give you the efficiency of the graph based approaches 

of TensorFlow 1. So, once one way you have the eager execution which is actually the 
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instant evaluation. So, in compile time itself you will see what kind of errors are there 

and you can evaluate your model depending on the definition that you have defined. 

And you can use autograph to enhance the performance of the model in the subsequent 

runs ok. So, we will see how to define all these explicit APIs to be used to enhance the 

efficiency. Distribution strategy as I was mentioning that distribution strategy was 

written in code C++. 

And that gives it much more flexibility in terms of distributing the data parallelism 

model parallelism as well as the pipeline parallelism. And of course, TensorBoard is 

inbuilt tool which you will use for visualize and analyze your model and give it much 

more boost in the subsequent ones. And in the end you save the model and use it for 

development right. 
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So, as I was mentioning that what why we are actually moving towards the 2.x version is 

that the keras, which is the newer implementation from the TensorFlow and the eager 

execution and this eager execution is highly efficient from the pythonic approach of 

programming. So, in PyTorch you have seen some and in TensorFlow 2 and subsequent 

versions we will see much more of that eager execution. 

So, this is just to have a look of the entire model that you have defined in compiler right 

and also robust model deployment. So, deployment that third stack you have seen it is 
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actually giving you the extra boost to use it over PyTorch ok powerful experimentation 

for research. So, for researchers there is some custom appearance that is that they can use 

to build or define the models from the scratch itself. 

So, that is also a similar to PyTorch, so whatever we have seen that we will discuss in the 

subsequent slides. Now, you have this deprecation of APIs because many of the APIs 

that you are if you are coming from your TensorFlow 1 code to your TensorFlow 2 code. 

Many of the APIs have been deprecated and cleaning or clean up your code is very easy 

with clean out cleaning up APIs. 

And tf dot data as I was mentioning that loading data is giving another dimension 

because there are many APIs in tf, which is defined to distribute the data of which you 

are loading the to have prefetching options to have pipeline parallelism options. Also to 

have cache options whether you want to store your prefetch data into your ram or your 

disk. So, all these APIs are already built into tf.data tf.keras that I will just mentioned 

that you can build the models with keras API high level API. 

TensorFlow hub which is the already saved repository already saved models and 

parameters that you can get from. Also run and debug with eager execution debugging 

also is very very much possible with some one or two lines of code addition. Now as I 

was mentioning that it is highly efficient to run in CPUs, GPUs, TPUs and distribution 

strategies is it is much more flexible and you can customize the distribution strategy. 

We will spend most I think maybe 50 percent of the time in the next class to discuss this 

distribution strategy ok. And exporting saved models usually this will help you to deploy 

efficiently using TensorFlow.js or TensorFlow Lite or TensorFlow Lite micro depending 

on the target environment that you are targeting right. And TensorFlow data sets already 

it has numerous data sets that you want for your knowledge training most of the 

problems targeting if you are targeting. 

Let us say classification you are targeting computer vision, problems NLP problems even 

segmentation or multi stage definition of let us say segmentation and captioning of 

videos. So, different data sets are available to give you much more flexibility to use this 

tf.data APIs to be used with the data sets that is already available. 
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So, now we will come to the model building. 

So, model building part as I was mentioning that is giving you the options to start with 

small beginners. So, as you can see here from the left side you have beginners to the 

experts on the right side and for the beginners defining simple models ok it is very easy 

to use sequential API ok. 

So, there are several APIs that is available in software as mentioning that it is to give you 

flexibility and control. So, this API if you are using sequential API most of the models 

you can build with this essentially because this API has all the built in layers ok. That it 

can be used and you can define and you can use to define your simple models. 

Next stage, if you are let us say engineer with standard use cases and you want to use the 

built in layers of functional API. So, basically if you see with the sequential API the 

sequential API will give you the platform to define one model which has one input and 

one output ok. Of course, that input and output is multi dimensional no need to mention 

that, but the functional API has the flexibility to now you will see that the flexibility is 

increasing step by step in the APIs that we are going on the right side right. 

So, now it has the improved flexibility to add of course, the built in layers that you will 

use, but now you will have the option to define multiple inputs and multiple outputs. And 

also those inputs and outputs can be at several stages you can merge them you can use to 
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branch them or you can define your model using multiple inputs and outputs depending 

on which stage you are using. So, as you can see sequential API simple models for 

beginners. 

Functional API for built in layers you will use, but you can define the multiple inputs and 

outputs. Now, if you go to have much more control over this functional API you can 

have functional API plus custom layers plus custom metrics plus custom losses. So, 

metrics losses these are essentially very important or crucial parameters that you want to 

track while training a model right. 

