
Applied Accelerated Artificial Intelligence

Dr. Satyajit Das

Department of Computer Science and Engineering

Indian Institute of Technology, Palakkad

Introduction to Deep Learning

Lecture - 23

Profiling with DLProf PyTorch Catalyst Part - 2

(Refer Slide Time: 00:17)

(Refer Slide Time: 00:44)

472

Now, let us start with the Catalyst right. So, as I was mentioning that catalyst as name

suggests, catalyst is basically the accelerated PyTorch framework right. And, this was the

development was started in 2016, but it has been now it is very mature and lot of

research and development pipeline using in catalyst. So, it is necessary nowadays to

understand this framework.

So, this is a framework for accelerated deep learning and R&D based on PyTorch ok.

And what it helps is that, it helps to write your code in very very compact way. So, that

maintaining the huge pipeline of trainings will be seamless and we can reproduce the

trainings, the metrics, the parameters again and again from several rounds.

(Refer Slide Time: 01:31)

So, now we will see the training group. So, if you are considering to explore your

training module from different aspects. Let say I do not want only epochs to run right. I

want several batches to run several loaders, maybe from different data sources I want to

load several loaders, for PyTorch several stages I want to have multi stage pipeline in our

training. So, now we are getting into some at most stage, but you understand that the

training module is not just only one equation of epoch.

So, there can be several loads that can engage the training pipeline for different

exploration. So, in the end of this exploration let us say I want to save the best three

models out of them right. So, that is; so, all these pipelines management will be

473

abstracted into catalysts in very simple custom problem. So, that is the flexibility of

using this catalyst that we will see.

(Refer Slide Time: 02:43)

So, supported features as I was mentioning you have universal train and inference loop.

Universal train and inference loop that is from the perspective of the targets. So, whether

you are doing supervised learning, whether you are doing reinforcement learning,

whether you are doing maybe regression, whether you are doing some classification like

classic classification which is also supervised; I mean subset of supervised learning.

But whatever you do, it will have one universal structure that you can follow and also

you will have the provisions for callbacks. So, once you wrap the entire thing with this

universal customer which will we will define in the next slide, there will be provisions

for call backs source. So, you can also induce some customized things inside the

universal training or inference loop. Configuration files for models and that may help to

have wide reproducibility.

So, if you maintain config file for your hyperparameters, you do not need to change

anything inside your training module. You just change the config file for your training

and you just go I mean you just have completely another configuration for your training

without much of the changes. And, best practice for deep learning is using these kind of

optimizers that you are seeing like AdamW or SWA optimizer.

474

So, different choices that if you want to have flexibility in the choices of optimizer or

you want to have flexibility of choices inside the what are the matrix you want to see

from the training, all these things you can actually abstract and define with the callbacks.

Also in addition, you will have the support for mixed precision that I was mentioning

that fp16 support, the distributed training support, slurm support and DALI loaders. So,

DALI loader that you have seen that Nvidia DALI loaders is same that you use DALI

loaders. But, that support also is available inside this catalyst framework ok.

And, this is also supported by several backend libraries like AMP, Apex. So, these two

libraries like we talked about just now and DeepSpeed, FairScale or DeepSpeed from

Microsoft, FairScale from Facebook, XLA so for your tensor cores. So, all these

hardware back ends will be supported from this frameworks ok. So, this is this way it

makes catalyst wide acceptable framework for accelerating your PyTorch training.

(Refer Slide Time: 05:50)

Why we are talking about universal training loop? So, inference loop essentially will

help you to construct inside your like custom runner, that I was talking about right. Now,

runner is an abstraction that takes all the logic. So, whether you are how many metrics

you want to handle, how many data, what kind of model you want to train, even some

models if you want to you want to import from the libraries, you can do that seamlessly.

And, everything every metrics that that to be known let us say accuracy, loss, precision,

recall F1 support. So, any metrics you can think of from universal training point of view,

475

you can actually have complete abstraction into one wrapper called runner. And of

course, there are a lot of more from wrapper, but we will see that eventually.

(Refer Slide Time: 06:53)

So, for PyTorch training, this is simple one batch training for several number of epochs

you can see here. And, in the end we are printing the training loss. So, as I was

mentioning that few statistics you need to print or maybe you need to keep output into

your loggers or profilers to be profiled in the end. But, to print it every time whatever

you need to track.

So, if you have let us say multistage pipeline for a big model and let us say several other

models are also there to be taken into account in to several stages, you can see how big

this pipeline can be right.

476

(Refer Slide Time: 07:40)

And, everything you can just customize into this custom runner which is either it can be

custom runner or superset of SupervisedRunner and other runners also. So, we just; so,

this is the universal training wrapper. So, basically you need define the model which

model; criterion, optimizer, part of the train loader, valid loader ok; how many number of

epochs, what will be the log directory. If you want verbose or not, you just define this.

And, this will take care of indirect loops of or for loop of your frame.

(Refer Slide Time: 08:18)

477

(Refer Slide Time: 08:27)

So, this is just a simplified view of custom runner. But, we will come into this in the

demo session ok. Also, in a training stage you can have logging model check pointing

and evaluation metrics. Now, if you are a data scientist or you only not only just model

training is necessary. Once you write the model for the training, you need to log your

different metrics and for different metrics what kind of performance you are getting.

As I was showing from the TensorBoard right, last time what that size or how the hyper

parameter set or combination of hyper parameters. So, those were very small number of

parameters that we are tracking in the TensorBoard. Now, here you we can evaluate

without writing any one piece mode of code. So, all these evaluation metrics that you can

think of from any training pipeline point of view, it is already defined.

You just need to use that and you need to use that inside the callback and also this model

check pointing will help you to evaluate this one. Because, you can have all these metrics

stored in several checkpoints and evaluate based on those checkpoints. And, also you can

select what will be the best model outcome and those model parameters you want to save

it, we just say that inside this frame and it will do all the things automatically.

478

(Refer Slide Time: 10:13)

So, let us see one such. So, all this runner definition we will see in this demonstration.

But, as I was mentioning the provision for callbacks will help you to customize your

logic during. So, universal training will give you the flexibility to define the universal

loops. Now, you want more right. You want to customize your metrics evaluation, you

want to you want to log some of the performance metrics based on which you want to

evaluate your model in the end.

So, all this customization you want to do and that we can do using this callback and once

again everything is PyTorch here. So, once you are familiarized with the PyTorch

syntaxes, usage and maybe definitions. These are very easy to follow. So, the same

things will be followed right and it provides usability, it will provide you to define your

config file as well. So, all these things are there.

479

(Refer Slide Time: 11:18)

(Refer Slide Time: 11:24)

So, we will just go into the demonstration to see what kind of flexibility we are going to

get.

480

(Refer Slide Time: 11:33)

So, this is the video we are provided by Sergey which who is the actually initiator for

this project and now this is global community, completely open source. So, you can

follow. So, all the things will be given to you and you can follow that you could as you

are seen here. Now, you have to install a catalyst for ml with all the machine learning

components from catalyst. So, it will be in downloading all the necessary packages to

install it.

(Refer Slide Time: 12:14)

481

(Refer Slide Time: 12:48)

And, the let us see first classic computer vision classification ok. So, the same things that

we have described so far, like one classification training model. So, basically we are

having the same torch and libraries that we have imported so far and some catalyst

libraries we need. And, also catalyst database has several database support for let us say

all the popular data sets are also available inside this catalyst database, you can import

them.

So, here we are not using torch vision for downloading the data, but we can use torch

vision. So, since catalyst is being used, you can use catalyst. So, data loaded; so,

basically with all the transformers you have we have defined.

482

(Refer Slide Time: 13:13)

(Refer Slide Time: 13:14)

So, basically once you have to define the model and optimize for your device, just check

that whether your run time is GPU or not.

483

(Refer Slide Time: 13:28)

So, defining the loaders. So, still now we are following the PyTorch, though this is

simple PyTorch, model optimizer, simple PyTorch definition. Then, the CustomRunner

definition.

(Refer Slide Time: 13:39)

So, this is the CustomRunner class where the handle batch method is the most important

batch method which will define your entire training pattern ok. So, handle batch has the

unpacking of batch, running the model forward pass.

484

(Refer Slide Time: 13:55)

(Refer Slide Time: 14:00)

So, this model is essentially one simple model that we have defined with the with one

layer here right. Now, now we have then the train loader loaded and we are doing the

backward pass. Then, updating the optimizer with the gradients and then zero grad

initialization.