Now, you can define custom metrics which metrics you want to track most of the metrics 

that you use as we have seen in the last catalyst class. So, all the metrics were actually 

defined in the in that framework as well as in TensorFlow 2 point o will have many 

metrics that is already available you can define custom metrics as well custom losses and 

define custom layers used with functionality. 

So, functional API is essentially call the layers as functions. So, the entire sequential api 

will give you the stack of layers. So, this is completely one data structure in the 

functional API you will have this the graph of the built in layers ok and you can call 

them ok. So, the layers are callable now and in subclassing this is completely relevant if 

you are coming from PyTorch. So, subclassing is same as programming from scratch 

whatever you have done in PyTorch ok. 

Now, you can say that why we need functional API right, we can do it from scratch we 

can either use for simple models with sequential API then why we need functional API. 

But functional API has much more to it than you are seeing here ok. So, we will discuss 

how we can actually define one module in using functionality very very efficiently not 

going for bit sequential and why we will not go for subclass ok. 
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Now, this sequential way of defining. So, there are two programming paradigms that is 

supported in TensorFlow, that I mentioned in the first slide itself. So, tensor is essentially 

the data structure and the flow is essentially with the graph computational graph that you 

want to execute. 

Now from TensorFlow 2 we have this symbolic API. So, which is keras sequential API 

that you will use to define, where as your model is a graph of layers and any graph you 

can compile will run. And TensorFlow helps you to debug by catching errors at compile 

dimension because it is supporting the eager execution not the lazy execution which was 

in TensorFlow 1, now in the imperative API. 

So, sub classing is imperative API. So, this is kind of object oriented programming style 

defining your models and using. So, in that sub classing your model is essentially 

converted into your Python bytecode. And you will have much more control over the 

models that you are defining and since it is completely customized, according to your 

requirement it is bit difficult to debug, But of course, the if you know the ways to 

develop it is not that hard. 
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Now, the training part. So, model defining as you have seen there are four kind of 

approaches or ways you can define it and training the model also is kind of tricky if you 

are coming from PyTorch system. 

So, model dot fit this function is for quick expect you just call the forward function and it 

will do automatic gradient descent calculating the gradients updating the weight 

parameters and biases. So, all these things will be completely automated just call the fit 

model over the model or feed function over the model that is now callbacks. So, 

callbacks you have seen in the previous class also in the catalyst. 

So, that same notion is also here you can use callbacks you can customize your training 

loop by adding checkpoints early stopping you can have Tensorboard monitoring slack 

notifications. So, this is called quite interesting you can define your model you can now 

start that training hit the training with callbacks you can define one callback which will 

give you slack notification for each or let us say you talk Python ok. 

So, for each epoch what is the metric status or status of your training it will give you a 

notification. So, you can all add all these callbacks in inside here. So, you can see model 

dot fit is just simple way of training the vanilla way of training or maybe automated 

completely automated in the callbacks you can add checkpointing early stopping. So, all 

these customizations you can add now model.train _on_batch (). 

509



So, this method plus callbacks. So, you can now customize the training loop also. So, 

customizing training loop with training on batch because training loop has several 

options batch optimizers, which loss function you are using. So, all these are actually 

automated here in this fit functions train on batch plus callbacks if you use you can 

customize your optimizer you can customize your losses you can customize your 

interactive training loop batch. 

And completely scratch development of your training loop also you can do with custom 

training. So, here with gradient tape so this is a very simple API which keeps track of all 

the parameters which are differentiable ok. So, using this gradient tape we will see how 

to program with gradient tape. So, we using gradient tape we can customize or 

completely write your training module or training loop from scratches. So, optimizations 

modifying gradients how you want to define your loss function. 

So, loss function as I was mentioning. So, different loss functions are there mse loss, 

cross entropy loss right. Now, if you want to define your own loss function you can use 

custom training loop with gradient tape, where you can define your functions for your 

loss functions and you can call that function inside gradient tape to be accounted for your 

optimizing. 
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Now, as this is the basic of TensorFlow, so tensor data type. So, tensor data type is you 

have seen also in PyTorch tensors definition of tensors right, but tensors in TensorFlow 
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is similar it has few features different from PyTorch tensors, but it is completely same as 

your numpy error it is exactly same. 

However, you have defined your multi dimensional simple single dimensional array in 

numpy it is the same way of definition same way of function calling same way of slicing. 

So, everything you can use exactly same in tensor in tensor flow. So, tensor data type has 

a name and type and a rank. 