485

(Refer Slide Time: 14:31)

So, this is the simple training pipeline. Now, we want to keep track of loss accuracy and

so, which are defined by this batch metrics update. So, here we are seeing that only the

metrics that we want to define ok and also these metrics would be actually computed and

unpacked here ok.

(Refer Slide Time: 14:44)

So, this batch size for different batch sizes it will run and in the end we are creating the

abstraction. So, this is the abstraction creation and take the runner. So, and this is the

runner.train with all these models, optimizer, loader which will be the log directory for

486

your metrics that you have defined so far, number of epochs train. So, it will take care of

the loop automatically what goes through. So, we are seeing all these outputs and valid

loader.

So, you want to validate. So, with this valid metrics loss and we want to minimize the

valid metrics, we want to minimize the loss. So, this is the true. So, you see the inter

pipelines for training and validation is actually defined in this simple training method

here with this runner abstraction ok.

(Refer Slide Time: 15:44)

(Refer Slide Time: 15:47)

487

So, you can see once we hit run you are downloading the dataset here for number of

epochs. So, 3 epochs we have defined. You can see all these metrics that is computed

automatically and it is being logged inside your logs this part ok. And, best models is

being saved here. So, best models is 3 out of 3.

So, basically the third model is the best model and accuracy is you know for your loss is

less. And so, this is just the 3 epochs that epochs showing. So, this was a simple pipeline

for definition and more compaction you can do.

(Refer Slide Time: 16:28)

(Refer Slide Time: 16:40)

488

So, if you see this classification. So, this is the same pipeline we are doing, but here the

same training data, trainloader, DataLoader and valid loader. We have defined model,

criterion and optimizer we have defined with this parameters. And, then we are using the

SupervisedRunner as the global or universal training model ok. Now, inside this training

model we are now defining some callbacks, because we want to have the callback for

accuracy ok.

We want to callback we want to have callback for PrecisionRecallF1Support. So, all

these will be taken care of instantly and without any writing of single piece of code. So,

all these statistics will be actually stored. So, this is the callbacks support that I was

talking about. So, instead of only running the model which is the vanilla in a model

running for this runner ok, you can add the callbacks as you want to ok.

(Refer Slide Time: 17:36)

So, you want to have the ConfusionMatrixCallback. So, we added 3 callbacks here,

number of epochs for directory and whether this we are doing the validity. Now, you can

also support different validation metrics also ok. So, micro averaging, verbo averaging

and also the weighted averaging, it supports f1 by this metrics. So, this metrics is also

supported and you want to do let us say verbose False. And, also if you want to do the

next precision training fp16 equal to True, you can enable it.

And, since we have enabled it you can see here that we are actually using Adam

optimizer here but. So, once we have actually imported the dl; so, everything is imported

489

here. You do not need to import the AMP explicitly. But, since everything is imported

so, you can use mixed precision support automatically ok. And, this will actually transfer

the mixed precision support to the native PyTorch support ok.

So, this will not use the Apex or NVIDIA Apex library, but if you use the native

PyTorch mixed precision. So, one more thing here. So, as you are seeing that everything

we are logging into this directory here for previous model as well right. So, in the logs

directly with custom classification previously and this is the classification, simple

classification with this callbacks. And, in the next we want to do the MultiStage

Classification.

So, this is a bit advanced and this will actually help you to understand the flexibility of

using catalyst in large scale training ok. So, class CustomRunner we have now we are

now defining it. So, basically we are defining the engine here. So, AMPEngine we are

using. So, again this is just to use AMP library and AMPEngine will enable the tensor

board execution.

(Refer Slide Time: 20:11)

So, get logger will we want to have console, csv and tensorboard available to these

directories and then we want to have multi stage pipeline for the training. So, now we

want to have let us say two stages of training or two stages means let say first stage we

want to do the training and the freeze the gradients.

490

And, then in the second stage we will use another optimizer and we will tune those

parameters and do that. And, this is a very like normal way or typical way of training

your big neural networks with at least two stages ok, to tune for your targeted data set.

Because, whatever model you are using that is not particularly that will not be tuned for

your particular data target data size.