So, type is essentially the data type rank is essentially how many elements it has and a 

shape. So, the name identifies uniquely the object which you want to use in your 

computational graph the computational graph means. So, you if you recall the 

computational graph from the first PyTorch class you have let us say a tensor you have 

let us say weight tensor w. 

You have your tensor input as x, so w into x if you are doing. So, that is one flow of 

operation. So, this data is fit into the multiplication operation. So, that is simple flow of 

data and this flow of data is represented in computational graph. Now, in computational 

graph if you have what kind of data type you are using as tensors. So, these are tensors 

the input tensor, the weight tensor, the bias tensor. So, all these are tensors. 

And what data type you are using there now it has lot of support for data type. That is 

float32 int8 int32 float16 you can look into TensorFlow’s website TensorFlow. org. To 

get more of these data types what are the database that are available and how you can 

define your tensors for a particular data, rank is simply the number of dimensions of the 

tensor. So, basically scalar means it has 1 element, so rank is 0. 

Vector has rank 1. So, basically one dimension it has right the shape is the number of 

elements in each dimension. So, let us say rank 2 tensor, so 2 dimensions are there. Now 

in each dimension how many elements will be there. So, that will be defined by the 

shape. So, let us say a vector of shape d 0, so basically d0 is the number of elements. 

Mac matrix of shape d0 d1. So, d0 is the elements number of elements in the first 

dimension maybe it row and column let us say d1. So, how many elements are there, so 

as simple as that and the dimensions are not none. So, there can be none also as 

dimension ok is allowed and it indicates unknown dimension. Because in some of the 

programming of models you will be using some tensors where you do not know how 
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many batches will come or how many output of in particular dimension for first 

dimension how many elements will be given as output. 

So, you do not know in let us say defining time of your model you can use none in those 

places ok. 
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Next, we will see the different types of tensors. So, there are some immutable tensors 

there are mutable tensors. So, immutable tensors means you cannot change your values 

like constants. So, tf dot constants will be used to define constant tensors you can define 

variable tensors, but remember that tf dot variable which you are defining. But V is 

capital V this is just the notion that TensorFlow uses, but for the constants c is small. 

So, variables the data that you are defining tensor as you can change their values ok. But 

most of the trainings you do not need to worry about that you do not need to define your 

tensors as lower level as variable or constants if you are starting with sequential or even 

functional event. If you are defining your tensors from scratch without using your 

TensorFlow data type tf dot data you can use these variable definitions for constants and 

variables. 

But most of the time you will not use them ok, but it is nice to know. And now this tf dot 

data is as mentioning that tf dot data is much more flexible in terms of data loading. 
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And how it is. So, we will just see a few examples then because this is just to show you 

the flexibility how to define that, but we will use them explicitly and define how to 

define your TensorFlow data sets TensorFlow data loaders, which actually storing the 

data not such data loaders that you have seen in PyTorch. 

Now, keras data set you can use also you can use TensorFlow datasets. So, I mentioned 

that keras has its own implementation and keras has its TensorFlow implementation in 

our cases, we will use keras TensorFlow implementation. And of course, keras 

TensorFlow, TensorFlow.keras has lots of datasets available. 

Now, the if you are importing data sets from keras it is different if you are importing data 

sets from TensorFlow datasets. So, tf dot t, so tfds if you are using tfds that is different. 

And if you are using keras dataset that is different because TensorFlow datasets are 

already tensors you do not need to you do not need to convert them or transfer them for 

your GPU or TPU which you are using. 

And for your keras data sets it is not the tensors actually they will be imported as datasets 

as or numpy data structures. 
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Now, if you are using TensorFlow datasets you have the flexibility to define the flag in 

memory true or false because tfds can load your data into your memory into RAM to 

give you much more easy and faster access ok to the data. Let us say you are trying your 

data to be processed by CPU and if you are using keras data set then you are actually 

defining to be stored into the disk you then load into the RAM. 

And here you directly load into the ram as tensors and then you there you go ok. 
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You can cache as well by using dot cache function. Now, cache you can cache your data 

set whichever you are mapping for your let us say for this pre process function. So, let us 

say I want some images some image classification problem I am trying to address, where 

I need to pre process the image data before applying them into the models. 

Now, these pre process function will be used several times depending on the number of 

batches or number of images that you are using inside your model. Now, if you are 

having this pre process inside I do not know where you need to access that many times 

you need to call them right. Now, you have the flexibility to cache it inside ram or disk 

depending on let us say you are trying to cache anything as file inside your disk or cache 

anything inside your RAM you can do that. 

And here we are using map function to actually map this pre process with this many 

number of parallel calls with cache cached version inside your ds ok direct. So, that is 

also possible with image ds which is the tf.dataset right. 
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