(Refer Slide Time: 21:37)

So, this is a simple demonstration, how you can use this multi stage pipeline or manage

multi stage pipeline inside your my catalyst custom runner right. And, we are saying that

each stage will have 3 blocks and get the loaders, get the loaders, get the model. And so,

get model will define the model. And so, basically here the model has two layers, two

linear layers. And, then in the training phase stage we are freezing the gradients where

we are not updating the gradients and here we are using the gradients to tune in the

second stage.

So, basically these are the two stage. And, you can see how seamlessly easy to define

multi stage training. Just two lines will help you to enable multi stage training without;

so, 3 epochs we are using. So, you can imagine like how this will be once you try to code

it from vanilla PyTorch training right.

491

(Refer Slide Time: 22:25)

Now, get criterion you just do this. So, basically we are defining CrossEntropyLoss and

optimizer for freezing stage, we are using Adam optimizer and for non-freezing stage,

we are using SGD optimizer. So, this is also typical practice of using several optimizers

into several stages to see what is the performance gain in the end.

(Refer Slide Time: 22:50)

And, for sure you will get better performance in it get scheduler. Now, this is to define

whether how this optimizer will get scheduled inside your training pipeline. And, now in

492

get callbacks we are defining all the callbacks for let us say Criterion, Accuracy,

Optimizer, PrecisionRecallF1Support, ConfusionMatrix, CheckpointCallbacks.

(Refer Slide Time: 23:11)

So, CheckpointCallback will help you to in the end minimize the loss and save the best 3

choices. Let us say I want to say the best 4 choices, 5 choices, 3 choices or maybe top

model with this metrics right. So, all these you can do just defining this context that is it,

as simple as that. And, handle batch we actually do the training and defining the

abstraction and hit the run and that will do the job.

(Refer Slide Time: 23:45)

493

(Refer Slide Time: 23:50)

So, 1 2 3 or the first stage, multi stage, we switch to the second stage. Training on to 3

epochs and you will see the metrics. All the metrics are computed automatically, the

accuracy, precision recall, f1 support.

(Refer Slide Time: 24:02)

494

(Refer Slide Time: 24:10)

So, everything is computed automatically and they have been logged also depending on

the path that we have defined. And, the first three best performance model also is set in

this path ok. So, that is that much of ease you will get using this framework to define the

complex pipeline of MultiStage Classification or even multi stage training of your

networks right.

(Refer Slide Time: 24:36)

495

(Refer Slide Time: 24:53)

Now, to see the logs. Again you can use tensorboard here to get the profiles. So, as you

can see here. So, for the multi stage pipeline. So, basically this is the multi stage

classification that we have done for right, got it. And so, you can see after first stage, the

accuracy has hopped up ok.

(Refer Slide Time: 25:11)

496

(Refer Slide Time: 25:22)

And so, this is the typical way of training your model and you can see for all the

basically for different parameters, all the parameters have been checkpointed here. You

can see accuracy, F1 score, loss, your learning rate, momentum, precision, recall, support

etc and also yeah.

(Refer Slide Time: 25:33)

So, this is you just you can just dig on it and see what kind of analysis you can do. So,

this is the catalyst that we were talking. Also in the slide if you see ok, let us go quickly

to the demo. So, in this section we have also given one name for you to refer the catalyst

497

run in. So, here we are seeing catalyst run in GPU. You can also refer another name for

catalyst run in TPU ok.

So, this is just one or two lines of additional code that you need to do for your TPU and

you can change the run runtime for TPU. And, in the next week we will see more of TPU

exhibition. But, we will not discuss TPU exhibition right now. But, you can refer to the

link for how we can modify your training model for your TPU time ok.

(Refer Slide Time: 26:36)

So, to conclude these catalyst, this accelerated framework for based on PyTorch and it

takes you to write your frame looks very very easily. And, you can do some rapid

experimentation with reproducibility, codebase to use also. This is very important

because once you have generated the config file, you can just reuse it for different

trainings. So, as what he has written here, I do not know. This is the quote from the

initiator; “Write code with PyTorch, accelerate it with Catalyst!” ok.

498

(Refer Slide Time: 27:23)

Thank you, with this references and we will go to the question answer session.

499

